JPH01250779A - Feedthrough nulling circuit - Google Patents

Feedthrough nulling circuit

Info

Publication number
JPH01250779A
JPH01250779A JP7788188A JP7788188A JPH01250779A JP H01250779 A JPH01250779 A JP H01250779A JP 7788188 A JP7788188 A JP 7788188A JP 7788188 A JP7788188 A JP 7788188A JP H01250779 A JPH01250779 A JP H01250779A
Authority
JP
Japan
Prior art keywords
signal
circuit
multiplier
loop
given
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7788188A
Other languages
Japanese (ja)
Inventor
Kohei Fujii
藤井 恒平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP7788188A priority Critical patent/JPH01250779A/en
Publication of JPH01250779A publication Critical patent/JPH01250779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To improve a response speed of a loop by a method wherein a loop circuit is made to be of an open loop and weight computation is executed only with an input signal irrespective of a loop constant. CONSTITUTION:A reference signal d(R)4 is inputted to a weight computing circuit 31 and given to a multiplier 7a. Meanwhile, a transmission signal X(R)1 extracted from the transmission side is also inputted to the weight computing circuit 31 and given to another multiplier 7b, while it is given to a complex conjugate unit 32, where it is turned to be X*(R)33 and given to the multiplier 7a. It is turned to be d(K)X*(R) by the multiplier 7a and averaged by an averaging circuit 34a. On the other side, an output X*(R) of the complex conjugate unit 32 is given to the multiplier 7b, where X*(R)X(R) is taken, and further the output is averaged by another averaging circuit 34b. These two signals are removed by a divider 35, while the transmission signal X(R)1 is weighted by a weighting mixer 7, and a difference between this signal and the signal d(R)4 inputted from a reception antenna 12 is taken in an adder 5. A feedthrough can be removed from a weighted transmission signal W(R)X(R)14 by taking a difference from a reference signal d(R).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、CWWレーダ於ける必要なレーダエコー以外
の送信アンテナと受信アンテナの結合によって起こる送
信信号が受信中の受イ8佃号へ回り込むフィードスルー
信号の除去を目的とするレーダの信号処理装置に関する
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to a CWW radar in which a transmission signal other than a necessary radar echo caused by coupling between a transmitting antenna and a receiving antenna is routed to the receiving receiver No. 8. The present invention relates to a radar signal processing device whose purpose is to remove feedthrough signals.

(従来の技術) CWWレーダは、移動目標のエコーを受信することを目
的としているが、CW波を取り扱う関係上送信と受信が
同時に行われるため送信アンテナから受信アンテナへの
フィードスルーが大きく、受信機の飽和や焼損の問題が
起る。このため受信48号と送信信号を用いて受信信号
に含まれる送信48号を除去するようなアダプティブ信
号処理方式を応用したフィードスルーナリング回路が用
いられている。
(Prior art) The purpose of CWW radar is to receive echoes from moving targets, but because it handles CW waves, transmission and reception are performed at the same time, so there is a large feed-through from the transmitting antenna to the receiving antenna. Problems with machine saturation and burnout occur. For this reason, a feed-through nulling circuit is used which applies an adaptive signal processing method that uses the received signal 48 and the transmitted signal to remove the transmitted signal 48 included in the received signal.

アダプティブ信号処理回路は、第2図の構成に於て入力
信号x1に重みW2を掛けた信号をy3として、そのy
か5基準信号d4を引き算器5で減算した出力をエラー
ε6とすると、その関係は(1)式となる。
In the configuration shown in FIG. 2, the adaptive signal processing circuit assumes a signal obtained by multiplying the input signal x1 by a weight W2 as y3,
If the output obtained by subtracting the reference signal d4 by the subtracter 5 is the error ε6, then the relationship is expressed by equation (1).

ε =:y−d =WX−d              ・・・(1)
この(1)式においてエラーεを最小にすることは、入
カイ8号Xを基準信号dに対して同相、同振幅とする重
みWを求めることになり、その条件を満たす重みWは、
Wiener −Hopfの解として(2)式で知られ
ている。
ε=:y-d=WX-d...(1)
In formula (1), minimizing the error ε means finding the weight W that makes the input signal No. 8 X the same phase and amplitude as the reference signal d, and the weight W that satisfies this condition is:
Equation (2) is known as the Wiener-Hopf solution.

