JPH0124995B2 - - Google Patents

Info

Publication number
JPH0124995B2
JPH0124995B2 JP530680A JP530680A JPH0124995B2 JP H0124995 B2 JPH0124995 B2 JP H0124995B2 JP 530680 A JP530680 A JP 530680A JP 530680 A JP530680 A JP 530680A JP H0124995 B2 JPH0124995 B2 JP H0124995B2
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace
gas distribution
temperature
distribution plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP530680A
Other languages
Japanese (ja)
Other versions
JPS56102686A (en
Inventor
Katsumi Nodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAAKAA NETSUSHORI KOGYO KK
Original Assignee
PAAKAA NETSUSHORI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAAKAA NETSUSHORI KOGYO KK filed Critical PAAKAA NETSUSHORI KOGYO KK
Priority to JP530680A priority Critical patent/JPS56102686A/en
Publication of JPS56102686A publication Critical patent/JPS56102686A/en
Publication of JPH0124995B2 publication Critical patent/JPH0124995B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 本発明は、炉内温度を高精度に制御できるよう
にした二層式流動層炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-layer fluidized bed furnace in which the temperature inside the furnace can be controlled with high precision.

従来、鋼材の焼戻し、アルミニウム合金の溶体
化又は時効硬化、有機物の合成反応等を流動層炉
を用いて行なつている場合があるが、その流動層
炉は、上部が開口した炉釜と、前記炉釜の下部に
設けられ空気、アンモニア、RXガス、水蒸気、
メタノール等の流動化気体を分散供給させる気体
分散板と、前記流動化気体及びアルミナ、砂、ガ
ラスビーズ、カーボランダム等の粒子集合体を加
熱する加熱装置即ち発熱体と、感温体を含む温度
制御装置とからなつていた。この流動層炉の炉内
温度のバラツキは、200℃の雰囲気で±3℃、500
℃の雰囲気で±5℃位ある。一般に、鋼材の焼戻
し処理において鋼材の組織を均一化し又硬度を均
一化するには炉内温度のバラツキを大きくとも±
5℃に、アルミニウム合金の溶体化又は時効硬化
処理においては前記鋼材のときよりもきびしく±
1℃に、有機物の合成においても±1℃に制御す
る必要があり、又目的によつてはこれ以上に巾せ
まく温度制御する必要があるが、そのように巾せ
まく温度制御できる性能の良い流動層炉を作るの
は容易ではない。又液体を流動化気体として使用
する場合は、液体を一層式流動層炉に供給し直接
加熱により気化させていたので炉内温度のバラツ
キが大きかつた。
Conventionally, tempering of steel materials, solution treatment or age hardening of aluminum alloys, synthesis reactions of organic substances, etc. have been carried out using fluidized bed furnaces. Air, ammonia, RX gas, steam,
A gas dispersion plate that disperses and supplies a fluidizing gas such as methanol, a heating device that heats the fluidizing gas and particle aggregates such as alumina, sand, glass beads, carborundum, etc., and a temperature sensing element. It consisted of a control device. The temperature variation in the furnace of this fluidized bed furnace is ±3℃ in an atmosphere of 200℃, 500℃.
In an atmosphere of ℃, it is about ±5℃. Generally, in order to make the structure of the steel material uniform and the hardness uniform during the tempering treatment of steel materials, variations in the temperature inside the furnace must be at least ±
5°C, the solution treatment or age hardening treatment of aluminum alloys is more severe than that of the above-mentioned steel materials.
In the synthesis of organic substances, it is necessary to control the temperature within ±1℃, and depending on the purpose, it is necessary to control the temperature over a wider range. Building a bed furnace is not easy. Furthermore, when a liquid is used as a fluidizing gas, the liquid is supplied to a single-layer fluidized bed furnace and vaporized by direct heating, resulting in large variations in temperature within the furnace.

本発明は、従来の流動層炉よりも炉内温度をよ
り高精度に制御できる二層式流動層炉を提供しよ
うとするものである。
The present invention aims to provide a two-layer fluidized bed furnace that can control the temperature inside the furnace with higher precision than conventional fluidized bed furnaces.

