JPH01249106A - Hollow yarn module comprising porous regenerated cellulose - Google Patents

Hollow yarn module comprising porous regenerated cellulose

Info

Publication number
JPH01249106A
JPH01249106A JP7587388A JP7587388A JPH01249106A JP H01249106 A JPH01249106 A JP H01249106A JP 7587388 A JP7587388 A JP 7587388A JP 7587388 A JP7587388 A JP 7587388A JP H01249106 A JPH01249106 A JP H01249106A
Authority
JP
Japan
Prior art keywords
hollow yarn
hollow
hollow fiber
regenerated cellulose
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7587388A
Other languages
Japanese (ja)
Inventor
Hiromi Nagashima
長嶋 広見
Noboru Saho
佐保 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7587388A priority Critical patent/JPH01249106A/en
Publication of JPH01249106A publication Critical patent/JPH01249106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To decrease a degree of reduction of diameter of hollow part of a hollow yarn module, to reduce degree of clogging of the hollow yarn, and to attain thus fully exhibited filtration characteristics of the hollow yarn, by maintaining a degree of dispersion of the hollow yarn at >=2.5 in a stage of potting with polyurethane of bundled hollow yarn membrane comprising porous regenerated cellulose. CONSTITUTION:In a stage of potting of a bundled hollow yarn membrane comprising porous regenerated cellulose obtd. from a cupri-ammonium soln. of cellulose at both ends dipped in polyurethane, the degree of dispersion defined by =S/{pi(0.5Do)<2>Xn} is held at >=2.5, wherein S is an area(cm<2>) occupied by a hollow yarn bundle measured at an end face of polyurethane; Do is an outside diameter(cm) of the hollow yarn; n is a number of the hollow yarn. By this constitution, decrease of filtration capacity due to occurrence of reduction of diameter and clogging of a hollow yarn at a part thereof, which have been caused in the conventional process due to increase of volume of hollow yarn bundle having been fixed to an inside of a housing, dipped in water and swelled in a heat-sterilzation stage by being heated in a wet autoclave, is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多孔性再生セルロース中空糸モジュールに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to porous regenerated cellulose hollow fiber modules.

本発明における「多孔性中空糸」とは水流速平均孔径が
10〜11000nである中空糸をいう。
The "porous hollow fiber" in the present invention refers to a hollow fiber having a water flow rate average pore diameter of 10 to 11,000 nm.

本発明で得られた多孔性再生中空糸モジュールは、水を
含む液体又は気体混合物中の目的とする成分の分離除去
、および濃縮に有用である。又蛋白質や電解質を溶解す
る水溶液中に分散したウィルスあるいはリケッチア、ク
ラミジア、マイコプラズマ等を含めた細菌の除去、ある
いは微生物粒子を含む水溶液より蛋白質を分離濃縮する
目的に利用出来る。
The porous regenerated hollow fiber module obtained in the present invention is useful for separating and removing target components in liquid or gas mixtures containing water, and for concentrating them. It can also be used to remove viruses or bacteria including rickettsia, chlamydia, mycoplasma, etc. dispersed in an aqueous solution that dissolves proteins and electrolytes, or to separate and concentrate proteins from an aqueous solution containing microbial particles.

(従来の技術) 物質の分mu製技術の中で、イオン、低分子物質あるい
は液相中での濁質や微粒子などミクロンオーダーの物質
を分離する手段としての膜分離技術の研究が盛んに行な
われている。この種の技術の経済的規模による実用化を
阻む最大の問題としては、物質分離速度が小さいことが
あげられる。
(Prior technology) Among the technologies for separating substances, research has been actively conducted on membrane separation technology as a means of separating micron-order substances such as ions, low-molecular substances, and suspended solids and fine particles in the liquid phase. It is. The biggest problem preventing commercialization of this type of technology on an economic scale is the low rate of material separation.

