JPH01250226A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPH01250226A
JPH01250226A JP63076076A JP7607688A JPH01250226A JP H01250226 A JPH01250226 A JP H01250226A JP 63076076 A JP63076076 A JP 63076076A JP 7607688 A JP7607688 A JP 7607688A JP H01250226 A JPH01250226 A JP H01250226A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
living body
probe
shallow part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63076076A
Other languages
Japanese (ja)
Inventor
Kinya Takamizawa
高見沢 欣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63076076A priority Critical patent/JPH01250226A/en
Publication of JPH01250226A publication Critical patent/JPH01250226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To enhance the image quality of the tomographic image of the shallow part in the vicinity of the surface of the body by relatively reducing the intensity of multiple reflection with respect to the echo of the shallow part by filtering, by constituting a filter circuit of a variable zone film having center frequency almost same to the resonance frequency of an ultrasonic vibrator. CONSTITUTION:Noticing that the shape of the frequency spectrum of multiple reflection is different from that of the spectrum of the original reflected wave from a shallow part, the characteristics 1, 2, 3 of a BPF are respectively provided to the shallow part, a deep part and an intermediate depth part. In circuit constitution an ultrasonic probe 11 equipped with a piezoelectric vibrator converting an electric signal to sound is connected to a rate pulse generator 13 through a pulser 12. The ultrasonic wave reflected from the boundary of the tissue in a living body is received by the probe and the signal thereof is amplified by a preamplifier 14 in a receiver and, after the pair echo signal ratio of multiple reflection is reduced by a variable band pass filter 15, said signal is converted to a digital signal by an A/D converter 18 through a logarithmic amplifier 16 and an envelope detection circuit 17 to be sent to an image memory 19 and said digital signal is converted to a TV format to be displayed on a TV monitor 20.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は超音波を用いて生体の断層像を得る超音波診
断装置に係わシ、とくに生体内で生ずる音波の多重反射
を低減させ画質の向上を図った超音波診断装置に関する
ものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an ultrasonic diagnostic apparatus that obtains tomographic images of a living body using ultrasound, and particularly relates to multiplexing of sound waves generated inside a living body. The present invention relates to an ultrasonic diagnostic device that reduces reflection and improves image quality.

(従来の技術) 超音波パルスを生体内に放射し、各組織からの反射波に
より生体情報を得る超音波パルスはX線のような照射障
害がなく、シかも造影材なしで軟部組織の診断ができる
利点をもっている。第2図は超音波診断法の原理金示し
たもので、圧電振動子5からなる超音波探触子4から放
射された超音波は音響インピーダンス(生体組織の音速
と密度の積)の異なる組織の境界面でその一部が反射さ
れ、送信時に使用した同一の振動子によって受信される
。この受信信号の振幅と受信時刻とからその反射強度と
反射体までの距離を知ることができるが、2次元画像と
して表示するためには図の矢印の方向に超音波探触子4
を体表面に沿って移動する。当初、この探触子4は手動
走査されていたが、近年の電子走査装置の開発によシ高
速走査が可能となり、分解能と操作性において性能は著
L7く向上した。超音波探触子の構成を第3図に示す。
(Prior technology) Ultrasonic pulses are emitted into the living body and biological information is obtained from reflected waves from each tissue.Ultrasonic pulses do not have radiation problems like X-rays and can diagnose soft tissues without the need for contrast materials. It has the advantage of being able to Figure 2 shows the principle of ultrasound diagnosis. Ultrasonic waves emitted from an ultrasound probe 4 consisting of a piezoelectric vibrator 5 are transmitted through tissues with different acoustic impedances (the product of sound speed and density of biological tissue). A portion of it is reflected at the boundary surface and received by the same oscillator used during transmission. The reflected intensity and distance to the reflector can be determined from the amplitude and reception time of this received signal, but in order to display it as a two-dimensional image, move the ultrasound probe 4 in the direction of the arrow in the figure.
move along the body surface. Initially, this probe 4 was scanned manually, but the recent development of electronic scanning devices has made it possible to perform high-speed scanning, and the performance has significantly improved in terms of resolution and operability. The configuration of the ultrasonic probe is shown in Figure 3.

