JPH01248926A - Malfunction diagnosing device gas insulated apparatus - Google Patents

Malfunction diagnosing device gas insulated apparatus

Info

Publication number
JPH01248926A
JPH01248926A JP63072069A JP7206988A JPH01248926A JP H01248926 A JPH01248926 A JP H01248926A JP 63072069 A JP63072069 A JP 63072069A JP 7206988 A JP7206988 A JP 7206988A JP H01248926 A JPH01248926 A JP H01248926A
Authority
JP
Japan
Prior art keywords
detector
partial discharge
gas
time
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63072069A
Other languages
Japanese (ja)
Other versions
JP2740179B2 (en
Inventor
Tokio Yamagiwa
山極 時生
Toshio Ishikawa
敏雄 石川
Shuzo Iwaasa
岩浅 修蔵
Atsushi Ozawa
小沢 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63072069A priority Critical patent/JP2740179B2/en
Publication of JPH01248926A publication Critical patent/JPH01248926A/en
Application granted granted Critical
Publication of JP2740179B2 publication Critical patent/JP2740179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To suitably and rapidly cope with a gas insulated apparatus by standardizing a discharge potential from various types of timing transfer pattern, the continuity of a partial discharge and the timing characteristic of a discharging charge amount. CONSTITUTION:Detector groups for obtaining timing transfer information including a partial discharge detector 5a are provided outside a sealed vessel 2. The groups has a partial discharge detector 5a, an acoustic detector 5b, a temperature detector 5c, a snowfall detector 20a, an earthquake detector 20b and a switch opening/closing operation detector 20c. These groups are connected to a diagnosing device 6 through A/D converters 10a-10c, 30a-30c. The device 6 standardizes the generating position of the partial discharge from the timing transfer pattern, the continuity of the partial discharge and the timing characteristic of the discharging charge amount to be judged on the basis of signals obtained from the detector groups.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガス絶縁機器の異常診断装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an abnormality diagnosis device for gas insulated equipment.

[従来の技術] 一般にガス絶縁機器は、I!縁性ガスを充填した密封容
器内に電気機器が構成されるため、電気機器の異常を密
封容器の外部から診断する異常診断装置が設けられる。
[Prior Art] Generally, gas insulated equipment is manufactured by I! Since the electrical equipment is configured in a sealed container filled with a gaseous gas, an abnormality diagnosis device is provided to diagnose abnormalities in the electrical equipment from outside the sealed container.

従来の異常診断装置は、特開昭55−32476号公報
および特開昭55−32477号公報に記載のように潜
在的劣化時間特性を検出する複数のセンサを用いて診断
精度を向上させたり、また特開昭59−10125号公
報に記載のように2種類の信号の相関関係を調べること
によって内部異常と外部ノイズとを区別して診断精度を
向上させていた。
Conventional abnormality diagnosis devices improve diagnostic accuracy by using a plurality of sensors that detect potential deterioration time characteristics, as described in Japanese Patent Application Laid-Open No. 55-32476 and No. 55-32477, Further, as described in Japanese Patent Application Laid-open No. 10125/1983, diagnostic accuracy was improved by distinguishing between internal abnormalities and external noise by examining the correlation between two types of signals.

[発明が解決しようとする課題] 従来の異常診断装置は上述の如く診断精度を向上させて
、その検出値の大きさから予防保全を行なおうとしてい
たが、予防保全において重要なのは異常の進展度合であ
り、これを検出値の大きさだけから判定するのは難しい
。この異常進展度合を知るには、異常発生部位の標定、
つまり異常発生部が絶縁物による絶縁保持部か、または
絶縁性ガスによる絶縁保持部なのかを把握し、それに応
じた対応をとらなければならない。
[Problems to be Solved by the Invention] Conventional abnormality diagnostic devices have attempted to improve diagnostic accuracy as described above and perform preventive maintenance based on the magnitude of the detected value, but what is important in preventive maintenance is the progression of an abnormality. It is difficult to judge this only from the magnitude of the detected value. To know the extent of this abnormality, it is necessary to locate the abnormality location,
In other words, it is necessary to determine whether the abnormality is occurring in an insulating part made of an insulating material or an insulating part made of an insulating gas, and take appropriate measures accordingly.

