JPH01250864A - Flow type analyzer - Google Patents

Flow type analyzer

Info

Publication number
JPH01250864A
JPH01250864A JP8011288A JP8011288A JPH01250864A JP H01250864 A JPH01250864 A JP H01250864A JP 8011288 A JP8011288 A JP 8011288A JP 8011288 A JP8011288 A JP 8011288A JP H01250864 A JPH01250864 A JP H01250864A
Authority
JP
Japan
Prior art keywords
test liquid
air bubbles
liquid
gas
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8011288A
Other languages
Japanese (ja)
Inventor
Taizo Shinohara
篠原 泰三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8011288A priority Critical patent/JPH01250864A/en
Publication of JPH01250864A publication Critical patent/JPH01250864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To obtain a function to sufficiently remove the air bubbles in a test liquid by providing an air bubble collecting tube in which glass particles are packed to the stage before a steam trap. CONSTITUTION:The air bubble collecting pipe 31 is constituted by packing the glass beads 33 into a glass tube 32 and packing glass wool into both ends. The air dissolved in the test liquid is gasified to the fine air bubbles which stick to the surface of the beads 33, when the heated up test liquid is sent into the tube 31. Since the test liquid is continuously fed, the fine air bubbles sticking to the beads 33 are successively accumulated to form the larger air bubbles which increase buoyancy and slip off among the beads 33. The test liquid contg. the large air bubbles, therefore, flows into the steam trap 12 and since the trap 12 removes the air bubbles easily, the detection is executed without having the noises arising from the air bubbles in case of detecting the component concn. of the test liquid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、検液が連続的に検出部に流れるフロー型の分
析計、特にその検液中に含有される気泡を除去する気泡
除去装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a flow-type analyzer in which a test liquid flows continuously to a detection section, and in particular to a bubble removal device for removing air bubbles contained in the test liquid. Regarding.

〔従来の技術] 検液が検出部中を連続的に流れるフロー型の分析計にお
いては、圧力の変動や温度の変化などによって液中に溶
けていた気体がガス化し、気泡となって検液が流れる配
管内に生じることがある。
[Prior art] In flow type analyzers, where the test liquid flows continuously through the detection section, gas dissolved in the liquid gasifies due to pressure fluctuations or temperature changes, forming bubbles and dispersing the test liquid. may occur in pipes where water flows.

これは大きなノイズの要因となる。例えば、検出法に吸
光光度法を用いた場合は、検出部を気泡が通過すること
により光の吸収が大きく変り、また、検出法にクーロメ
トリ−を用いた場合は検出部を気泡が通過することによ
って、電極表面の電気的平衡がくずれ共に大きなノイズ
となる。特に後者のクーロメトリ−に用いる検出部は後
述する第5図に示す構造になっているため、微細な気泡
もセル内で集積され、ついには検出部内で大きな気泡と
なって大きなノイズを発生する。すなわち第5図におい
て、1はクーロメトリ−型の検出部としてのりん酸分析
計の検出部であり、電解セルとして構成されている。電
解セルは隔膜円筒2の内部に球状のグラッシーカーボン
が作用電極3として詰められており、隔膜円筒2の外部
は螺旋状の白金線が対極4として配置されている。また
隔膜円筒2の外部に同心円状に配置されたガラス外筒6
には恨−塩化銀参照電極5が取付けられている。
This causes a large amount of noise. For example, when spectrophotometry is used as the detection method, the absorption of light changes greatly due to the passage of air bubbles through the detection part, and when coulometry is used as the detection method, the passage of air bubbles through the detection part changes significantly. As a result, the electrical balance on the electrode surface is disrupted, resulting in large noise. In particular, since the detection section used for the latter coulometry has a structure shown in FIG. 5, which will be described later, fine air bubbles also accumulate within the cell and eventually become large bubbles within the detection section, generating large noise. That is, in FIG. 5, 1 is a detection section of a phosphoric acid analyzer as a coulometry type detection section, and is configured as an electrolytic cell. In the electrolytic cell, spherical glassy carbon is packed inside a diaphragm cylinder 2 as a working electrode 3, and a spiral platinum wire is arranged as a counter electrode 4 outside the diaphragm cylinder 2. Further, a glass outer cylinder 6 is arranged concentrically outside the diaphragm cylinder 2.
A silver chloride reference electrode 5 is attached to the electrode.

