JPH01249599A - Radiation cooling device - Google Patents

Radiation cooling device

Info

Publication number
JPH01249599A
JPH01249599A JP63078750A JP7875088A JPH01249599A JP H01249599 A JPH01249599 A JP H01249599A JP 63078750 A JP63078750 A JP 63078750A JP 7875088 A JP7875088 A JP 7875088A JP H01249599 A JPH01249599 A JP H01249599A
Authority
JP
Japan
Prior art keywords
heat
cooling body
reflector
openings
spacecraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63078750A
Other languages
Japanese (ja)
Other versions
JP2685213B2 (en
Inventor
Yoshio Okawa
大川 揚子雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63078750A priority Critical patent/JP2685213B2/en
Publication of JPH01249599A publication Critical patent/JPH01249599A/en
Application granted granted Critical
Publication of JP2685213B2 publication Critical patent/JP2685213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform an efficient control of temperature by transporting heat, transmitted to the first cooling unit, to the first opening part through the first heat pipe and heat, transmitted to the second cooling unit, to the second and first opening parts through the second and third heat pipes to be radiated. CONSTITUTION:Heat from a space navigating vehicle 30 is transported to the first opening part 10a through the first cooling unit 11, first heat pipe 13 and a heat radiator 14 and radiated. Simultaneously, heat from an infrared rays detector 19 is transported to the first and second opening parts 10a, 10b through the second cooling unit 17, second heat pipe 20, connection part 22, third heat pipe 23 and heat radiators 21, 24 and emitted. Here a beam of heat from the sun 31 is intercepted by an outside heat reflector 10. In this way, the infrared rays detector 19 is held to a desired temperature region. Thus because the outside heat reflector 10 separately provides the first and second opening parts 10a, 10b corresponding to different cool space, an efficient control of temperature can be performed by enabling the cool space of wide range to be ensured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば、人工衛星等の宇宙航行体に搭載さ
れ、宇宙空間から地球等の被観測体の赤外線を検出する
赤外線検出器等の被冷却体を冷却するのに用いる放射冷
却装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention is for example mounted on a space vehicle such as an artificial satellite, and used to detect infrared rays from an observed object such as the earth from outer space. The present invention relates to a radiation cooling device used to cool objects to be cooled such as infrared detectors.

(従来の技術) 一般に、この種の赤外線検出器は、地球等の被観71P
I体からの赤外線を検出する場合に、その検出器本体を
宇宙航行体の機内温度に比して非常に低い80に〜12
0に程度の温度領域まで冷却して、それを維持すること
が要求される。このため、赤外線検出器にあっては、宇
宙航行体自体で発生する熱を絶縁し、かつ、太陽、地球
及び衛星突出部等からの熱線の遮断、ならびに検出器本
体を宇宙空間における冷空間に放射することにより、目
標温度を確保する放射冷却装置を介して設置される。そ
こで、このような放射冷却装置いては、赤外線検出器本
体及び宇宙航行体との熱絶縁手段と、外部からの不要な
熱線を遮断する手段とより構成される。
(Prior art) In general, this type of infrared detector is
When detecting infrared rays from an I-body, the detector body is heated to a temperature of 80 to 12, which is very low compared to the inside temperature of the spacecraft.
It is required to cool down to a temperature range of around 0 and maintain it. For this reason, infrared detectors must be able to insulate the heat generated by the spacecraft itself, block heat rays from the sun, earth, satellite protrusions, etc., and keep the detector body in the cold space of outer space. It is installed through a radiant cooling device that ensures the target temperature by radiating. Therefore, such a radiation cooling device is composed of means for thermally insulating the infrared detector body and the spacecraft, and means for blocking unnecessary heat rays from the outside.

ところが、上記放射冷却装置では、近時の宇宙航行体の
大形化の要請にともない、その太陽電池パドル、あるい
はアンテナ装置等の突出部が大形化されることにより、
確保できる冷空間が制約をうけることとなるために、効
率的な放熱が困難となり、確実な温度制御ができないお
それがあった。
However, in the above-mentioned radiation cooling device, with the recent demand for larger space vehicles, the protruding parts of the solar battery paddles or antenna devices have become larger.
Since the cold space that can be secured is limited, efficient heat dissipation becomes difficult and reliable temperature control may not be possible.