現在使用されている圧電振動子31はセラミックス系材
料が使われており、その音響インピーダンス(材料の音
速と密度の積で決定される)は生体34のインピーダン
スと大きく異なるため、音波の送受信時にこの境界面に
おいて多くの超音波は反射し送受信効率は著しく低下す
る。この次め両者のインピーダンス整合層喉超音波を効
率良く生体内に入射させたり、あるいは生体からの反射
波を効率良く受信するためにインピーダンス整合層(マ
ツチング層)32がもうけられている。
The piezoelectric vibrator 31 currently in use is made of ceramic material, and its acoustic impedance (determined by the product of the sound speed and density of the material) is significantly different from the impedance of the living body 34. Many ultrasonic waves are reflected at the interface, and the transmission and reception efficiency is significantly reduced. Next, an impedance matching layer (matching layer) 32 is provided to allow the throat ultrasound to efficiently enter the living body or to efficiently receive reflected waves from the living body.

また、この整合層32と生体の間には超音波ビームを収
束させるために音響レンズ33が設けられ、そのレンズ
材料には生体とほぼ同じ音響インピーダンスをもったシ
リコンゴムなどが使用される。
Further, an acoustic lens 33 is provided between the matching layer 32 and the living body to converge the ultrasonic beam, and the lens material is silicon rubber or the like having approximately the same acoustic impedance as the living body.

なお、振動子後面の背面負荷材30は生体と反対方向に
放射される不要な超音波を吸収し、また支持台の役目も
果たしている。
Note that the back loading material 30 on the rear surface of the vibrator absorbs unnecessary ultrasonic waves emitted in the direction opposite to the living body, and also serves as a support base.

整合層32の厚みはこの材料中の超音波波長の1/4で
しかも生体と振動子の各インピーダンスの平均値をもつ
インピーダンスの材料を用いている。
The thickness of the matching layer 32 is 1/4 of the ultrasonic wavelength in this material, and the impedance material used is the average value of the respective impedances of the living body and the vibrator.

第3図において生体34、マツチング層32、振動子3
1の音響インピーダンスをそれぞれZl。
In FIG. 3, a living body 34, a matching layer 32, a vibrator 3
The acoustic impedance of 1 is Zl respectively.

Z2 、Z3としマツチング層32の厚みをtとすれば
生体側から振動子に入射する超音波の振動子面での反射
係数R(f)は となる。但し既述のようKZ2=y’21*Zaまたt
=λ。/4 (λ。はマツチング層内での超音波中心周
波数成分(fo)の波長)であるから 既に述べたようにインピーダンス整合層によυ振動子−
生体間での超音波の反射はr==r、の特定の周波数で
零となるがf卑f0の周波数では反射は依然として生ず
る。一方、超音波診断装置に用いられているパルス波は
波数が3〜5程度の短いパルスであり、そのスペクトラ
ムはfoを中心に広がっている。このためインピーダン
ス整合層を有していても反射を完全に抑えることは出来
ない。すなわち第5図の実線で示した振動子面での反射
前のスペクトラム(エコースペクトラム)に対して反射
後の波は破線で示す周波数スペクトラムをもっている。
If Z2 and Z3 and the thickness of the matching layer 32 is t, then the reflection coefficient R(f) of the ultrasonic wave incident on the transducer from the living body side on the transducer surface is as follows. However, as mentioned above, KZ2=y'21*Za and t
=λ. /4 (λ is the wavelength of the ultrasonic center frequency component (fo) in the matching layer), so as already mentioned, the impedance matching layer allows the υ oscillator to be
The reflection of ultrasonic waves between living bodies becomes zero at a specific frequency r==r, but reflection still occurs at a frequency f0. On the other hand, the pulse waves used in ultrasonic diagnostic equipment are short pulses with a wave number of about 3 to 5, and their spectrum spreads around fo. Therefore, even if an impedance matching layer is provided, reflection cannot be completely suppressed. That is, in contrast to the spectrum (echo spectrum) before reflection on the vibrator surface shown by the solid line in FIG. 5, the wave after reflection has a frequency spectrum shown by the broken line.

ところで、超音波診断装置では生体内34で生ずる散乱
は弱散乱とみなしている。すなわち、生体組織において
散乱係数は小さいために一回の散乱波だけを考えればよ
いとされている。
Incidentally, in the ultrasonic diagnostic apparatus, scattering that occurs inside the living body 34 is regarded as weak scattering. That is, since the scattering coefficient is small in living tissue, it is considered that only one scattered wave needs to be considered.