隔膜円筒2とガラス外m6の間には電解液としてKCL
溶液が満たされている0作用電極リード7はグラッシー
カーボン円筒9を介して球状のグラッシーカーボンから
なる作用電極3と接続している。
KCL is used as an electrolyte between the diaphragm cylinder 2 and the glass outer m6.
A zero working electrode lead 7 filled with a solution is connected via a glassy carbon cylinder 9 to a working electrode 3 made of spherical glassy carbon.

このような構造の検出部を用いて検液を分析する場合に
は作用電極リード7を介して作用電極3に電圧を印加す
る。そして検液、すなわちりん酸をモリブデンを含む電
解液と反応させてなるりんモリブデン錯体[PMo(V
l) +2046 ) !−を流路8を経て隔膜円筒2
の内部に流がし、作用電極3を参照電極5に対し+30
0m’Vの定電位になるように保って定電位電解する。
When a test liquid is analyzed using a detection section having such a structure, a voltage is applied to the working electrode 3 via the working electrode lead 7. Then, a test solution, that is, a phosphomolybdenum complex [PMo(V
l) +2046)! - through the flow path 8 to the diaphragm cylinder 2
The working electrode 3 is set at +30 with respect to the reference electrode 5.
Constant potential electrolysis is performed by maintaining the constant potential at 0 m'V.

このとき作用電極3と対極4との間に電解還元電流が流
れる。ところで作用電極3におけるりんモリブデン錯体
の還元反応は下記の(1)式による。
At this time, an electrolytic reduction current flows between the working electrode 3 and the counter electrode 4. Incidentally, the reduction reaction of the phosphomolybdenum complex at the working electrode 3 is based on the following equation (1).

[PMo(Vl)+zOmo) 3−+2e→(PMO
(V)2MO(Vl)1004113(1)式の反応に
よる還元電流は、りん濃度に比例するので、この還元電
流の値によりりん酸濃度を定置することができる。
[PMo(Vl)+zOmo) 3-+2e→(PMO
(V)2MO(Vl)1004113 Since the reduction current due to the reaction of formula (1) is proportional to the phosphorus concentration, the phosphoric acid concentration can be fixed based on the value of this reduction current.

このような電解セルの構成1作用により検液は球状の作
用電極3が充填した隔膜円筒2内を流れるので、前述の
ように微細な気泡も隔膜円筒2内で集積され、ついには
大きな気泡となって通過するので電解還元TI流測測定
時きなノイズを発生する。
Due to the action of the structure 1 of the electrolytic cell, the test liquid flows through the diaphragm cylinder 2 filled with the spherical working electrode 3, so as mentioned above, fine air bubbles are also accumulated within the diaphragm cylinder 2, and eventually become large bubbles. This causes a lot of noise during electrolytic reduction TI flow measurement.

このため、フロー型の分析計では検液中に含有する気泡
を除去するために検液を検出部に導く配管の途中に気液
トラップを設け、この気液トラップにより検液中に含有
する気泡を検液から分離し、気泡を除去した検液を検出
部に送るようにしている。
For this reason, in flow-type analyzers, a gas-liquid trap is installed in the middle of the piping that leads the test liquid to the detection part in order to remove air bubbles contained in the test liquid. The test liquid is separated from the test liquid, and the test liquid with air bubbles removed is sent to the detection section.