Wopt= [X’X] −’ [dX”]     
 ・・・(2)(2)式で示したWiener −Ho
p「の解を逐次解の形に表わしたのがWtdrovのア
ダプティブループとして知られている。これを式で表わ
すと、W、に+r、=WK+2△S・εuo・X+に+
  ・・(3)ε(K) = d (K)  X (に
)・W(K、      ・・・(4)ここでΔSはル
ープの定数である。また、この式中各項に(K)が付い
ているのは、回路をディジタル信号処理で実行した場合
のサンプルでありこれをKで表わした。(3)、(4)
式で示されるWidrowのループのアルゴリズムをC
Wレーダのフィードスルーナリング回路に応用すると、
第3図のような構成となる。その動作は送信機8からの
送信信号は送信アンテナ9から放射され、その信号はタ
ーゲット10に入射しエコーとして反射信号13が受信
アンテナ12へ入力する。一方、送信アンテナと受信ア
ンテナの結合量はフィードスルー11となり、受信アン
テナ12へ入力するため、基準信号d、に)4は所望信
号と送信信号の和に対応するものと考えられる。
Wopt= [X'X] −' [dX”]
...(2) Wiener −Ho shown in equation (2)
It is known as Wtdrov's adaptive loop that expresses the solution of p'' in the form of sequential solutions. Expressing this in the formula, +r for W, = WK+2△S・εuo・X++
...(3) ε(K) = d (K) The ones marked with are samples when the circuit is executed using digital signal processing, and this is expressed as K. (3), (4)
The algorithm of Widrow's loop shown by the formula is written in C
When applied to the feed-through nulling circuit of W radar,
The configuration is as shown in Figure 3. The operation is such that a transmission signal from a transmitter 8 is radiated from a transmission antenna 9, the signal enters a target 10, and a reflected signal 13 is input to a reception antenna 12 as an echo. On the other hand, since the amount of coupling between the transmitting antenna and the receiving antenna is feedthrough 11, which is input to the receiving antenna 12, the reference signal d, 4) is considered to correspond to the sum of the desired signal and the transmitting signal.

ここで、フィードスルーナリング回路の動作をアルゴリ
ズム(3)、(4)式と、第3図を対応させて説明する
と、(4)式のエラー信号ε(Klは同図の基準信号d
(に、4と、X、に、・W(K)の差を和回路5で取り
、エラーε(K)6とする。この信号は、掛は算N7で
送信側から抽出した送信48号X、に、1と乗算されア
ンプ15でループゲイン2ΔS倍きれ、積分器16で平
均化されて(3)式を実行して新しい重みW(に。!)
2を求めている。
Here, the operation of the feedthrough nulling circuit will be explained by comparing the algorithms (3) and (4) equations with FIG. 3.
The sum circuit 5 takes the difference between (, 4, and X, is multiplied by 1, the amplifier 15 multiplies the loop gain by 2ΔS, the integrator 16 averages it, and executes equation (3) to obtain a new weight W (!)
I'm looking for 2.

(発明が解決しようとする課M) このような回路構成のため、回路がクローズトループと
なっており、ループの応答速度はループ定数2ΔSで決
定されるのでループの収束時間に限界がある。更に、ル
ープの収束速度は、入力信号レベルとループ定数で決ま
るため、計算速度が外部条件の影響を受は易い等の一欠
点があった。
(Problem M to be Solved by the Invention) Due to this circuit configuration, the circuit is a closed loop, and the response speed of the loop is determined by the loop constant 2ΔS, so there is a limit to the convergence time of the loop. Furthermore, since the convergence speed of the loop is determined by the input signal level and the loop constant, there is a drawback that the calculation speed is easily influenced by external conditions.

(課題を解決するための手段) 本発明はこれらの欠点を除去するため、(2)式に示し
たW 1ner −Hop f解を直接解き、得られた
最適重みからハードウェアで表わした回路構成がオープ
ンループとなるようにしたもので、以下実施例につき図
面により詳細に説明する。
(Means for Solving the Problems) In order to eliminate these drawbacks, the present invention directly solves the W 1ner -Hop f solution shown in equation (2), and creates a circuit configuration expressed in hardware from the obtained optimal weights. An open loop is provided, and examples will be explained in detail below with reference to the drawings.

(実施例) (2)式を直接解くと、 これをすべてハードウェアで表現した回路構成は第1図
に示される。同図に於て第2図と同一機能の要素又は信
号は同一符号で表わしである。
(Example) When equation (2) is directly solved, the circuit configuration that is expressed entirely in hardware is shown in Figure 1. In this figure, elements or signals having the same functions as those in FIG. 2 are represented by the same symbols.

この回路の動作について説明すると、基準信号d+a+
4は重み計算回路31へ入力され掛算N7aに加わる。
To explain the operation of this circuit, the reference signal d+a+
4 is input to the weight calculation circuit 31 and added to the multiplication N7a.