しかしながら、体表に近い組織層15(例えば筋肉層や
脂肪層)からの反射、散乱強度は必ずしもちいさくない
ため体内34での多重反射は無視できなくなり、これが
断層像上でアーチファクト(虚像)やノイズの原因とな
る。とくに振動子面での反射が十分に抑えられない場合
には前記体表組織層35と超音波振動子31面との間で
生ずる多重反射は体内34の浅部断層像上に重なって表
示されるため、画像の続映を困難にしている。第4図は
多重反射の発生を説明したものである。ただし体表組織
層35は説明を簡単にするために一層のみを示す。振動
子45と組織j@35の距離をtとすればこの両者間を
2往復する多重反射は断層像上では2tの深さに、また
3往復するものは3tの深さに表示される。(図では3
回多重反射について示している)実際には体表組織層は
数層から構成されているためこのような多重反射は断層
像上の浅部でほぼ連続的に表示され、本来の浅部断層像
上にアーチファクトとなって現れる。
However, since the reflection and scattering intensity from tissue layers 15 close to the body surface (for example, muscle layers and fat layers) is not necessarily small, multiple reflections within the body 34 cannot be ignored, and this causes artifacts (virtual images) and noise on tomographic images. It causes. In particular, when reflections on the transducer surface are not sufficiently suppressed, multiple reflections occurring between the body surface tissue layer 35 and the ultrasound transducer 31 surface are displayed as being superimposed on the shallow tomographic image of the body 34. This makes it difficult to continue displaying images. FIG. 4 explains the occurrence of multiple reflections. However, only one layer of the body surface tissue layer 35 is shown to simplify the explanation. If the distance between the transducer 45 and the tissue j@35 is t, multiple reflections that make two trips back and forth between the two will be displayed at a depth of 2t, and those that make three trips will be displayed at a depth of 3t on the tomographic image. (3 in the diagram)
Since the body surface tissue layer actually consists of several layers, such multiple reflections appear almost continuously in the shallow part of the tomogram, and the original shallow part tomogram It appears as an artifact on the top.

従来の超音波プローブにおいては減衰の大きな材料でで
きた音響レンズを用いることによって、このアーチ7ア
クトの低減化を図っていた。すなわち多重反射はこの音
響レンズ内を通過する回数が本来の生体からの反射波(
以下エコー信号と呼ぶ)と比較して多いためレンズ材の
超音波減衰係数を生体の減衰係数より大きくすることに
よってアーチファクトレベルを相対的に低下させること
ができる。ただし、従来のこの方法によればエコー信号
そのものについても送受信時にレンズ内において減衰を
うけるため、とくに生体深部の断層像を得る場合にはそ
のS/N (この場合のノイズとはシステムノイズを意
味する)が十分にとれなくなるという欠点をもっていた
In conventional ultrasonic probes, this arch 7 act has been reduced by using an acoustic lens made of a material with high attenuation. In other words, multiple reflections mean that the number of times the waves pass through this acoustic lens is greater than the number of waves reflected from the original living body (
(hereinafter referred to as an echo signal), the artifact level can be relatively reduced by making the ultrasonic attenuation coefficient of the lens material larger than the attenuation coefficient of the living body. However, according to this conventional method, the echo signal itself is attenuated within the lens during transmission and reception. This had the disadvantage that it was not possible to obtain sufficient amounts of

本発明では多重反射がもつ周波数スペクトルの形状が本
来の浅部からの反射波のスペクトラムの形状と異なるこ
とに着目し、フィルタリング処理によって多重反射の大
きさを浅部エコーに対して相対的に低減させて、体表付
近の浅部断層像の高画質化を図ることを目的にしている
The present invention focuses on the fact that the shape of the frequency spectrum of multiple reflections is different from the shape of the spectrum of the original reflected waves from shallow areas, and uses filtering processing to reduce the magnitude of multiple reflections relative to shallow echoes. The aim is to improve the image quality of shallow tomographic images near the body surface.