第6図はこのような気液トランプを備えた従来のフロー
型分析計としてのりん酸分析計の測定系統図である。図
において12は気液トラップであり、ガラス管12aの
中間部に検ンlの入口12bを備え、下部に検液の出口
12cを備えている。そして上部は気泡溜め12dを形
成し、入口12bから入ってきた検液中の気泡は浮力で
検液から分離して気泡溜め12dに溜るようにしている
FIG. 6 is a measurement system diagram of a phosphoric acid analyzer as a conventional flow type analyzer equipped with such a gas-liquid Trumpet. In the figure, reference numeral 12 denotes a gas-liquid trap, which has an inlet 12b for a sample l in the middle part of a glass tube 12a, and an outlet 12c for a sample liquid in the lower part. The upper part forms an air bubble reservoir 12d, and air bubbles in the test liquid entering from the inlet 12b are separated from the test liquid by buoyancy and collected in the air bubble reservoir 12d.

つぎに第6図のりん酸分析計の測定系統における検液の
測定工程について説明する。りん酸分析計は検液である
りんモリブデン錯体を検出部である電解セルに導き、前
述のように電気化学的に上記錯体を還元してその還元電
流の大きさによりりんの定量を行うものである。具体的
に測定方法を説明すると、まずりん酸試料21を定量ポ
ンプ27を用いて吸引する。定量ポンプ28は定量ポン
プ27で吸引した試料21 と電解液24の所定量とを
吸引する。電解液24 は酸性モリブデン酸液であり、
モリブデン酸ナトリウムと硫酸との混合試薬でありpH
1以下に調整されている。りん酸試料と電解液の酸性モ
リブデン酸液とは混合管29においてよく混合されて検
液となる。このときりん酸とモリブデン酸とが反応して
りんモリブデン錯体(PM。(Vl) + tea。〕
3−が形成される。混合管29は、ステンレス管か薄肉
のテフロン管のコイルで形成されている。配管用の恒温
槽30はこの混合管29を収納しており、混合管29の
内部を流れる検液の温度を所定値に制御する。熱媒体と
しては水またはシリコン油が用いられ、マグネチックス
ターラでよく撹拌される。所定の温度に制御されたりん
モリブデン錯体である検液は、気液トランプ12を通っ
て検出部1に送られる。恒温槽20 は気液トラップ1
2 と検出部1を収納しており、これらを所定の温度に
制御している。
Next, the process of measuring a test liquid in the measurement system of the phosphoric acid analyzer shown in FIG. 6 will be explained. A phosphoric acid analyzer introduces a phosphorous molybdenum complex as a test solution to an electrolytic cell as a detection part, electrochemically reduces the complex as described above, and quantifies phosphorus based on the magnitude of the reduction current. be. To explain the measurement method specifically, first, a phosphoric acid sample 21 is aspirated using a metering pump 27. The metering pump 28 sucks the sample 21 sucked by the metering pump 27 and a predetermined amount of the electrolyte 24 . The electrolytic solution 24 is an acidic molybdic acid solution,
It is a mixed reagent of sodium molybdate and sulfuric acid, and the pH
It is adjusted to 1 or less. The phosphoric acid sample and the acidic molybdic acid solution as the electrolyte are thoroughly mixed in the mixing tube 29 to form a test solution. At this time, phosphoric acid and molybdic acid react to form a phosphorous molybdenum complex (PM. (Vl) + tea.)
3- is formed. The mixing tube 29 is formed of a stainless steel tube or a thin-walled Teflon tube coil. A constant temperature bath 30 for piping accommodates this mixing tube 29, and controls the temperature of the test liquid flowing inside the mixing tube 29 to a predetermined value. Water or silicone oil is used as the heat medium, and is thoroughly stirred with a magnetic stirrer. The test liquid, which is a phosphorus molybdenum complex whose temperature is controlled at a predetermined temperature, is sent to the detection section 1 through the gas-liquid card 12. Constant temperature chamber 20 is gas-liquid trap 1
2 and a detection section 1 are housed therein, and these are controlled at a predetermined temperature.