本発明による二層式流動層炉の実施例を図面に
ついて説明すれば、 (イ) 流動層炉の炉釜1の炉床と平行して、炉釜1
の下部に多数の小孔を有する下段気体分散板2
a及び炉釜1の上下方向中央部に多数の小孔を
有する上段気体分散板2bを設け、下段気体分
散板2aと上段気体分散板2b間を下段流動層
3a、気体分散板2bより上方の層を上段流動
層3bとし、 (ロ) 下段流動層3a内に加熱装置即ち発熱体4a
と感温体5aとを、上段流動層3b内に加熱装
置即ち発熱体4bと感温体5bとを設け、発熱
体4a及び感温体5aは温度制御装置6aと、
発熱体4b及び感温体5bは温度制御装置6b
と接続され、 (ハ) 流動層用流体供給管7は流動層用流体供給口
9から炉壁を貫通し下段流動層3a内に形成さ
れた伝熱蛇管部7aを経て、下段気体分散板2
aより下方に流動化気体排出口8がくるように
設ける。
An embodiment of the two-layer fluidized bed furnace according to the present invention will be described with reference to the drawings.
The lower gas distribution plate 2 has a large number of small holes at the bottom of the plate.
An upper gas distribution plate 2b having a large number of small holes is provided in the center of the furnace pot 1 in the vertical direction, and a lower fluidized bed 3a and a gas distribution layer above the gas distribution plate 2b are provided between the lower gas distribution plate 2a and the upper gas distribution plate 2b. The layer is an upper fluidized bed 3b, and (b) a heating device, that is, a heating element 4a is provided in the lower fluidized bed 3a.
A heating device, that is, a heating element 4b and a temperature sensing element 5b are provided in the upper fluidized bed 3b, and the heating element 4a and the temperature sensing element 5a are connected to a temperature control device 6a,
The heating element 4b and the temperature sensing element 5b are the temperature control device 6b.
(c) The fluidized bed fluid supply pipe 7 penetrates the furnace wall from the fluidized bed fluid supply port 9, passes through the heat transfer flexible pipe part 7a formed in the lower fluidized bed 3a, and then connects to the lower gas distribution plate 2.
It is provided so that the fluidizing gas outlet 8 is located below a.

本発明による二層式流動層炉は以上のように構
成されている。次にその二層式流動層炉の作用に
ついて説明する。
The two-layer fluidized bed furnace according to the present invention is constructed as described above. Next, the operation of the two-layer fluidized bed furnace will be explained.

流動層用流体供給口9から流動層用流体が流動
層用流体供給管7内に供給されその供給管7の途
中に形成された伝熱蛇管部7aを通過する際高温
の気体となり、該気体は流動化気体として排出口
8から排出され下段気体分散板2aを通つて下段
流動層3aへ供給され、予め容れられてあつた粒
子集合体を浮遊分散させ下段流動層3aが形成さ
れる。下段流動層3a内の流動化気体及び粒子集
合体は発熱体4aによつて加熱され、それによつ
て流動層用流体供給管も加熱されるのである。下
段流動層内の温度は感温体5aによつて測温さ
れ、温度制御装置6aにより所定の温度に制御さ
れる。下段流動層で所定温度に昇温された流動化
気体は上段気体分散板2bを通過して上段流動層
3bへ送入され、予め容れられてあつた粒子集合
体を浮遊分散させ上段流動層3bが形成される。
上段流動層3b内の流動化気体及び粒子集合体は
発熱体4bによつて加熱され、それによつて鋼
材、アルミニウム合金等の処理をすることができ
るのである。上段流動層内の温度は感温体5bに
よつて測温され、温度制御装置6bにより所定の
温度に制御される。液体を流動層用流体として使
用する場合は、下段流動層3aの温度が該液体の
沸点より十分高い温度になつてから該液体を供給
口9より供給すると、該液体は伝熱蛇管部7aの
中にて気化し、流動化気体排出口8から排出さ
れ、下段流動層3a及び上段流動層3bの流動化
気体として使用される。該液体が蒸発気化するの
に必要な蒸発潜熱を下段流動層3aにおいて供給
するようにしておけば、流動層用流体は下段流動
層3a内に排出されるとき完全に気体となつてい
るため、その気体によつて流動化される上段流動
層3bは十分高精度の温度分布が得られ、また必
要な温度範囲に制御ることができる。
The fluidized bed fluid is supplied from the fluidized bed fluid supply port 9 into the fluidized bed fluid supply pipe 7, and when it passes through the heat transfer flexible pipe section 7a formed in the middle of the supply pipe 7, it becomes a high temperature gas, and the gas is discharged from the outlet 8 as a fluidized gas and supplied to the lower fluidized bed 3a through the lower gas dispersion plate 2a, floating and dispersing the particle aggregates contained in advance to form the lower fluidized bed 3a. The fluidizing gas and particle aggregates in the lower fluidized bed 3a are heated by the heating element 4a, thereby also heating the fluid supply pipe for the fluidized bed. The temperature in the lower fluidized bed is measured by a temperature sensing element 5a, and controlled to a predetermined temperature by a temperature control device 6a. The fluidizing gas heated to a predetermined temperature in the lower fluidized bed passes through the upper gas distribution plate 2b and is sent to the upper fluidized bed 3b, suspending and dispersing the particle aggregates contained in advance in the upper fluidized bed 3b. is formed.
The fluidizing gas and particle aggregate in the upper fluidized bed 3b are heated by the heating element 4b, thereby making it possible to process steel materials, aluminum alloys, etc. The temperature in the upper fluidized bed is measured by a temperature sensing element 5b, and is controlled to a predetermined temperature by a temperature control device 6b. When a liquid is used as a fluid for the fluidized bed, if the liquid is supplied from the supply port 9 after the temperature of the lower fluidized bed 3a reaches a temperature sufficiently higher than the boiling point of the liquid, the liquid will flow through the heat transfer corrugated tube portion 7a. The gas is vaporized therein, discharged from the fluidizing gas outlet 8, and used as fluidizing gas for the lower fluidized bed 3a and the upper fluidized bed 3b. If the latent heat of vaporization necessary for the liquid to evaporate is supplied in the lower fluidized bed 3a, the fluidized bed fluid will be completely gaseous when discharged into the lower fluidized bed 3a. The upper fluidized bed 3b fluidized by the gas has a sufficiently accurate temperature distribution and can be controlled within a necessary temperature range.