本発明はこの点に鑑みなされたもので、その目的とする
ところは、異常発生部を標定することができるガス絶縁
機器の異常診断装置を提供するにある。
The present invention has been made in view of this point, and its object is to provide an abnormality diagnosis device for gas-insulated equipment that can locate the abnormality occurrence part.

[課題を解決するための手段] 本発明は上記目的を達成するために、部分放電検出器を
含み部分放電に至る時間的推移情報を得る検出器群と、
上記部分放電検出器によって部分放電を検出したとき、
それ以前の上記検出器群から得た信号に基づいて判断す
る時間的推移パターン、上記部分放電の継続性および放
電電荷量の時間特性とから部分放電の発生部位を標定す
る診断装置とから、ガス絶縁機器の異常診断装置を構成
したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a group of detectors that includes a partial discharge detector and obtains information on the time course leading to partial discharge;
When partial discharge is detected by the above partial discharge detector,
A diagnostic device that locates the location of partial discharge based on the temporal transition pattern determined based on the signals obtained from the previous detector group, the continuity of the partial discharge, and the temporal characteristics of the amount of discharged charge. The present invention is characterized by configuring an abnormality diagnosis device for insulation equipment.

[作用] 本発明によるガス絶縁機器の異常診断装置は上述の如き
構成であるから、生じ得る部分放電の時間的推移パター
ンが明確なので、検出器群による信号に基づいてどの時
間的推移パターンに該当するかを判断することにより、
部分放電発生の部位を知ることができ、しかも、導電性
異物発生時の部分放電発生部位の標定のために、部分放
電の継続性を用いているので、導体あるいは絶縁物への
付着と低電界部へのトラップを区別することができ、更
に族ffl電荷量の減衰特性を用いているので、導体と
絶縁物への付着を区別して標定することができる。従っ
て標定した部位から必要な対策を容易かつ迅速に講じる
ことができる。
[Function] Since the abnormality diagnosis device for gas insulated equipment according to the present invention has the above-described configuration, the temporal transition pattern of possible partial discharges is clear, so it is possible to determine which temporal transition pattern the partial discharge corresponds to based on the signals from the detector group. By determining whether
It is possible to determine the location of partial discharge occurrence, and since the continuity of partial discharge is used to locate the location of partial discharge occurrence when a conductive foreign object occurs, it is possible to avoid adhesion to conductors or insulators and low electric fields. Furthermore, since the attenuation characteristic of the group ffl charge amount is used, adhesion to conductors and insulators can be distinguished and located. Therefore, necessary measures can be taken easily and quickly from the located area.

、[実施例] 以下本発明の一実施例を図面によって説明する。,[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図はガス絶縁機器であるガス絶縁母線1に適用した
異常診断装置を示している。
FIG. 1 shows an abnormality diagnosis device applied to a gas-insulated bus 1, which is a gas-insulated device.