ところで、気液トラップ12に送られた検液は気液トラ
ップ12でその含有する気泡が分離され、気泡は上部の
気泡溜め12dの方に行き、検液のみが検出部Iの方へ
送られる。気液トランプ12で分離したガスは、適当な
間隔でガス抜き7h Gn弁15を開けることにより外
部に排出される。このとき、検出部を通過した後の配管
に0.01kg/c+a程度のクランキング圧を持つ背
圧弁16を取り付けることにより、配管内の圧力が上り
、ガス抜き電磁弁15の開放時にスムーズなガスの排出
が行える。
By the way, the air bubbles contained in the test liquid sent to the gas-liquid trap 12 are separated therein, the air bubbles go to the upper air bubble reservoir 12d, and only the test liquid is sent to the detection part I. . The gas separated by the gas-liquid card 12 is discharged to the outside by opening the gas vent valve 15 at appropriate intervals. At this time, by attaching a back pressure valve 16 with a cranking pressure of about 0.01 kg/c+a to the piping after passing through the detection part, the pressure inside the piping increases, and when the degassing solenoid valve 15 is opened, the gas is released smoothly. can be discharged.

上記のように気泡を除去したりんモリブデン錯体である
検液は電解セルである検出部1の隔膜円筒2内に流れ、
ポテンショスタンド17の操作により前述のように定電
位電解され、作用電極と対極の間に流れる電解還元電流
は電圧変換されて記録計18に入力されて記録され、り
ん酸′a度が測定される。なお検量線の作成は三方弁2
5.26の切換操作により水22 とりん酸標準液23
を用いて行われる。
The test solution, which is a phosphomolybdenum complex from which air bubbles have been removed as described above, flows into the diaphragm cylinder 2 of the detection section 1, which is an electrolytic cell.
Constant potential electrolysis is carried out as described above by operating the potentiometer stand 17, and the electrolytic reduction current flowing between the working electrode and the counter electrode is converted into voltage and input to the recorder 18 and recorded, thereby measuring the degree of phosphoric acid. . The calibration curve was created using the three-way valve 2.
5. By switching in 26, water 22 and phosphoric acid standard solution 23
This is done using

[発明が解決しようとする課題] 」ユ記のようなフロー型の分析計の測定系統において、
検液の温度が変化しない場合は、検液中に含有される気
泡を上記の気液トラ、7ブのみGこより除去することが
できる。しかしながら検液の温度を検液が流れる配管中
で元の温度より上げて使用する場合、すなわち検出部の
温度を恒温槽の中で一定にする場合に次のような問題が
ある。
[Problem to be solved by the invention] In the measurement system of a flow type analyzer such as the
If the temperature of the test solution does not change, the air bubbles contained in the test solution can be removed using the above-mentioned gas-liquid tank. However, when the temperature of the test liquid is raised above the original temperature in the pipe through which the test liquid flows, that is, when the temperature of the detection part is kept constant in a constant temperature bath, the following problem occurs.

恒温槽により温度を一定に安定して制御するため、恒温
槽の温度は周囲温度より最低でも5〜10°C高(設定
される。このため検液も検出部に送られる前段、すなわ
ち検出部に検液を導く配管の途中に設けられた恒温槽に
より検出部の恒温槽の温度まで上昇される。このため検
液中に溶は込んでいる空気は温度が上昇することにより
溶解度力<711さくなるためガス化して気泡となる。
In order to control the temperature at a constant and stable temperature using a constant temperature bath, the temperature of the constant temperature bath is set at least 5 to 10 degrees higher than the ambient temperature. The temperature is raised to the temperature of the constant temperature bath in the detection part by a constant temperature bath installed in the middle of the piping leading the test liquid to the detection part.As a result, the temperature of the air dissolved in the test liquid increases and the solubility force < 711 As it becomes thinner, it gasifies and becomes bubbles.