物質分離速度は膜面積に依存するため、処理物質量が増
大するに従って膜面積を増大せねばならず通常使用され
る平面膜では必然的に装置が大型化する。この様な問題
は極めて細い中空糸でその中空部を囲む繊維壁を分離膜
として物質分離を行なわせ、この中空糸を多数本束ねて
物質分離部分を形成することによって単位体積当りの分
ll!!膜の有効膜面積を増大させ、装置を小型化する
ことで解決される。将来膜分離システムが中心となる可
能性がある分野として、■低温で濃縮、特製、回収を必
要とする分野(食品、生物化学工業分野)、■無菌、無
塵を必要とする分野(医薬品および治療機関、電子工業
分野)、■微量な高価物質の濃縮回収<W予力、重金属
分野)、■特殊少量分離分野(医薬分野)、■エネルギ
ー多消費分離分野(蒸留代替)などが考えられるが、こ
れらの分野に利用される膜として、孔径の大きな取扱い
の容易な親水性の膜の必要性が高まっている。
Since the substance separation rate depends on the membrane area, as the amount of substances to be treated increases, the membrane area must be increased, and with the normally used flat membrane, the size of the apparatus inevitably increases. This problem can be solved by separating substances using extremely thin hollow fibers, using the fiber wall surrounding the hollow part as a separation membrane, and by bundling a large number of these hollow fibers to form a substance separation part. ! This problem can be solved by increasing the effective membrane area of the membrane and downsizing the device. Fields in which membrane separation systems may become central in the future include: ■ Fields that require concentration, special preparation, and recovery at low temperatures (food, biochemical industries), ■ Fields that require sterility and dust-free operation (pharmaceuticals and Possible applications include: (therapeutic institutions, electronic industry field), ■ Concentrated recovery of trace amounts of expensive substances <W preload, heavy metal field), ■ Special small quantity separation field (pharmaceutical field), ■ Energy-intensive separation field (alternative to distillation), etc. As membranes used in these fields, there is an increasing need for hydrophilic membranes with large pores that are easy to handle.

親水性の大きな素材として、再生セルロースがある。再
生セルロースは耐有機溶剤性および力学的性質に優れ、
また合成高分子と異なり生体に対する毒性も少ない。し
たがって、再生セルロースで構成された平均孔径の大き
な中空糸の出現が期待されていた。
Regenerated cellulose is a highly hydrophilic material. Regenerated cellulose has excellent organic solvent resistance and mechanical properties,
Also, unlike synthetic polymers, it is less toxic to living organisms. Therefore, the appearance of hollow fibers composed of regenerated cellulose and having a large average pore diameter was expected.

本発明者らは、先にセルロース銅アンモニア溶液を環状
紡出口より押し出し、凝固、再生、水洗する工程におい
て、外側環状紡出口より該紡糸原液を、該紡糸原液に対
して凝固性液体を中央部紡出口よりそれぞれ吐出させ、
かつ凝固前にミクロ相分離を生起させることにより全繊
緋長にわたって連続貫通した中空部を有する多孔性再生
セルロース中空糸を製造することに成功した。
The present inventors first extruded a cellulose copper ammonia solution from an annular spinning spout, and in the process of coagulating, regenerating, and washing with water, the spinning stock solution was introduced from an outer annular spinning spout, and a coagulable liquid was added to a central part of the spinning stock solution. Discharge each from the spinning port,
Furthermore, by causing microphase separation before coagulation, we succeeded in producing porous regenerated cellulose hollow fibers having hollow portions that continuously penetrated the entire length of the fibers.

(発明が解決しようとする問題点) この多孔性再生セルロース中空糸を濾過用モジュールに
セットするためには、まず該中空糸を乾燥し、しかる後
にウレタン樹脂系の接着剤を用いて、該中空糸の束をハ
ウジング内に固定しなければならない。成型された濾過
用モジュールは、所定の性能及び安全テストを経た後に
滅菌され出荷される。滅菌方法には、EOG滅菌、高圧
蒸気滅菌、γ線滅菌、フォルマリン滅菌等があるが、素
材の変質防止、滅菌剤の副作用発生等の観点から、再生
セルロースの場合には無菌水をモジュール内に充填した
状態で高圧蒸気滅菌するのが最も有利である。
(Problems to be Solved by the Invention) In order to set this porous regenerated cellulose hollow fiber in a filtration module, first dry the hollow fiber, then use a urethane resin adhesive to The thread bundle must be secured within the housing. The molded filtration module is sterilized and shipped after passing through predetermined performance and safety tests. Sterilization methods include EOG sterilization, high-pressure steam sterilization, γ-ray sterilization, formalin sterilization, etc. However, in the case of regenerated cellulose, sterile water is not used inside the module from the viewpoint of preventing material deterioration and side effects of sterilants. It is most advantageous to autoclave the product in a state where it is filled with water.