(発明が解決しようとする課題) 以上述べたように、従来の放射冷却装置では、宇宙空間
における冷空間を十分に確保することが困難で、確実な
温度制御ができないおそれがあった。
(Problems to be Solved by the Invention) As described above, in the conventional radiation cooling device, it is difficult to secure a sufficient cold space in outer space, and there is a fear that reliable temperature control may not be possible.

この発明は上記の事情に鑑みてなされたもので、簡易な
構成で、かつ、広範囲な冷空間の確保を図り、効率的な
温度制御を実現し得るようにした放射冷却装置を提供す
ることを目的とする。
This invention was made in view of the above circumstances, and aims to provide a radiation cooling device that has a simple configuration, secures a wide range of cold space, and realizes efficient temperature control. purpose.

[発明の構成] (課題を解決するための手段) この発明は宇宙航行体に支持され、異なった領域の冷空
間に対向される複数の開口部を有した第1の熱反射体と
、この第1の熱反射体内に収容され、前記宇宙航行体か
らの熱絶縁を行なう第1の冷却体と、この第1の冷却体
の熱を前記複数の開口部における少なくとも一箇所の開
口部に輸送して放熱する第1の熱輸送放熱手段と、前記
第1の冷却体に支持され、前記複数の開口部に対応して
配置される第2の熱反射体と、この第2の熱反射体に支
持され、被冷却体が取着される第2の冷却体と、この第
2の冷却体の熱を前記複数の開口部における少なくとも
一箇所の開口部に輸送して放熱する第2の熱輸送放熱手
段とを備えて放射冷却装置を構成したものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a first heat reflector supported by a spacecraft and having a plurality of openings facing cold spaces in different regions; a first cooling body housed in a first heat reflector and providing thermal insulation from the spacecraft; and transporting heat from the first cooling body to at least one of the plurality of openings. a first heat transporting and heat dissipating means that radiates heat; a second heat reflector supported by the first cooling body and disposed corresponding to the plurality of openings; and this second heat reflector. a second cooling body supported by the cooling body and to which the object to be cooled is attached; and a second heat generating body that transports the heat of the second cooling body to at least one of the plurality of openings and radiates the heat. A radiation cooling device is constructed by including a transport heat dissipation means.

(作用) 上記構成によれば、宇宙航行体の熱は、第1の冷却体及
び第1の熱輸送手段を介して異なった領域の冷空間に対
向配置される複数の開口部に熱輸送されて放熱され−る
。また、被冷却体の熱は第2の冷却体及び第2の熱輸送
手段を介して前記複数の開口部に熱輸送されて放熱され
る。従って、これら分離配置される複数の開口部により
冷空間に広い開口面積を確保することが可能となる。こ
れにより、放熱の確実化が図れて、効率的な温度制御が
実現する。
(Function) According to the above configuration, the heat of the spacecraft is transported to the plurality of openings disposed facing each other in cold spaces in different regions via the first cooling body and the first heat transport means. Heat is radiated. Further, the heat of the object to be cooled is transported to the plurality of openings via the second cooling body and the second heat transport means, and is radiated. Therefore, it becomes possible to secure a wide opening area in the cold space by the plurality of openings arranged separately. This ensures reliable heat dissipation and realizes efficient temperature control.

(実施例) 以下、この発明の実施例について、図面を参照して詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る放射冷却装置を示す
もので、図中10は外側熱反射体で、図示しない宇宙航
行体に取着される。この外側熱反射体には異なった冷空
間に対応した第1及び第2の開口部10a、10bが設
けられている。この第1及び第2の開口部1’Oa、1
0bは例えば、第2図に示すような太陽同期軌道を飛翔
する宇宙航行体30の場合には、太陽31の光線が軌道
面に対して概ね一定の方向から入射する太陽方向Aと地
球32との間に存在する異なった領域X及びYの冷空間
に対応される。
FIG. 1 shows a radiation cooling device according to an embodiment of the present invention, in which reference numeral 10 denotes an outer heat reflector, which is attached to a spacecraft (not shown). This outer heat reflector is provided with first and second openings 10a and 10b corresponding to different cold spaces. These first and second openings 1'Oa, 1
For example, in the case of a spacecraft 30 flying in a sun-synchronous orbit as shown in FIG. This corresponds to the different regions X and Y cold spaces that exist between them.