ちなみに、空気の水に対する溶解度は、25°Cの時で
0.0167m1/mN、50°Cのときで0.011
4d/II1.であり、25°Cの検液を50°Cの恒
温槽に収めた検出部で測定した時には100m1の検液
が通過する際に0.53I11の空気がガス化する。と
ころが、このガス化によって生じる気泡は微細であるた
め気泡の浮力は小さい。そのため気液トラップでは液の
流れに逆らって上昇することができず、液といっしょに
下部の液出口から検出部の方に流出し、検出部でノイズ
として検出されるという問題がある。
By the way, the solubility of air in water is 0.0167 m1/mN at 25°C and 0.011 at 50°C.
4d/II1. When a 25°C test liquid is measured in a detection unit housed in a 50°C constant temperature bath, 0.53I11 of air is gasified when 100ml of test liquid passes through. However, since the bubbles generated by this gasification are minute, the buoyancy of the bubbles is small. Therefore, in the gas-liquid trap, the gas cannot rise against the flow of the liquid, and the gas flows out together with the liquid from the lower liquid outlet toward the detection section, causing a problem that the detection section detects it as noise.

本発明の目的は、検出部を恒温槽に収納したフロー型の
分析計で、検液中の気泡を十分除去できる気泡除去機能
を持ったものを提供することである。
An object of the present invention is to provide a flow type analyzer in which a detection part is housed in a constant temperature bath, and which has a bubble removal function that can sufficiently remove bubbles from a test liquid.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれば気泡を含有
する検液を気泡を分解する気液トラップに導き、この気
液トラップからの気泡が除去された検液の成分濃度を検
出する検出部を有するフロー型分析計において、前記気
液トラップの前段に検液内の気泡が耐着する粒子を充填
した気泡集積管を設けるものとする・ 〔作用] 検液中の気泡を検液から分離する気液トラップの前段に
、気泡が耐着する粒子を充填した気泡集積管を設けたこ
とにより、検液の温度上昇により検液中に溶は込んでい
る空気がガス化して生じる微細な気泡は前記粒子に耐着
して捕捉され、連続した検液の流れにより微細な気泡が
集積されて大きな気泡になると、この気泡はその浮力が
大きくなって、粒子間をすり抜け、大きな気泡を含有す
る検液が気液トラップに送られるので、検液中の気泡を
気液トラップで十分に分離、除去できる。
In order to solve the above problems, according to the present invention, a test liquid containing air bubbles is guided to a gas-liquid trap that decomposes the air bubbles, and the component concentration of the test liquid from which air bubbles have been removed from the gas-liquid trap is detected. In a flow type analyzer having a section, a bubble collection tube filled with particles that prevent air bubbles in the test liquid from adhering to the gas-liquid trap shall be provided upstream of the gas-liquid trap. By installing a bubble collection tube filled with particles that prevent air bubbles from adhering to the gas-liquid trap that separates the gas, a rise in the temperature of the test liquid can cause the air dissolved in the test liquid to gasify, resulting in fine particles. Air bubbles are captured by adhering to the particles, and when the continuous flow of the test liquid causes the fine air bubbles to accumulate and become large air bubbles, the buoyancy of these air bubbles increases, allowing them to slip between the particles and contain large air bubbles. Since the test liquid is sent to the gas-liquid trap, air bubbles in the test liquid can be sufficiently separated and removed by the gas-liquid trap.

したがってフロー型分析計の検出部に気泡が十分に除去
された検液を送ることができる。
Therefore, the test liquid from which air bubbles have been sufficiently removed can be sent to the detection section of the flow type analyzer.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による気泡集積管を備えたフロ
ー型分析計としてのクーロメトリ−型のりん酸分析計の
測定系統図である。なお第1図において第5図3第6図
の従来例と同一部品には同じ符号を付し、その説明を省
略する。本実施例において従来例と異なるのは、気液ト
ラップ12の前段に気泡集積管31を設けたことである
FIG. 1 is a measurement system diagram of a coulometry type phosphate analyzer as a flow type analyzer equipped with a bubble collecting tube according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIGS. 5, 3, and 6 are given the same reference numerals, and their explanations will be omitted. This embodiment differs from the conventional example in that a bubble accumulation pipe 31 is provided upstream of the gas-liquid trap 12.

なお、気泡集積管31 も恒温槽26の中に収納される
Note that the bubble collecting tube 31 is also housed in the constant temperature bath 26.