〔実施例〕〔Example〕

本発明の具体例を示す前に、多重反射波の低減法の原理
を説明する。本発明では第5図のように多重反射スペク
トラムの形状がその中心付近で著しく減少していること
に着目し、最適なフィルタリングによってさらにSハを
改善しようとするものである。ここでいうフィルタとは
帯域通過フィルタのことであり、その中心周波数は超音
波中心周波数とはは一致していること’t%徴にしてい
る。
Before showing specific examples of the present invention, the principle of a method for reducing multiple reflected waves will be explained. The present invention focuses on the fact that the shape of the multiple reflection spectrum decreases significantly near its center as shown in FIG. 5, and attempts to further improve Sc through optimal filtering. The filter here refers to a band-pass filter, and its center frequency is made to coincide with the ultrasonic center frequency.

すなわちBPFの帯域を狭くするほどS/′Nは向上す
ることがわかる。
In other words, it can be seen that the narrower the BPF band, the more the S/'N improves.

たたしこの帯域を著しく狭くした場合にはエコー波の振
幅は小さくなシすぎてしまい、またパルス幅も長くなシ
距陥分解能は低下する。このため極端に帯域を狭くする
ことは避けなくてはならない。超音波診断装置では近距
離においてはエコーは十分な受信感度をもっている。し
九がって前記フィルタによってエコー振幅が多少減少し
てもさしつかえない。しかしながら振動子から離れるに
つれエコーの減衰を少なめにしてやらないとエコーがシ
ステムノイズに埋もれてしまう可能性がある。従って本
発明では振動子から離れた部分からのエコーt−tどB
PF’の帯域を広げてやることが望ましい。即ち第6図
に示すように浅部に対応するBPFの特性は(1)、深
部での特性は(3)に、また中間の深さに対しては(2
)のような特性をもたせる。
However, if this band is made extremely narrow, the amplitude of the echo wave will be too small, and the pulse width will also be long, resulting in a decrease in resolution. Therefore, it is necessary to avoid making the band extremely narrow. Ultrasonic diagnostic equipment has sufficient receiving sensitivity for echoes at short distances. Therefore, it is acceptable for the echo amplitude to be reduced to some extent by the filter. However, unless the attenuation of the echoes is reduced as the distance from the vibrator increases, the echoes may be buried in system noise. Therefore, in the present invention, the echo t-t etc. from a part far from the vibrator
It is desirable to widen the band of PF'. That is, as shown in Figure 6, the characteristics of the BPF corresponding to the shallow part are (1), the characteristics in the deep part are (3), and (2) for intermediate depths.
).

第1図に本発明の一実施例の具体的な回路構成を示す。FIG. 1 shows a specific circuit configuration of an embodiment of the present invention.

11は電気信号を音に変換する圧電振動子を備えた超音
波探触子であり、この探触子は送信器、例えばパルサ1
2を介して送信パルスのくりかえし周波数を決めている
レートパルス発生器13に接続されている。すなわち、
このレートパルス発生器からのトリガパルスによりパル
サ12が作動し、高圧パルスが前記圧電振動子に与えら
れ生体内に超音波パルスが放射される。一方、生体内の
組織の境界で反射した超音波は探触子11によって受信
される。
11 is an ultrasonic probe equipped with a piezoelectric vibrator that converts electrical signals into sound, and this probe is connected to a transmitter, such as a pulser 1.
2 to a rate pulse generator 13 which determines the repetition frequency of the transmitted pulses. That is,
The pulser 12 is actuated by the trigger pulse from this rate pulse generator, a high voltage pulse is applied to the piezoelectric vibrator, and an ultrasonic pulse is emitted into the living body. On the other hand, the ultrasound waves reflected at the boundaries of tissues within the living body are received by the probe 11 .