また、外側熱反射体10内には、その概ね中央部に地球
に対応して赤外線検出用の透孔10cが形成され、二〇
透孔10に対応して宇宙航行体30からの熱を絶縁する
第1の冷却体11が支持部材12を介して配設される。
In addition, a through hole 10c for infrared detection is formed in the outer heat reflector 10 at approximately the center thereof, corresponding to the earth, and a hole 10c for infrared detection is formed in the outer heat reflector 10 to insulate heat from the spacecraft 30, corresponding to the through hole 10. A first cooling body 11 is disposed via a support member 12.

この第1の冷却体11には熱輸送手段を構成する第1の
ヒートパイプ13が敷設される。この第1のヒートパイ
プ13は、その先端部が上記第1の開口部10aに延出
され、その先端には放熱体14が取着される。
A first heat pipe 13 constituting a heat transport means is installed in this first cooling body 11 . The tip of the first heat pipe 13 extends into the first opening 10a, and a heat sink 14 is attached to the tip.

さらに、上記第1の冷却体11には内側熱反射体15が
支持部材16を介して取着される。この内側熱反射体1
5は、その両端部が第1及び第2の開口部10a、10
bに対向されており、その−端部には第2の冷却体17
が支持部材18を介して取着される。この第2の冷却体
17には、その一端部に赤外線検出器19が上記外側熱
反射体10の透孔10cに対応して取着され、その他端
部には熱輸送手段を構成する第2のヒートパイプ20が
取着される。この第2のヒートパイプ20は、その先端
部が第一2の開口部10bに延出され、その先端部には
放熱体21が取着される。また、第2のヒートパイプ2
0の中間部には熱結合用結合部材22が取着され、この
結合部材22には第3のヒートパイプ23の基部が支持
される。この第3のヒートパイプ23は先端部が上記第
1の開口部10aに延出され、その先端部には放熱体2
4が取着される。
Further, an inner heat reflector 15 is attached to the first cooling body 11 via a support member 16. This inner heat reflector 1
5 has first and second openings 10a, 10 at both ends thereof.
b, and a second cooling body 17 is provided at the -end thereof.
is attached via a support member 18. An infrared detector 19 is attached to one end of the second cooling body 17 in correspondence with the through hole 10c of the outer heat reflector 10, and a second cooling body 17 constituting a heat transport means is attached to the other end. A heat pipe 20 is attached. The tip of the second heat pipe 20 extends into the second opening 10b, and the heat sink 21 is attached to the tip. In addition, the second heat pipe 2
A coupling member 22 for thermal coupling is attached to the intermediate portion of the heat pipe 0, and the base of a third heat pipe 23 is supported on this coupling member 22. The third heat pipe 23 has a distal end extending into the first opening 10a, and a heat dissipating body 2 at the distal end.
4 is attached.

上記構成において、宇宙航行体30からの熱は第1の冷
却体11、第1のヒートバイブ13及び放熱体14を介
して第1の開口部10aに輸送されて放熱される。同時
に、赤外線検出器19からの熱は第2の冷却体17、第
2のヒートバイブ20、結合部材22、第3のヒートパ
イプ23及び放熱体21.24を介して第1及び第2の
開口部10a、10bに輸送されて放射される。この際
、太陽31からの熱線は外側熱反射体10により遮断さ
れる。これにより、赤外線検出器19は所望の80に〜
120に程度の温度領域に保たれる。
In the above configuration, heat from the spacecraft 30 is transported to the first opening 10a via the first cooling body 11, the first heat vibrator 13, and the heat radiating body 14, and is radiated. At the same time, the heat from the infrared detector 19 passes through the second cooling body 17, the second heat vibrator 20, the coupling member 22, the third heat pipe 23 and the heat sink 21, 24 to the first and second openings. The light is transported to parts 10a and 10b and radiated. At this time, heat rays from the sun 31 are blocked by the outer heat reflector 10. This causes the infrared detector 19 to reach the desired value of 80~
The temperature is maintained at about 120°C.