SF、ガス等の絶縁性ガスを封入した密封容器2内には
、絶縁スペーサ4を介して通電用の導体3を支持固定し
ている。密封容器2の外側には、部分放電検出器5aを
含む時間的推移情報を得る検出器群が設けられ、この例
で検出器群は、部分放電検出器5aと、音響検出器5b
と、温度検出器5Cと、環境条件、例えば気象条件や天
変地異条件等から得られる降雪雨検出器20aと、地震
検出器20bと、開閉器用の開閉動作検出器2゜Cから
成る。これら検出器群は、それぞれA/D変換器10a
〜loc、30a〜30cを介して診断装置6に接続さ
れている。この診断装置6は上述の検出器群で得られた
信号を蓄える記憶装置53と、これらの信号値を評価す
るための比較データ51と、演算装置50および診断結
果の表示等を行なう出力装置54を備えている。ここで
部分放電検出器5aは接地線電流検出センサあるいは静
電結合センサ等を用いることができ、また音響検出器5
bとしては超音波マイクロホン(数十KHz)やAE(
アコースティック・エミッション)センサ(数百K H
z )や加速度センサ(数KHz )を用い、また開閉
動作検出器20cは開閉器への開閉動作指令となる電気
信号や動作検出器を用いることができる。
A current-carrying conductor 3 is supported and fixed through an insulating spacer 4 in a sealed container 2 filled with an insulating gas such as SF or gas. A group of detectors for obtaining temporal transition information including a partial discharge detector 5a is provided outside the sealed container 2. In this example, the group of detectors includes a partial discharge detector 5a and an acoustic detector 5b.
, a temperature detector 5C, a snowfall/rain detector 20a obtained from environmental conditions such as weather conditions and natural disaster conditions, an earthquake detector 20b, and an opening/closing operation detector 2°C for a switch. These detector groups each have an A/D converter 10a.
~loc, and are connected to the diagnostic device 6 via 30a to 30c. This diagnostic device 6 includes a storage device 53 for storing signals obtained by the above-mentioned detector group, comparison data 51 for evaluating these signal values, an arithmetic device 50, and an output device 54 for displaying diagnostic results, etc. It is equipped with Here, the partial discharge detector 5a can be a ground wire current detection sensor, a capacitive coupling sensor, etc.
For b, there are ultrasonic microphones (several tens of KHz) and AE (
acoustic emission) sensor (several hundred KH
z) or an acceleration sensor (several KHz), and as the opening/closing operation detector 20c, an electric signal or an operation detector that issues an opening/closing operation command to the switch can be used.

次に、検出器群を用いる理由を第7図および第8図を用
いて説明する。
Next, the reason for using the detector group will be explained using FIGS. 7 and 8.

第7図および第8図は、ガス絶縁機器における部分放電
発生の可能性がある部分の代表例であり、前者はガス絶
縁母線、後者はガス絶縁断路器を示している。
FIGS. 7 and 8 are representative examples of parts in gas-insulated equipment where partial discharge may occur, with the former showing a gas-insulated bus bar and the latter showing a gas-insulated disconnect switch.

第7図に示すガス絶縁母線は、内部に絶縁性ガスを封入
した密封容器2内に、絶縁スペーサ4等の絶縁物によっ
て導体3を支持して構成されている。絶縁スペーサ4は
両側の密封容器2のフランジ8間に介在され、これら間
が締付ボルト9によって接続されている。
The gas insulated bus shown in FIG. 7 is constructed by supporting a conductor 3 with an insulator such as an insulating spacer 4 in a sealed container 2 filled with an insulating gas. The insulating spacer 4 is interposed between the flanges 8 of the sealed container 2 on both sides, and these are connected by a tightening bolt 9.

このガス絶縁母線が実際に電力機器として使用される前
に1部分放電を引き起こす種々の原因のほとんどは既に
除去されており、過去の統計によれば運転中の部分放電
異常は、何等かの原因で導電性異物41〜43が飛び出
してきた場合と、絶縁スペーサ4中にクラック45.4
6が発生した場合であることが分かった。そして、M4
1スペーサ4におけるクラック45.46の発生要因は
、製造の際に発生したクラックは検出されてその絶縁ス
ペーサは除去されているから、フランジ8と絶縁スペー
サ4間の接合部に侵入した水分が氷結して局部応力が集
中したためか、あるいは地震等の予期せぬ振動が加えら
れたかのいずれかである。
Most of the various causes of partial discharges have already been eliminated before this gas-insulated bus bar is actually used as power equipment, and past statistics indicate that partial discharge abnormalities during operation are caused by some cause. When conductive foreign objects 41 to 43 pop out, and cracks 45.4 occur in the insulating spacer 4.
It turns out that this is the case when 6 occurs. And M4
The reason for the occurrence of cracks 45 and 46 in the spacer 4 is that the cracks that occurred during manufacturing were detected and the insulating spacer was removed, so moisture that entered the joint between the flange 8 and the insulating spacer 4 froze. This may be due to localized stress concentration, or unexpected vibrations such as an earthquake were applied.