気泡集積管31 は第2図に示すように円径3〜4閣の
ガラス管32の中に直径0.5III11程度の粒子と
してのガラスピーズ33が充填され、ガラス管32の両
端にはガラスピーズ33が流出しないようにグラスウー
ル34 を詰めて構成されている。
As shown in FIG. 2, the bubble accumulation tube 31 is a glass tube 32 with a diameter of 3 to 4 times filled with glass beads 33 as particles with a diameter of about 0.5III11, and glass beads 33 at both ends of the glass tube 32. It is constructed by filling it with glass wool 34 to prevent the 33 from flowing out.

このような構成により恒温にするため温度上昇された検
液は気泡集積管31に送られ、ここで温度の上昇により
検液中に溶は込んでいる空気がガス化してなる微細な気
泡はガラスピーズ33の表面に付着する。この際検液は
連続的に送られるので、気泡集積管31内でガラスピー
ズ33に付着した微細気泡は順次集積されて大きな気泡
となる。
With this configuration, the test liquid whose temperature has been raised to maintain a constant temperature is sent to the bubble collection tube 31, where fine bubbles formed by gasification of air dissolved in the test liquid due to the rise in temperature are formed into glass. It adheres to the surface of the beads 33. At this time, since the test liquid is continuously sent, the fine bubbles adhering to the glass beads 33 within the bubble collecting tube 31 are accumulated one after another to become large bubbles.

そして大きな気泡になってその浮力が増すとガラスピー
ズ33の間をすり抜け、気液トラップ12には大きな気
泡を含んだ検液が流入するので気液トラップ12にて容
易に気泡を分離できる。したがって検出部1には気泡が
十分に除去された検液が流れ、気泡に起因するノイズの
ない検出を行なうことができる。
When the bubbles become large and their buoyancy increases, they slip between the glass beads 33 and the test liquid containing large bubbles flows into the gas-liquid trap 12, so that the gas-liquid trap 12 can easily separate the bubbles. Therefore, a test liquid from which air bubbles have been sufficiently removed flows through the detection unit 1, and detection can be performed without noise caused by air bubbles.

本実施例では気泡集積管にガラスピーズを使用したが、
この他に検液に化学的に不活性なグランジ−カーボンや
セラミンク等からなる粒子であってもよい。
In this example, glass beads were used as the bubble collecting tube, but
In addition, particles made of grunge carbon, ceramics, etc., which are chemically inert to the test liquid, may also be used.

上記のクーロメトリ−によるフロー型の分析計としての
りん酸分析計において、検液を本発明によるガラスピー
ズを充填した気泡集積管と気液トランプとにより気泡を
除去したものと、従来の気液トランプのみにより気泡を
除去したものとによりりん酸濃度測定を行なって比較を
行なった。試料としては2■/lのりん酸を用い、試料
、電解液ともlrd/winの流速で連続的に流し、恒
温槽20、30の温度を50’Cにして還元電流を測定
した。
In the phosphoric acid analyzer as a flow-type analyzer using coulometry, there are two methods: one in which air bubbles are removed from the test solution using a gas-liquid tramp and a bubble accumulation tube filled with glass beads according to the present invention, and the other in which air bubbles are removed from the test liquid using a gas-liquid trump. The phosphoric acid concentration was measured and compared with the one in which air bubbles had been removed using a chisel. Phosphoric acid of 2 .mu./l was used as a sample, and both the sample and the electrolyte were continuously flowed at a flow rate of lrd/win, and the temperature of the constant temperature baths 20 and 30 was set to 50'C, and the reduction current was measured.

第3図は本発明による還元電流と時間との関係を示した
グラフであり、第4図は従来法による還元電流と時間と
の関係を示したグラフである。第3図、第4図から本発
明によるものは時間経過に対しノイズの発生が見られず
安定した還元電流値を示しているが、従来法では20分
に1回程度の割合でノイズが生しているのが理解される
FIG. 3 is a graph showing the relationship between reduction current and time according to the present invention, and FIG. 4 is a graph showing the relationship between reduction current and time according to the conventional method. As shown in Figures 3 and 4, the method according to the present invention does not generate noise over time and shows a stable reduction current value, whereas the conventional method generates noise at a rate of about once every 20 minutes. I understand what you are doing.