このように、上記放射冷却装置は、外側熱反射体10に
異なる冷空間に対応する第1及び第2の開口部10a、
10bを分離して設け、この第1及び第2の開口部10
a、10bに対して第1及び第2の冷却体11.17、
第1乃至第3のヒートパイプ13,20.23を介して
宇宙航行体30及び赤外線検出器19の熱を輸送して放
熱するように構成したことにより、その放熱開口面積の
確保が極めて容易となるので、効率的な温度制御が実現
する。これによれば、その放射開口面積の確保が容易な
ことから、例えば、宇宙航行体30に搭載する太陽電池
パドルを含む各種の搭載部品の搭載位置の制約をうける
ことがなくなるため、宇宙航行体30の設計を含む取扱
いの簡略化にも寄与できる。
In this way, the radiation cooling device has first and second openings 10a corresponding to different cold spaces in the outer heat reflector 10,
10b are provided separately, and the first and second openings 10
first and second cooling bodies 11.17 for a, 10b;
By configuring the spacecraft 30 and the infrared detector 19 to transport and radiate heat through the first to third heat pipes 13, 20, 23, it is extremely easy to secure the heat radiation opening area. Therefore, efficient temperature control is realized. According to this, since it is easy to secure the radiation aperture area, for example, there is no restriction on the mounting position of various mounting parts including the solar battery paddle mounted on the spacecraft 30, so the spacecraft It can also contribute to the simplification of handling including the design of 30.

なお、上記実施例では、太陽同期軌道を飛翔する宇宙航
行体30を対象として第1及び第2の開口部10a、1
0’bを設けた場合で説明したが、この数に限ることな
く、適用状況に応じて、その冷空間の領域の数に応じた
複数の配置が可能である。
Note that in the above embodiment, the first and second openings 10a, 1
Although the case where 0'b is provided has been described, the number is not limited to this, and a plurality of arrangements according to the number of regions of the cold space are possible depending on the application situation.

また、上記実施例では、第1の冷却体11に伝達された
熱を第1のヒートパイプ13を介して第1の開口部10
aに輸送し、第2の冷却体19に伝達された熱を第2及
び第3のヒートバイブ20゜23を介して第2及び第1
の開口部10a。
Further, in the above embodiment, the heat transferred to the first cooling body 11 is transferred to the first opening 10 via the first heat pipe 13.
a, and the heat transferred to the second cooling body 19 is transferred to the second and first
opening 10a.

10bに輸送して放熱するように構成したが、これに限
ることなく、その放熱量に応じて選択的に組合せ可能な
もので、少なくとも第1及び第2の開口部10a、10
bの一方に輸送して放熱することで、同様の効果が期待
される。
Although the configuration is such that the heat is radiated by transporting it to the openings 10a and 10b, the present invention is not limited to this, and it is possible to selectively combine them depending on the amount of heat radiated.
A similar effect can be expected by transporting and dissipating heat to one side of b.

さらに、上記実施例では、赤外線検出器19に適用した
場合で説明したが、これに限ることなく、宇宙航行体3
0に搭載される各種の温度制御を必要とする被冷却体の
冷却手段として適用可能である。
Further, in the above embodiment, the case where the application is applied to the infrared detector 19 has been explained, but the invention is not limited to this, and the spacecraft 3
It can be applied as a cooling means for various objects to be cooled that require various temperature controls mounted on the vehicle.

よって、この発明は上記実施例に限ることなく、その他
、この発明の要旨を逸脱しない範囲で種々の変形を実施
し得ることは勿論のことである。
Therefore, it goes without saying that the present invention is not limited to the above embodiments, and that various modifications can be made without departing from the spirit of the invention.