ところが乾燥した状態で接着剤によりハウジング内に固
定されたセルロース中空糸膜は水にて浸漬され、更にウ
ェットオートクレーブにて加熱される過程において膨潤
し、その体積を大きく拡大する。接着剤にて外周部をハ
ウジング内に固定された該膜体が膨首して増加した体積
の一部は、中空部へ向う事が考えられ、結果として中空
部分が縮小し又は閉塞する場合がある。
However, a cellulose hollow fiber membrane fixed in a housing with an adhesive in a dry state swells during the process of being immersed in water and then heated in a wet autoclave, greatly expanding its volume. It is thought that part of the increased volume due to expansion of the membrane whose outer periphery is fixed in the housing with adhesive will move toward the hollow part, and as a result, the hollow part may shrink or become occluded. be.

中空糸膜の開口固定端部は被処理液の流通部又は濾液の
流通部であり、中空部分の縮小又は閉塞が発生すれば、
当然モジュールとしての濾過性能は大きく損なわれる。
The open fixed end of the hollow fiber membrane is a flow part for the liquid to be treated or a flow part for the filtrate, and if the hollow part shrinks or is blocked,
Naturally, the filtration performance as a module is greatly impaired.

殊に血漿の桟に種々の大きさの蛋白質を含有する液体に
おいて、その影響が著しい。
This effect is particularly noticeable in liquids containing proteins of various sizes in plasma.

以上の様に乾燥状態の多孔性再生セルロース中空糸膜を
束状に集束して、ポリウレタン等の接着剤にてハウジン
グに固定してモジュールを形成する際、中空糸膜と固定
部剤との関係を接着性のみに注目し、固定部剤の中に包
埋固定される中空糸膜の分散性に特別の配慮をせずに成
型を行なうと、ウェットオートクレーブ滅菌工程におけ
る中空糸膜の水による膨潤によってひき起こさゎる体積
の増加によって、中空糸束の一部の中空部分が縮小又は
閉塞し、モジュールとしての濾過性能が大きく低下して
いた。
As described above, when a module is formed by bundling dry porous regenerated cellulose hollow fiber membranes and fixing them to a housing with an adhesive such as polyurethane, the relationship between the hollow fiber membranes and the fixing agent is If the hollow fiber membrane is molded by focusing only on adhesive properties and without paying special consideration to the dispersibility of the hollow fiber membrane that is embedded and fixed in the fixing agent, the hollow fiber membrane will swell with water during the wet autoclave sterilization process. Due to the increase in volume caused by this, some of the hollow portions of the hollow fiber bundle were shrunk or blocked, and the filtration performance of the module was greatly reduced.

(問題点を解決するための手段) そこで本発明者らは、固定部剤に包埋された多孔性再生
セルロース中空糸膜の分散性と中空部の縮小又は閉塞と
の関係に着目し、鋭意検討の結果、固定部剤中に存在す
る該中空糸膜の次式(1)で表わされる分散度を2.5
以上とすることによって、従来の様な中空部の縮小又は
閉塞が実質的に発生せず、濾過性能の優れたセルロース
徴多孔中空糸膜モジュールが得られることを見い出し、
本発明をなしたものである。
(Means for Solving the Problems) Therefore, the present inventors focused on the relationship between the dispersibility of the porous regenerated cellulose hollow fiber membrane embedded in the fixing agent and the reduction or occlusion of the hollow part, and As a result of the study, the degree of dispersion of the hollow fiber membrane present in the fixing agent expressed by the following formula (1) was determined to be 2.5.
It has been found that by doing the above, it is possible to obtain a cellulose-featured hollow fiber membrane module with excellent filtration performance without substantially causing shrinkage or blockage of the hollow portions as in the past,
This invention has been made.