一方送信側から抽出された送信信号X(R)1も重み計
算回路31へ入力され、他の掛算器7bに加わると共に
、複素共役器32に加わり、ここでX”(R)33とな
り掛算器7aに加わる。
On the other hand, the transmitted signal X(R)1 extracted from the transmitting side is also input to the weight calculation circuit 31, and is added to another multiplier 7b as well as the complex conjugator 32, where it becomes X''(R)33 and the multiplier Join 7a.

掛算器7aでd(K)X”(R)となり、平均回路34
aで平均化され、(5)式の分子である送信信号と基準
48号の離散的相互相関がとられる。他方複素共役器3
2の出力X ” (R)は掛算器7bに加わりそこでX
”(R)X(R)がとられ、他の平均回路34bで平均
化され、(5)式の分母となる送信信号の離散的自己相
関が実行される。
The multiplier 7a yields d(K)X''(R), and the average circuit 34
a, and a discrete cross-correlation between the transmitted signal, which is the numerator of equation (5), and reference No. 48 is taken. On the other hand, complex conjugator 3
2's output X'' (R) is added to the multiplier 7b where
``(R)X(R) is taken and averaged by another averaging circuit 34b, and discrete autocorrelation of the transmitted signal, which becomes the denominator of equation (5), is performed.

この両信号は割算器35で除算きれ、重みW (R)2
として重み付はミクサ7で送信信号X(R11を重み付
けし受信アンテナ12から入力したd+R+4との差が
和算M5でとられる。重み付けされた送4g (g号W
 (R) X (R) 14 Lt、基準(8号d<r
r>4ニ含まれるフィードスルー分に対して同相、同振
幅の信号ときれており、d(R)との差をとることによ
りフィードスルーを除去できる。
Both signals can be divided by the divider 35, and the weight W (R)2
As for the weighting, the difference between the transmit signal
(R) X (R) 14 Lt, standard (No. 8 d<r
The signal has the same phase and amplitude as the feedthrough included in r>4, and the feedthrough can be removed by taking the difference from d(R).

このように、重み計算回路自体にクローズトループを含
まず、又和回路5の出力側も重み計算回路31と関係が
なくクローズトループを形成していないことが分かる。
In this way, it can be seen that the weight calculation circuit itself does not include a closed loop, and the output side of the summation circuit 5 has no relation to the weight calculation circuit 31 and does not form a closed loop.

この実施例の構成要素はすべてハードウェアとしたが、
経済面から相当程度ソフトウェアで構築することも可能
であり、このことによって本発明は限定されるものでは
ない。
All the components of this example were hardware, but
From an economical point of view, it is possible to construct the system using software to a considerable extent, and the present invention is not limited by this.

なお本発明はCWレーダに適用するものとして説明した
が、その思想は無線通信機の混信防止にも適用できる。
Although the present invention has been described as being applied to a CW radar, the idea can also be applied to preventing interference in wireless communication devices.