〔発明の効果] 上記の説明から明らかなように、本発明によれば検液中
に含有する気泡を除去する手段として気液トランプの前
段に気泡集積管を設けたことにより、検液が周囲温度よ
り高い恒温の検出部に連続的に送られる場合、周囲温度
で検液中に溶は込んでいた空気が恒温にすることにより
ガス化して生じる微細な気泡を気泡集積管により後段の
気液トラップで分離することのできる大きさの大きな気
泡にすることができ、このため後段の気液トランプで気
泡が分離され、気泡が十分に除去された検液が検出部に
送られるので気泡に起因するノイズがなくなるという効
果がある。また測定系統の配管内に夾雑物が混入した場
合でも気泡集積管がフィルタの役目をするので、検出部
の機能低下を防ぐ効果もある。
[Effects of the Invention] As is clear from the above description, according to the present invention, a bubble collecting tube is provided in the front stage of the gas-liquid playing card as a means for removing air bubbles contained in the test liquid, so that the test liquid is removed from the surroundings. When the air is continuously sent to a detection unit with a constant temperature higher than the ambient temperature, the air dissolved in the test liquid at ambient temperature becomes gasified when the temperature is constant, and the fine bubbles that are generated are transferred to the gas liquid at the subsequent stage using a bubble collection tube. It is possible to make large bubbles that can be separated by the trap, and the bubbles are separated by the gas-liquid card in the subsequent stage, and the test liquid from which the bubbles have been sufficiently removed is sent to the detection unit, so that it is possible to detect bubbles caused by bubbles. This has the effect of eliminating noise. Furthermore, even if foreign matter gets mixed into the piping of the measurement system, the bubble collecting tube acts as a filter, which also has the effect of preventing functional deterioration of the detection section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による気泡集積管を備えたフロ
ー型分析計のクーロメトリ−による測定系統図、第2図
は第1図における気泡集積管と気液トラップの構成図、
第3図は本発明による気泡集積管を用いた場合のりん酸
濃度の測定結果を示すグラフ、第4図は従来の方法によ
るりん酸濃度の測定結果を示すグラフ、第5図はクーロ
メトリ−による検出部の断面図、第6図は従来のフロー
型分析計のクーロメトリ−による測定系統図である。 l・・・検出部、12・・・気液トラップ、31・・・
気泡集積管、33・・・粒子。 12気ソLトラヅフ0 第 1 図 時 開 (分) 第 3 図 吋 間(分) て 5 図 ℃6 図
FIG. 1 is a coulometry measurement system diagram of a flow type analyzer equipped with a bubble collecting tube according to an embodiment of the present invention, and FIG. 2 is a block diagram of the bubble collecting tube and gas-liquid trap in FIG. 1.
Fig. 3 is a graph showing the measurement results of phosphoric acid concentration using the bubble collecting tube according to the present invention, Fig. 4 is a graph showing the measurement results of phosphoric acid concentration by the conventional method, and Fig. 5 is a graph showing the measurement results of phosphoric acid concentration by coulometry. FIG. 6, which is a sectional view of the detection section, is a measurement system diagram using coulometry of a conventional flow type analyzer. l...detection section, 12...gas-liquid trap, 31...
Bubble accumulation tube, 33...particles. 12K SO L Tradzuf 0 Figure 1 Time Open (Minutes) Figure 3 Time (Minutes) Te 5 Figure ℃6 Figure

Claims (1)