本発明による流動層炉は、以上のような構造、
作用を有しており、従来のものに比べて次のよう
な利点がある。即ち、炉釜の下部及び中央部にそ
れぞれ多数の小孔を有する気体分散板を設け下段
流動層及び上段流動層を形成し、下段流動層内に
流動層用流体供給管を通過させるようにしたの
で、液体を流動層用流体供給口から供給した場合
は液体はその供給管内で完全に気化され流動化気
体としてその排出口から排出されるため液体の蒸
発による炉内温度のバラツキをなくすことがで
き、又上段流動層に送入される流動化気体は下段
流動層によつて小さなバラツキの温度範囲に制御
されるため上段流動層は高精度に温度制御するこ
とができるという効果がある。
The fluidized bed furnace according to the present invention has the above structure,
It has the following advantages over conventional ones. That is, gas dispersion plates each having a large number of holes were provided at the bottom and center of the furnace pot to form a lower fluidized bed and an upper fluidized bed, and a fluidized bed fluid supply pipe was passed through the lower fluidized bed. Therefore, when liquid is supplied from the fluidized bed fluid supply port, the liquid is completely vaporized in the supply pipe and discharged from the discharge port as fluidized gas, which eliminates fluctuations in furnace temperature due to liquid evaporation. Furthermore, since the fluidizing gas fed into the upper fluidized bed is controlled within a temperature range with small variations by the lower fluidized bed, the temperature of the upper fluidized bed can be controlled with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案による二層式流動層の実施例の
構造を示す線図式縦断面側面図である。 1……炉釜、2a……下段気体分散板、2b…
…上段気体分散板、3a……下段流動層、3b…
…上段流動層、4a……発熱体、4b……発熱
体、5a……感温体、5b……感温体、6a……
温度制御装置、6b……温度制御装置、7……流
動層用流体供給管、7a……伝熱蛇管部、8……
排出口、9……供給口。
FIG. 1 is a diagrammatic vertical cross-sectional side view showing the structure of an embodiment of a two-layer fluidized bed according to the present invention. 1...Furnace pot, 2a...Lower gas distribution plate, 2b...
...Upper gas distribution plate, 3a...Lower fluidized bed, 3b...
...Upper fluidized bed, 4a...Heating element, 4b...Heating element, 5a...Temperature sensing element, 5b...Temperature sensing element, 6a...
Temperature control device, 6b... Temperature control device, 7... Fluidized bed fluid supply pipe, 7a... Heat transfer flexible tube section, 8...
Discharge port, 9...supply port.