(発明の効果) 以上説明したように、ループ回路がオープンループとな
っておりループ定数に関係なく入力信号のみで重み計算
を実行することができる。従ってサンプリング速度を早
くすることで、ループの応答速度の向上が図れる。更に
、(5)式は重み計算にループ定数が入らないので、入
力レベルに無関係に重み計算の収束速度が得られる等の
利点がある。
(Effects of the Invention) As described above, the loop circuit is an open loop, and weight calculation can be performed using only input signals regardless of the loop constant. Therefore, by increasing the sampling speed, the response speed of the loop can be improved. Furthermore, since equation (5) does not include a loop constant in the weight calculation, it has the advantage that the convergence speed of the weight calculation can be obtained regardless of the input level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図で0wレーダに
適用した例、第2図はアダプティブ信号処理回路の概念
図、第3図は従来のフィードスルーナリング回路をCW
レーダに適用した例。 1・・・入力信号X(R1,2・・・重みW、R,,4
・・・基準信号d (rll、5・・・和回路、7・・
・掛算器、8・・・送信機、9・・・送信アンテナ、1
0・・・ターゲット(TGT)、11・・・フィードス
ルー、12・・・受信アンテナ、13−−−反射信号、
14・・・x、に、・w、に、、31・・・重み計算回
路、32・・・複素共役器、33・・・サメイション回
路、34・・・X6.に1.35・・・割算器。 特許出願人   日本無線株式会社
Fig. 1 is a block diagram showing an embodiment of the present invention, in which it is applied to a 0W radar, Fig. 2 is a conceptual diagram of an adaptive signal processing circuit, and Fig. 3 shows a conventional feedthrough nulling circuit in CW mode.
Example applied to radar. 1... Input signal X (R1, 2... Weight W, R,, 4
...Reference signal d (rll, 5...sum circuit, 7...
・Multiplier, 8...Transmitter, 9...Transmission antenna, 1
0...Target (TGT), 11...Feed through, 12...Receiving antenna, 13---Reflected signal,
14... x, - w, 31... Weight calculation circuit, 32... Complex conjugator, 33... Summation circuit, 34... X6. 1.35...divider. Patent applicant Japan Radio Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] CWレーダ送信側から受信側へ直接回り込む信号及び固
定物体からの反射信号を除去するフィードスルーナリン
グ回路に於て、送信側から一部抽出した送信信号X_(
_R_)と受信側に入力する基準信号d_(_R_)と
の離散的相互相関のサンプル平均値を、前記送信信号X
_(_R_)とその複素共役X^*_(_R_)との離
散的自己相関のサンプル平均値で除算してWiener
−Hopf解の直接解の最適重みWoptを得、前記基
準信号d_(_R_)から前記送信信号X_(_R_)
を最適重み倍した値を減算して所望レーダ反射信号を求
めるように構成し、その回路構成がオープンループであ
ることを特徴とするフィードスルーナリング回路。
In the feed-through nulling circuit that removes signals that go directly from the CW radar transmitting side to the receiving side and reflected signals from fixed objects, the transmitted signal X_( partially extracted from the transmitting side)
_R_) and the reference signal d_(_R_) input to the receiving side.
Wiener by dividing by the sample mean value of the discrete autocorrelation between _(_R_) and its complex conjugate
- Obtain the optimal weight Wopt of the direct solution of the Hopf solution, and obtain the transmitted signal X_(_R_) from the reference signal d_(_R_).
What is claimed is: 1. A feed-through nulling circuit configured to obtain a desired radar reflected signal by subtracting a value multiplied by an optimal weight, and characterized in that the circuit configuration is an open loop.
JP7788188A 1988-03-30 1988-03-30 Feedthrough nulling circuit Pending JPH01250779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7788188A JPH01250779A (en) 1988-03-30 1988-03-30 Feedthrough nulling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7788188A JPH01250779A (en) 1988-03-30 1988-03-30 Feedthrough nulling circuit

Publications (1)

Publication Number Publication Date
JPH01250779A true JPH01250779A (en) 1989-10-05

Family

ID=13646416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7788188A Pending JPH01250779A (en) 1988-03-30 1988-03-30 Feedthrough nulling circuit

Country Status (1)

Country Link
JP (1) JPH01250779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560860A (en) * 1991-01-31 1993-03-12 Robotec Kenkyusho:Kk Radio distance-measuring device
EP0779519A1 (en) * 1995-12-15 1997-06-18 Raytheon Company Radar system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560860A (en) * 1991-01-31 1993-03-12 Robotec Kenkyusho:Kk Radio distance-measuring device
EP0779519A1 (en) * 1995-12-15 1997-06-18 Raytheon Company Radar system

Similar Documents

Publication Publication Date Title
US4268829A (en) Steerable null antenna processor with gain control
US4085368A (en) Interference canceling method and apparatus
US5546090A (en) Method and apparatus for calibrating antenna arrays
US5294933A (en) Wideband radar system utilizing adaptive interference canceler
JP3405111B2 (en) Array antenna control method and device
US5369412A (en) Sidelobe cancellation and diversity reception using a single array of auxiliary antennas
IL162335A (en) System and method for auto calibrated reduced rank adaptive processor
EP0098339A1 (en) An adaptive system for the attenuation of an intentional disturbance applied to a phased array type radar with mechanical scanning
Lee et al. Robust adaptive array beamforming for cyclostationary signals under cycle frequency error
JPH01250779A (en) Feedthrough nulling circuit
JPH10224138A (en) Directivity control circuit for adaptive array antenna
US4851853A (en) Signal source distortion compensator
JP2000353929A (en) Phase converter and attenuator, phase amplitude adjuster and image suppression type transmitter
JPS5871473A (en) Pulse ladar device
JPS6113415B2 (en)
JPH01224684A (en) Feedthrough nullifying circuit
Jiabing et al. A direct path interference cancellation approach to passive radar based on FM radio transmitter
EP0374987A1 (en) Radar apparatus and side-lobe suppression unit suitable for application in such a radar apparatus
JP2932380B1 (en) Interference wave detection circuit
JPH06201811A (en) Azimuth measuring system
JPS6249728A (en) Adaptive-antenna receiver for mobile communication
JP2003098247A (en) Radar system
JP2626572B2 (en) Phase adjuster and tracking receiver
JPH0445793B2 (en)
JPS60150302A (en) Adaptive type antenna system