【特許請求の範囲】[Claims] 1)気泡を含有する検液を気泡を分離する気液トラップ
に導き、この気液トラップからの気泡が除去された検液
の成分濃度を検出する検出部を有するフロー型分析計に
おいて、前記気液トラップの前段に検液内の気泡が付着
する粒子を充填した気泡集積管を設けたことを特徴とす
るフロー型分析計。
1) In a flow type analyzer that has a detection section that guides a test liquid containing air bubbles to a gas-liquid trap that separates air bubbles and detects the component concentration of the test liquid from which air bubbles have been removed, A flow type analyzer characterized by having a bubble collection tube filled with particles to which air bubbles in the test liquid adhere in the front stage of the liquid trap.
JP8011288A 1988-03-31 1988-03-31 Flow type analyzer Pending JPH01250864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8011288A JPH01250864A (en) 1988-03-31 1988-03-31 Flow type analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8011288A JPH01250864A (en) 1988-03-31 1988-03-31 Flow type analyzer

Publications (1)

Publication Number Publication Date
JPH01250864A true JPH01250864A (en) 1989-10-05

Family

ID=13709103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8011288A Pending JPH01250864A (en) 1988-03-31 1988-03-31 Flow type analyzer

Country Status (1)

Country Link
JP (1) JPH01250864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104856U (en) * 1990-02-08 1991-10-30
US5569442A (en) * 1994-11-04 1996-10-29 Norian Corporation Reactive tricalcium phosphate compositions and uses
CN106133512A (en) * 2014-01-27 2016-11-16 株式会社日立高新技术 Automatic analysing apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104856U (en) * 1990-02-08 1991-10-30
US5569442A (en) * 1994-11-04 1996-10-29 Norian Corporation Reactive tricalcium phosphate compositions and uses
US5571493A (en) * 1994-11-04 1996-11-05 Norian Corporation Reactive tricalcium phosphate compositions and uses
US5683667A (en) * 1994-11-04 1997-11-04 Norian Corporation Reactive tricalcium phosphate compositions
US5709742A (en) * 1994-11-04 1998-01-20 Norian Corporation Reactive tricalcium phosphate compositions
US5885540A (en) * 1994-11-04 1999-03-23 Norian Corporation Reactive tricalcium phosphate compositions
CN106133512A (en) * 2014-01-27 2016-11-16 株式会社日立高新技术 Automatic analysing apparatus
EP3101416A4 (en) * 2014-01-27 2017-10-18 Hitachi High-Technologies Corporation Automatic analytical apparatus
US10768189B2 (en) 2014-01-27 2020-09-08 Hitachi High-Tech Corporation Automatic analysis apparatus

Similar Documents

Publication Publication Date Title
US4003705A (en) Analysis apparatus and method of measuring rate of change of electrolyte pH
US9207204B2 (en) Method and apparatus for determining information concerning presence of constituents of a liquid sample with oxygen demand
US4030888A (en) Automatic blood analyzer
US5129257A (en) System for measuring engine exhaust constituents
EP0102958A4 (en) Method for measuring ionic concentration utilizing an ion-sensing electrode.
CN103238060A (en) Method and apparatus for determination of system parameters for reducing crude unit corrosion
CN104849422A (en) Ammonia nitrogen on-line monitoring system and method thereof
JPH063354A (en) Method and apparatus for monitoring concentration of chemical in solution
CN108431599A (en) Detect the method that whether there is grumeleuse in fluid specimen sample analysis instrument
US3997838A (en) Apparatus and method for measurement of total volume of particles in a liquid sample
KR20000028865A (en) Fluid analyte measurement system
WO2012140621A2 (en) Analysing device for urine
US3398079A (en) Electrochemical apparatus
JPH01250864A (en) Flow type analyzer
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
JP2907269B2 (en) Automatic calibration method of automatic analyzer
Bond et al. High flow-rate cells for continuous monitoring of low concentrations of electroactive species by polarography and stripping voltammetry at the static mercury drop electrode
US4149949A (en) Electrochemical analysis apparatus employing single ion measuring sensor
US4500411A (en) Automatically operated polarographic analyzer
ZA200209436B (en) Method and device for measuring a component in a liquid sample.
US2976761A (en) Apparatus for use in analyzing fluids
JPH02118445A (en) Instrument for measuring concentration of phosphoric acid
JPH0136137Y2 (en)
JPH06201677A (en) Device and method for obtaining content of no
Clark et al. An on-line voltammetric analyzer for trace metals in wastewater