一方、導電性異物41〜43の発生要因は、地震等の振
動によって導体内や電界緩和用シールド内に残存してい
たものが飛び出してきたためである。
On the other hand, the cause of the occurrence of the conductive foreign matter 41 to 43 is that what remained inside the conductor or inside the electric field mitigation shield flew out due to vibrations such as an earthquake.

また第8図に示すガス絶縁断路器は、内部に絶縁性ガス
を封入した密封容器2内に、対向配置した固定側導体6
1と可導側導体62間を可動子60によって橋絡し、絶
縁操作棒65を介して操作器63により可動子60を駆
動することにより開閉操作するように構成されている。
Furthermore, the gas insulated disconnect switch shown in FIG.
1 and the conductive side conductor 62 by a movable element 60, and the movable element 60 is driven by an operating device 63 via an insulated operating rod 65 to perform opening/closing operations.

このガス絶縁断路器においても実際に電力機器として使
用される前の各種試験および検査によって、部分放電を
引き起こす種々の原因のほとんどが既に除去されており
、過去の統計によれば運転中の部分放電異常は、振動に
よって導電性異物71が飛び出してきた場合と、絶縁操
作棒65にクラック70が発生した場合であることが分
かった。
Even in this gas-insulated disconnect switch, most of the various causes of partial discharge have already been eliminated through various tests and inspections before it is actually used as power equipment, and past statistics indicate that partial discharge during operation It has been found that abnormalities occur when a conductive foreign object 71 pops out due to vibration and when a crack 70 occurs in the insulated operating rod 65.

そしてガス絶縁断路器等の開閉器における絶縁操作棒7
0でのクラック発生は、開閉操作に伴うものであり、ま
た導電性異物71の発生は開閉操作時や地震によって残
存していたものが飛び出してきたためである。
And an insulated operating rod 7 in a switch such as a gas insulated disconnector
The occurrence of cracks at 0 is due to the opening/closing operation, and the occurrence of the conductive foreign matter 71 is due to the remaining foreign matter being thrown out during the opening/closing operation or due to an earthquake.

これらの部分放電発生部位と要因をまとめたのが第6図
である。
FIG. 6 summarizes the locations and causes of these partial discharges.

同図に一点鎖線で囲んだ部分が要因と部位を表わしてお
り、先ず第6図の絶縁スペーサ4のクラック45.46
の発生に基づく部分放電は、先ず部分放電検出器5aに
よって検出されるが、その発生要因は降雪雨検出器20
aによる水分の存在の有無と、その後の氷結を生じさせ
る低温の発生を検出する温度検出器5cとによって、あ
るいは地震検出器20bのみによって標定することがで
きる。つまり時間的推移パターンの一例を示す第2図の
時刻t4で部分放電検出器5aが部分放電を検出し、し
かもそれより前の時間的推移情報は同図の如くで時刻t
1に降雪・雨検出器20aが水分を検出し、その後、時
刻t2で温度検出器5cが氷点下に達しているなら、こ
れは氷結による局部応力集中によって絶縁スペーサ4に
クラック45゜46が発生したことが分かる。つまり第
6図の(a)は第2図の時間的推移パターンによって把
握できる。一方、第4図のように時刻t、で部分放電検
出器5aで放電を検出したものの、それより所定時間以
前に音響検出器5bによる検出がなく時刻t工で地震検
出器20bが振動を検出している場合は、地震により絶
縁スペーサ4へのクラックが発生したことが分かり、第
6図の(b)は第4図の時間的推移パターンによって把
握できる。
The part surrounded by a dashed line in the same figure represents the cause and location.
The partial discharge caused by the occurrence of is first detected by the partial discharge detector 5a, but the cause of its occurrence is the snowfall and rain detector 20.
The location can be determined by a temperature detector 5c that detects the presence of moisture by a and the occurrence of low temperatures that cause subsequent freezing, or by only an earthquake detector 20b. In other words, the partial discharge detector 5a detects a partial discharge at time t4 in FIG. 2, which shows an example of a temporal transition pattern, and the temporal transition information before that is as shown in the same figure.
If the snowfall/rain detector 20a detects moisture at time t2, and then the temperature detector 5c reaches below freezing at time t2, this means that cracks 45°46 have occurred in the insulating spacer 4 due to localized stress concentration due to freezing. I understand that. In other words, (a) in FIG. 6 can be understood from the temporal transition pattern in FIG. On the other hand, as shown in FIG. 4, although the partial discharge detector 5a detected a discharge at time t, there was no detection by the acoustic detector 5b before a predetermined time, and the earthquake detector 20b detected vibration at time t. If so, it is understood that a crack has occurred in the insulating spacer 4 due to the earthquake, and (b) in FIG. 6 can be understood from the temporal transition pattern in FIG. 4.