この受信信号は受信器においてプリアンプ14で増幅さ
れ、可変バンドパスフィルタ15によって前述のように
多重反射の対エコー信号比を低減させた後、対数増幅器
16、包絡線検波回路17に送られる。さらに検波回路
17の出力はA/D変換器18にてデジタル信号に変換
された後画像メモリ19に送られ一時的にメモリされ、
TVフォーマットに変換されてTVモニタ20に表示さ
れる。2次元の超音波画像を得るには探触子11を体表
面上で機械的あるいは電子的に移動させる必要があるが
、これらの技術については既に広く知られているため、
ここでの説明は省略する。なお、可変バンドパスフィル
タ15は既に述べたように時間とともにその帯域を広げ
ていくような機能を持たせなくてはならないが、例えば
電圧可変容量ダイオードで構成したフィルタを用いるこ
とによって実現できることは周知の如くである。
This received signal is amplified by the preamplifier 14 in the receiver, and is sent to the logarithmic amplifier 16 and envelope detection circuit 17 after reducing the echo signal ratio of multiple reflections by the variable bandpass filter 15 as described above. Further, the output of the detection circuit 17 is converted into a digital signal by an A/D converter 18, and then sent to an image memory 19 where it is temporarily stored.
It is converted into a TV format and displayed on the TV monitor 20. In order to obtain a two-dimensional ultrasound image, it is necessary to move the probe 11 mechanically or electronically over the body surface, but since these techniques are already widely known,
The explanation here will be omitted. As already mentioned, the variable bandpass filter 15 must have a function of widening its band over time, but it is well known that this can be achieved by using a filter composed of voltage variable capacitance diodes, for example. It's like this.

このバンドパスフィルタの帯域幅の決定は帯域幅コント
ロール回路21によっておこなわれる。
The bandwidth of this bandpass filter is determined by the bandwidth control circuit 21.

なお本実施例では超音波探触子として一つの圧電振動子
を用いた場合について述べたが、近年普及している電子
走査形装置用のアレイ形振動子の場合においても全く同
様のことがいえ、本発明は有効であることは言うまでも
ない。
Although this example describes the case in which a single piezoelectric vibrator is used as an ultrasonic probe, the same holds true for array-type vibrators for electronic scanning devices that have become popular in recent years. It goes without saying that the present invention is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は超音波診
断法の原理を示す図、第3図は超音波探触子の構成を示
す図、第4図は超音波探触子と生体の体表組織層との間
で生ずる多重反射についての説明図、第5図は超音波探
触子面で反射する波のもつ周波数スペクトラムを示す図
、第6図は本発明による多重反射波のスペクトラムの変
化を示す図である。 11・・・超音波探触子、12・・・パルサ、13・・
・レートパルス発生器、14・・・プリアンプ、15・
・・可変バンドパスフィルタ、16・・・対数増幅器、
17・・・包絡線検波回路、18・・・VD変換器、1
9・・・画像メモリ、20・・・TVモニタ、21・・
・帯域制御回路。 代理人 弁理士  則 近 憲 佑 同       松  山  光 2 第1図 第2図 々乙生ルト 第4図 第5図 第6図
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows the principle of ultrasound diagnosis, Fig. 3 shows the configuration of an ultrasound probe, and Fig. 4 shows an ultrasound probe. An explanatory diagram of multiple reflections that occur between the probe and the body surface tissue layer of a living body. Figure 5 is a diagram showing the frequency spectrum of waves reflected on the ultrasonic probe surface. Figure 6 is a diagram according to the present invention. FIG. 3 is a diagram showing changes in the spectrum of multiple reflected waves. 11... Ultrasonic probe, 12... Pulsa, 13...
・Rate pulse generator, 14... Preamplifier, 15.
... variable band pass filter, 16... logarithmic amplifier,
17... Envelope detection circuit, 18... VD converter, 1
9... Image memory, 20... TV monitor, 21...
・Bandwidth control circuit. Agent Patent Attorney Nori Ken Chika Yudo Matsuyama Hikaru 2 Figure 1 Figure 2 Ruto Otsuo Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)超音波を送受信するための超音波振動子と、この
振動子を駆動する送信回路と、前記振動子からの受信信
号の帯域を制限するためのフィルタ回路と、このフィル
タ回路の出力を検波し表示するための表示回路とを具備
した超音波診断装置において、前記フィルタ回路は超音
波振動子の共振周波数とほぼ同じ中心周波数をもち、音
波の受信時刻とともにその帯域幅が広がるようにコント
ロールされている可変帯域フィルタであることを特徴と
する超音波診断装置。
(1) An ultrasonic transducer for transmitting and receiving ultrasonic waves, a transmission circuit for driving this transducer, a filter circuit for limiting the band of the received signal from the transducer, and an output of this filter circuit. In an ultrasonic diagnostic apparatus equipped with a display circuit for detecting and displaying waves, the filter circuit has a center frequency that is approximately the same as the resonance frequency of the ultrasonic transducer, and is controlled so that its bandwidth widens with the reception time of the sound waves. An ultrasonic diagnostic device characterized by being a variable band filter.
(2)振動子と生体との間に両者の音響インピーダンス
の整合をとるために振動子の表面には整合層を具備した
ことを特徴とする請求項1記載の超音波診断装置。
(2) The ultrasonic diagnostic apparatus according to claim 1, characterized in that a matching layer is provided on the surface of the vibrator to match the acoustic impedance between the vibrator and the living body.
JP63076076A 1988-03-31 1988-03-31 Ultrasonic diagnostic apparatus Pending JPH01250226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076076A JPH01250226A (en) 1988-03-31 1988-03-31 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076076A JPH01250226A (en) 1988-03-31 1988-03-31 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPH01250226A true JPH01250226A (en) 1989-10-05