Claims (1)

【特許請求の範囲】[Claims] 1 炉釜1の下部に下段気体分散板2aが、前記
炉釜の上下方向中央部に上段気体分散板2bが
夫々前記炉釜の炉床に平行に設けられ、前記下段
気体分散板と前記上段気体分散板の間が下段流動
層3aにされるとともに、前記上段気体分散板よ
り上方が上段流動層3bにされ、前記下段流動層
及び前記上段流動層内に夫々発熱体4a,4b及
び感温体5a,5bが設けられ、前記発熱体及び
前記感温体は夫々温度制御装置6a,6bに接続
され、流動層用気体供給管7が、前記炉釜の外部
に開口した流動層用流体供給口9から炉壁を貫通
して前記下段流動層内に形成された伝熱蛇管7a
を経て、前記下段気体分散板より下方に開口した
流動化気体排出口8に至るように設けられている
ことを特徴とする二層式流動層炉。
1. A lower gas distribution plate 2a is provided in the lower part of the furnace pot 1, and an upper gas distribution plate 2b is provided in the center of the furnace pot in the vertical direction, parallel to the hearth of the furnace pot. A lower fluidized bed 3a is formed between the gas distribution plates, and an upper fluidized bed 3b is formed above the upper gas distribution plate, and heating elements 4a, 4b and temperature sensing elements 5a are provided in the lower fluidized bed and the upper fluidized bed, respectively. , 5b, the heating element and the temperature sensing element are connected to temperature control devices 6a and 6b, respectively, and a fluidized bed gas supply pipe 7 is provided with a fluidized bed fluid supply port 9 opened to the outside of the furnace pot. A heat transfer flexible tube 7a is formed in the lower fluidized bed by penetrating the furnace wall.
A two-layer fluidized bed furnace characterized in that the furnace is provided so as to reach a fluidizing gas discharge port 8 opening downward from the lower gas distribution plate.
JP530680A 1980-01-22 1980-01-22 Doubleelayer type fluid layer furnace Granted JPS56102686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP530680A JPS56102686A (en) 1980-01-22 1980-01-22 Doubleelayer type fluid layer furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP530680A JPS56102686A (en) 1980-01-22 1980-01-22 Doubleelayer type fluid layer furnace

Publications (2)

Publication Number Publication Date
JPS56102686A JPS56102686A (en) 1981-08-17
JPH0124995B2 true JPH0124995B2 (en) 1989-05-15

Family

ID=11607583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP530680A Granted JPS56102686A (en) 1980-01-22 1980-01-22 Doubleelayer type fluid layer furnace

Country Status (1)

Country Link
JP (1) JPS56102686A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339016A (en) * 2001-05-16 2002-11-27 Asahi Tec Corp Heat treatment method for cast product

Also Published As

Publication number Publication date
JPS56102686A (en) 1981-08-17

Similar Documents

Publication Publication Date Title
US2729428A (en) Fluidized bed temperature conditioner and method of controlling temperatures of fluid streams
US2311350A (en) Method and apparatus for controlling combustion
US2432520A (en) Pebble heater
SU1621809A3 (en) Device for calcining gypsum
GB1456096A (en) Furnace for the disposal of halogenated organic materials
JPH0124995B2 (en)
US2601102A (en) Heat exchanger control
US4410999A (en) Method and apparatus for cooling a wall region of a metallurgical furnace, in particular an electric arc furnace
US2638879A (en) Apparatus for heat treatment of fluent substances
US3542347A (en) Fluid bed heating of discrete material
US2860174A (en) Pneumatic transportation of solid materials
US2554407A (en) Hydrocarbon conversion in a pebble heat exchanger
US3617038A (en) Apparatus for the continuous dehydration of aluminum fluoride hydrates
US2687372A (en) Method and apparatus for convert
US3892538A (en) Method and apparatus for generating high temperature zone using fixed-fluidized bed
US3686034A (en) Gravity flow sand reclamation process
US2729548A (en) Pebble heat exchange chamber
US3882826A (en) Flue gas distributor and radiator for uniform heat transfer
US2635990A (en) Pebble heat-exchanger
US3378244A (en) Pebble heat exchanger
US2630373A (en) Process and apparatus for the thermal synthesis of carbon compounds
US3782903A (en) Support pillar for fluid bed grid
US2518304A (en) Gas distributor for pebble heaters
US2630413A (en) Pebble heater apparatus and method of regenerating pebbles therein
US2750181A (en) Pebble heater