分散度=               (1)π(%
D、)2xn 式(1)において S:ウレタン端面における中空糸束の占める面積(Cm
2)(中空糸束を包絡する円の面積)D。=中空糸の外
径(cm) n:中空糸の本数 中空糸膜の水による膨潤で中空部の縮小又は閉塞が発生
する現象が、分散度の向上によって無くなる理由は以下
のごとくと考えられる。
Dispersity = (1) π (%
D, )2xn In formula (1), S: Area occupied by the hollow fiber bundle on the urethane end face (Cm
2) (Area of the circle surrounding the hollow fiber bundle)D. = Outer diameter of hollow fiber (cm) n: Number of hollow fibers The reason why the phenomenon of shrinkage or blockage of the hollow portion due to swelling of the hollow fiber membrane with water is eliminated by improving the degree of dispersion is thought to be as follows.

即ち、セルロース中空糸が膨潤により体積を拡張する際
、その直近に他の中空糸が存在しない場合は、体積拡大
の力は円周方向に均等に分散吸収され、中空糸膜は変形
することはない。
In other words, when a cellulose hollow fiber expands in volume due to swelling, if there are no other hollow fibers in its immediate vicinity, the volume expansion force is evenly distributed and absorbed in the circumferential direction, and the hollow fiber membrane does not deform. do not have.

しかしながら直近に他の中空糸が存在したがいに囲い合
っている場合は、膨潤の力の分散が不能となり中空部へ
の変形となって表われ、縮小から閉塞へとつながる。こ
のことはポリウレタン固定部剤に包埋された中空糸束の
外縁部の中空糸は閉塞を起こさないことからも理解され
る。
However, if there are other hollow fibers in the immediate vicinity, it becomes impossible to disperse the swelling force, resulting in deformation of the hollow part, which leads to shrinkage and occlusion. This can be understood from the fact that the hollow fibers at the outer edge of the hollow fiber bundle embedded in the polyurethane fixing agent do not become clogged.

又、中空糸の閉塞が発生すれば濾過能力が当然低下する
ことは理解出来る。本発明を実施例によって説明するに
先立ち、本明細書中に用いられる技術用語(物性値)の
定義とその測定方法を以下に示す。
It is also understandable that if the hollow fibers become clogged, the filtration capacity will naturally decrease. Before explaining the present invention with examples, definitions of technical terms (physical property values) used in this specification and methods for measuring them are shown below.

(水流速平均孔径) 銅アンモニア法再生セルロースから成る多孔性中空繊維
のモジュールを作成し、そのモジュール状態で、中空繊
維の水の流出量を測定し、式(2)から水流速平均孔径
を求めた。
(Water flow rate average pore diameter) A porous hollow fiber module made of cellulose regenerated by the cuprammonium method was created, and in the module state, the amount of water flowing out of the hollow fiber was measured, and the water flow rate average pore diameter was determined from equation (2). Ta.

■(流出量(mu/m1n) T:I15に厚 (μm) △P:圧力差(mmHg) A:膜面積(m2) Prp:空孔率(−) μ:水の粘度(cp) 空孔率Prpは水膨潤時の見掛密度ρaw、ポリマーの
密度ppより式(3)で求めた。
■(Outflow amount (mu/m1n) T: Thickness at I15 (μm) △P: Pressure difference (mmHg) A: Membrane area (m2) Prp: Porosity (-) μ: Water viscosity (cp) Porosity The ratio Prp was determined by equation (3) from the apparent density ρaw when swollen with water and the density pp of the polymer.

セルロースの場合ρ、、=1561を用いた。In the case of cellulose, ρ, , = 1561 was used.

Prp(%)=(1−ρaw/ρp)X100    
 (3)(実施例) 以下実施例により本発明を更に詳細に説明する。
Prp (%) = (1-ρaw/ρp)X100
(3) (Example) The present invention will be explained in more detail with reference to Examples below.

実施例 銅アンモニア法多孔性再生セルロース中空糸膜(内径2
50μm、IIiQ25um、II!2体の水流速平均
孔径30nm、長さ100mm)500本を束とし、二
液混合型エポキシ樹脂で両端開口部を各々5mm目止め
処理した。その際、束の径を8mm、10mm、11m
m、12mm、14mmとし、分散度を表1の様に変化
させた。
Example Cuprammonium method Porous regenerated cellulose hollow fiber membrane (inner diameter 2
50μm, IIiQ25um, II! A bundle of 500 pieces (water flow velocity average pore diameter of 30 nm, length 100 mm) was treated with a two-component mixed epoxy resin to seal the openings at both ends to 5 mm each. At that time, the diameter of the bundle is 8mm, 10mm, 11m.
m, 12 mm, and 14 mm, and the degree of dispersion was changed as shown in Table 1.