Family

ID=13594717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076076A Pending JPH01250226A (en) 1988-03-31 1988-03-31 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPH01250226A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142210A (en) * 1991-11-19 1993-06-08 Tokimec Inc Ultrasonic flaw detecting apparatus
JP2005337911A (en) * 2004-05-27 2005-12-08 Ricoh Elemex Corp Ultrasonic flowmeter
JP2010175519A (en) * 2009-02-02 2010-08-12 Kansai Electric Power Co Inc:The Ultrasonic inspection device
JP2010175520A (en) * 2009-02-02 2010-08-12 Kansai Electric Power Co Inc:The Ultrasonic inspection device
JP2012143547A (en) * 2010-12-24 2012-08-02 Canon Inc Subject information acquiring device and subject information acquiring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142210A (en) * 1991-11-19 1993-06-08 Tokimec Inc Ultrasonic flaw detecting apparatus
JP2005337911A (en) * 2004-05-27 2005-12-08 Ricoh Elemex Corp Ultrasonic flowmeter
JP4545486B2 (en) * 2004-05-27 2010-09-15 リコーエレメックス株式会社 Ultrasonic flow meter
JP2010175519A (en) * 2009-02-02 2010-08-12 Kansai Electric Power Co Inc:The Ultrasonic inspection device
JP2010175520A (en) * 2009-02-02 2010-08-12 Kansai Electric Power Co Inc:The Ultrasonic inspection device
JP2012143547A (en) * 2010-12-24 2012-08-02 Canon Inc Subject information acquiring device and subject information acquiring method

Similar Documents

Publication Publication Date Title
US4276491A (en) Focusing piezoelectric ultrasonic medical diagnostic system
US5632277A (en) Ultrasound imaging system employing phase inversion subtraction to enhance the image
US20140316275A1 (en) High frequency ultrasonic convex array transducers and tissue imaging
JP2002502622A (en) Ultrasound catheter with annular array structure
JPH09505761A (en) Contrast imaging of ultrasonic spectrum
US7291108B2 (en) Ultrasonic transmission/reception apparatus for generating an image based on ultrasonic echoes and vibro-acoustic sounds
US20040220465A1 (en) Multi-sensor breast tumor detection
JP5398514B2 (en) Color Doppler ultrasound system
KR20140132811A (en) Ultrasound imaging apparatus and control method for the same
EP1214910B1 (en) Ultrasonic transmitter/receiver by pulse compression
CN111107791A (en) Dual-frequency planar ultrasonic imaging system
Goldstein et al. Medical ultrasonic diagnostics
JP2023549450A (en) Image composition for mixed transducer arrays
KR102457217B1 (en) Probe and manufacturing method thereof
CA1274902A (en) Ultrasonic reflex transmission imaging method and apparatus with external reflector
JPH01250226A (en) Ultrasonic diagnostic apparatus
JP6944048B2 (en) Ultrasonic system and control method of ultrasonic system
EP0306288A2 (en) Ultrasonic imaging apparatus
EP2026100B1 (en) Ultrasound imaging apparatus
Breyer Basic physics of ultrasound
JPH03261466A (en) Ultrasonic diagnostic device
US20050124879A1 (en) Tissue imaging at superharmonic frequencies
KR20160007516A (en) Ultrasonic probe having a plurality of arrays connected in parallel structure and ultrasonic image diagnosing apparatus including same
JPH04210053A (en) Ultrasonic observer
Karrer Phased Array Acoustic Imaging Systems