[発明の効果] 以上詳述したように、この発明によれば、簡易な構成で
、かつ、広範囲な冷空間の確保を図り、効率的な温度制
御を実現し得るようにした放射冷却装置を提供すること
ができる。
[Effects of the Invention] As detailed above, the present invention provides a radiation cooling device that has a simple configuration, secures a wide range of cold space, and realizes efficient temperature control. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る放射冷却装置を示す
断面図、第2図は地球観」j衛星の冷空間領域を示す概
念図である。 10・・・外側熱反射体、10a、10b・・・第1及
び第2の開口部、10c・・・透孔、11・・・第1の
冷却体、12,16.18・・・支持部材、13・・・
第1のヒートバイブ、14,21.24・・・放熱体、
15・・・内側熱反射体、17・・・第2の冷却体、1
9・・・赤外線検出器、20・・・第2のヒートバイブ
、22・・・結合部材、23・・・第3のヒートパイプ
、30・・・宇宙航行体、31・・・太陽、32・・・
地球。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a cross-sectional view showing a radiation cooling device according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram showing the cold space region of the Earth View J satellite. DESCRIPTION OF SYMBOLS 10... Outer heat reflector, 10a, 10b... First and second openings, 10c... Through hole, 11... First cooling body, 12, 16.18... Support Part 13...
1st heat vibrator, 14, 21. 24... heat sink,
15...Inner heat reflector, 17...Second cooling body, 1
9... Infrared detector, 20... Second heat vibrator, 22... Coupling member, 23... Third heat pipe, 30... Spacecraft, 31... Sun, 32 ...
Earth. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 宇宙航行体に支持され、異なった領域の冷空間に対向さ
れる複数の開口部を有した第1の熱反射体と、この第1
の熱反射体内に収容され、前記宇宙航行体からの熱絶縁
を行なう第1の冷却体と、この第1の冷却体の熱を前記
複数の開口部における少なくとも一箇所の開口部に輸送
して放熱する第1の熱輸送放熱手段と、前記第1の冷却
体に支持され、前記複数の開口部に対応して配置される
第2の熱反射体と、この第2の熱反射体に支持され、被
冷却体が取着される第2の冷却体と、この第2の冷却体
の熱を前記複数の開口部における少なくとも一箇所の開
口部に輸送して放熱する第2の熱輸送放熱手段とを具備
したことを特徴とする放射冷却装置。
a first heat reflector supported by a spacecraft and having a plurality of openings facing cold spaces in different regions;
a first cooling body that is housed in a heat reflector and provides thermal insulation from the spacecraft; and a first cooling body that transports the heat of the first cooling body to at least one of the plurality of openings. a first heat transport heat radiating means for radiating heat; a second heat reflector supported by the first cooling body and disposed corresponding to the plurality of openings; and supported by the second heat reflector. a second cooling body to which the object to be cooled is attached; and a second heat transporting and radiating body that transports and radiates the heat of the second cooling body to at least one of the plurality of openings. A radiation cooling device characterized by comprising means.
JP63078750A 1988-03-31 1988-03-31 Radiation cooling Expired - Lifetime JP2685213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078750A JP2685213B2 (en) 1988-03-31 1988-03-31 Radiation cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078750A JP2685213B2 (en) 1988-03-31 1988-03-31 Radiation cooling

Publications (2)

Publication Number Publication Date
JPH01249599A true JPH01249599A (en) 1989-10-04
JP2685213B2 JP2685213B2 (en) 1997-12-03

Family

ID=13670571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078750A Expired - Lifetime JP2685213B2 (en) 1988-03-31 1988-03-31 Radiation cooling

Country Status (1)

Country Link
JP (1) JP2685213B2 (en)

Also Published As

Publication number Publication date
JP2685213B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US12065268B2 (en) Thermal management system for structures in space
US6604575B1 (en) Heat exchange apparatus
US7118076B2 (en) Satellite comprising means for transferring heat from a shelf supporting equipment to radiator panels
JPH05193592A (en) Heat controller for space-ship
KR20180114933A (en) Heat dissipation device using heat pipe panel
US6073887A (en) High power spacecraft with full utilization of all spacecraft surfaces
CN107848635A (en) Satellite radiator panel with combination reinforced sheet/heat pipe
US7028953B2 (en) Two-sided deployable thermal radiator system and method
US5494241A (en) Device for cooling a satellite-mounted travelling-wave tube
US3847208A (en) Structural heat pipe
JP2004515075A (en) Spontaneous emission enhanced heat transport method and structure for cooling, sensing, and power generation
Murphy A prosaic explanation for the anomalous accelerations seen in distant spacecraft
US5148860A (en) Thermal control apparatus for satellites and other spacecraft
US9038960B2 (en) Absorbent dome for a radiating collector tube
US20050077432A1 (en) Dual conduction heat dissipating system for a spacecraft
US2234122A (en) Method of controlling the temperature of objects
JPH01249599A (en) Radiation cooling device
JP2003291900A (en) Heat control device for artificial satellite
JPH11171100A (en) Passive temperature control device for artificial satellite-mounted equipment
Neuberger et al. Advanced geosynchronous studies imager thermal design
JPH09309500A (en) Radiating power feed system
Semena et al. Methods for creating the self-regulating mechanisms of passive systems for ensuring thermal regime of devices for space application
JP3462595B2 (en) Fuel piping for space equipment
JPH10132477A (en) Flexible heat pipe device
Walker et al. The impact of the lunar thermal environment on the design of telescopes for lunar surface operation