目止め処理をした束をハウジングにおさめ、遠心成型法
にてポリウレタン樹脂(日本ポリウレタン社製MDI系
)で包埋固定した。ハウジング両端部の目止めされた中
空糸膜を開口するために、ウレタン樹脂部の1部をカッ
ターで切断した。ハウジングの両端部にシリコンゴム系
0リングを備えたヘッダーを取りつけモジュールを形成
した。
The sealed bundle was placed in a housing and embedded and fixed in polyurethane resin (MDI series manufactured by Nippon Polyurethane Co., Ltd.) using a centrifugal molding method. In order to open the sealed hollow fiber membranes at both ends of the housing, a portion of the urethane resin portion was cut with a cutter. Headers with silicone rubber O-rings were attached to both ends of the housing to form a module.

モジュール内の中空糸を超純水にて洗浄した後、超純水
を充填したまま、滅菌袋に収納し、オートクレーブにて
、120℃、20分間加熱滅菌処理を行なった。
After washing the hollow fibers inside the module with ultrapure water, the module was placed in a sterilization bag while still being filled with ultrapure water, and heat sterilized in an autoclave at 120° C. for 20 minutes.

以上の操作後モジュールのヘッダーを解体し、ハウジン
グ両端部のウレタンカット面の中空糸膜を顕微鏡にて6
0倍に拡大し観察した。中空糸膜の中空部の縮小したも
の及び閉塞したものの、比率を表1に示した。更に各々
のモジュールの濾過性能を下記の条件にて測定評価した
After the above operations, disassemble the module header and examine the hollow fiber membranes on the urethane cut surfaces at both ends of the housing using a microscope.
Observation was made with 0x magnification. Table 1 shows the ratio of the hollow fiber membranes whose hollow portions were reduced and those whose hollow portions were occluded. Furthermore, the filtration performance of each module was measured and evaluated under the following conditions.

37℃に保持された恒温槽にモジュールをセットし、2
00nmmHHの圧力にて超純水の透過量を5分間測定
した。中空糸のデイメンジョンより膜面積を算出し、超
純水の透過量から、(m1/ゴ・Hr−mmHg)の値
に換算し濾過能力の指標とした。各サンプルは1条件に
対してn=10にて実施した。この測定値も合わせて表
1に示した。
Set the module in a constant temperature bath maintained at 37℃,
The amount of ultrapure water permeated was measured for 5 minutes at a pressure of 00 nmHH. The membrane area was calculated from the dimension of the hollow fibers, and from the amount of ultrapure water permeated, it was converted into a value of (m1/G.Hr-mmHg), which was used as an index of filtration ability. Each sample was conducted with n=10 for one condition. These measured values are also shown in Table 1.

表1の結果により分散度2.5以上として作成されたモ
ジュールは、中空糸膜の変形が少なく、透水量として評
価される濾過性能も安定している。
According to the results in Table 1, modules created with a dispersity of 2.5 or higher have less deformation of the hollow fiber membranes and stable filtration performance evaluated as water permeability.

(本発明の効果) 以上の様に、固定部剤に包埋する中空糸膜の分散度を2
.5以上にすることによって得られた多孔性再生セルロ
ース中空糸膜モジュールは、中空部の縮小や閉塞の発生
も少なく、従って再生セルロースの持つ濾過特性を充分
に発揮させ得る中空糸分離膜モジュールを提供すること
が出来る。
(Effects of the present invention) As described above, the degree of dispersion of the hollow fiber membrane embedded in the fixing agent can be reduced to 2.
.. The porous regenerated cellulose hollow fiber membrane module obtained by increasing the porous regenerated cellulose to 5 or more has less shrinkage and blockage of the hollow portion, and therefore provides a hollow fiber separation membrane module that can fully exhibit the filtration properties of regenerated cellulose. You can.

Claims (1)

【特許請求の範囲】 セルロース銅アンモニア溶液から得られる多孔性再生セ
ルロース中空糸の両端をポリウレタン成型剤によりハウ
ジングに接着固定した後、ポリウレタン面を切断して該
中空糸の両端面をポリウレタン成型剤の端面に開口させ
たモジュールにおいて、次式(1)で示される分散度が
2.5以上であることを特徴とする多孔性再生セルロー
ス中空糸モジュール 分散度=S/[π(1/2D_0)^2×n](1)式
(1)において S:ポリウレタン端面における中空糸束の占める面積(
cm^2) (中空糸束を包絡する円の面積) D_0:中空糸の外径(cm) n:中空糸の本数
[Claims] After both ends of a porous regenerated cellulose hollow fiber obtained from a cellulose copper ammonia solution are adhesively fixed to a housing with a polyurethane molding agent, the polyurethane surface is cut and both end surfaces of the hollow fiber are coated with a polyurethane molding agent. A porous regenerated cellulose hollow fiber module characterized by having an open end face and a dispersity expressed by the following formula (1) of 2.5 or more. Dispersity=S/[π(1/2D_0)^ 2×n] (1) In formula (1), S: area occupied by the hollow fiber bundle on the polyurethane end face (
cm^2) (Area of the circle surrounding the hollow fiber bundle) D_0: Outer diameter of the hollow fiber (cm) n: Number of hollow fibers
JP7587388A 1988-03-31 1988-03-31 Hollow yarn module comprising porous regenerated cellulose Pending JPH01249106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7587388A JPH01249106A (en) 1988-03-31 1988-03-31 Hollow yarn module comprising porous regenerated cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7587388A JPH01249106A (en) 1988-03-31 1988-03-31 Hollow yarn module comprising porous regenerated cellulose

Publications (1)

Publication Number Publication Date
JPH01249106A true JPH01249106A (en) 1989-10-04

Family

ID=13588825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7587388A Pending JPH01249106A (en) 1988-03-31 1988-03-31 Hollow yarn module comprising porous regenerated cellulose

Country Status (1)

Country Link
JP (1) JPH01249106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104509A1 (en) * 2014-12-24 2016-06-30 Dic株式会社 Hollow-fiber degassing module and inkjet printer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104509A1 (en) * 2014-12-24 2016-06-30 Dic株式会社 Hollow-fiber degassing module and inkjet printer
CN106999799A (en) * 2014-12-24 2017-08-01 Dic株式会社 Doughnut degassing component and ink-jet printer
JPWO2016104509A1 (en) * 2014-12-24 2017-09-28 Dic株式会社 Hollow fiber degassing module and inkjet printer
US10328390B2 (en) 2014-12-24 2019-06-25 Dic Corporation Hollow-fiber degassing module and inkjet printer
CN106999799B (en) * 2014-12-24 2020-07-03 Dic株式会社 Hollow fiber degassing assembly and ink-jet printer

Similar Documents

Publication Publication Date Title
EP0100552B2 (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
CA1236956A (en) Porous cuprammonium cellulose fibre produced with annular orifice and central coagulating stream
CN109476786B (en) Copolymer, and separation membrane, medical device, and blood purifier using same
JPWO2002072248A1 (en) Microporous membrane and method for producing the same
TWI724159B (en) Porous fiber, adsorption material and purification column
KR20160065047A (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
EP1140334A1 (en) Polyvinylidene difluoride membranes and methods for making such membranes
JP2000296318A (en) Polysulfone-base blood treatment module
JP5644328B2 (en) Hollow fiber membrane module and method for producing hollow fiber membrane module
JPH01249106A (en) Hollow yarn module comprising porous regenerated cellulose
JPH10244000A (en) Hollow fiber membrane type body fluid purification device and its production
WO2000027447A1 (en) Blood purifying apparatus
JPH06228887A (en) Modified hollow fiber and its production
JPS6388007A (en) Virus free module
CN114213517B (en) Method for preparing controllable high-concentration silk fibroin solution by tangential flow ultrafiltration technology
JP2003268152A (en) Hydrophilic microporous film
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP6547518B2 (en) Hollow fiber membrane module and method for manufacturing the same
JPH05228345A (en) Preparation of membrane separation element
JPH06509746A (en) Hollow fiber for dialysis
JP7490867B1 (en) Hollow fiber membrane module
JP2967205B2 (en) Air trap with particulate filter