またガス絶縁母線での導電性異物41の発生は、導電性
異物41の浮上と降下の繰返し動作によって発生する異
音を検出する音響検出器5bと、地震検出器20bとか
ら標定できる。つまり第3図の如く時刻t3で部分放電
検出器5aで部分放電が検出され、しかもそれより前の
時間的推移情報が図示の如くであった場合、部分放電前
の時刻t工で地震検出器20bが振動を検出し、その後
の時刻t2で音響検出器5bが異音を検出しているから
、地震によって導電性異物41が飛び出してきたことが
分かり、第6図の(c)は第3図の時間的推移パターン
によって把握できる。
Further, the occurrence of conductive foreign matter 41 on the gas-insulated bus bar can be determined from the acoustic detector 5b and the earthquake detector 20b, which detect abnormal noises generated by the repeated lifting and lowering operations of the conductive foreign matter 41. In other words, if a partial discharge is detected by the partial discharge detector 5a at time t3 as shown in Figure 3, and the temporal transition information before that is as shown in the figure, the earthquake detector 5a detects the 20b detects the vibration, and the acoustic detector 5b detects an abnormal sound at time t2, which indicates that the conductive foreign object 41 was thrown out by the earthquake, and (c) in FIG. This can be understood from the temporal transition pattern in the figure.

更に第8図に示す導電性異物71の発生は、地震検出器
20bあるいは開閉動作検出器20cと、音響検出器5
bとによって標定できる。つまり先のガス絶縁母線の場
合と同様、第3図の如く時刻t、の部分放電よりも前の
時刻t1で開閉動作検出器20cあるいは地震検出器2
0bが振動を検出し、その後の時刻t2で音響検出器5
bが異音を検出しているなら、ガス絶縁断路器で振動に
よる導電性異物71の飛び出しがあったことが分かり、
第6図の(d)は振動を検出する検出器を除いて考える
と第3図の時間的推移パターンによって把握できる。ま
た絶縁操作捧65のクラック70の発生は、開閉動作検
出器20cによって標定できる。
Furthermore, the occurrence of conductive foreign matter 71 shown in FIG.
It can be located by b. In other words, as in the case of the gas-insulated bus bar, as shown in FIG. 3, the switching operation detector 20c or the earthquake detector 2
0b detects the vibration, and at the subsequent time t2, the acoustic detector 5
If b detects an abnormal noise, it means that a conductive foreign object 71 has been ejected due to vibration in the gas insulated disconnect switch.
(d) in FIG. 6 can be understood from the temporal transition pattern in FIG. 3 if the detector for detecting vibrations is excluded. Further, the occurrence of a crack 70 in the insulation operation piece 65 can be determined by the opening/closing operation detector 20c.

つまり第4図に兼用して示すように、時刻t3で部分放
電検出器5aで部分放電が検出される前に、音響検出器
5bでの検出がなく開閉動作検出器20Cで開閉動作が
時刻t、で検出されているなら・開閉操作によって絶縁
操作捧65にクラック70が発生したことが分かる。従
って、第6図の(e)は振動を検出する検出器を除いて
考えると第4図の時間的推移パターンによって把握でき
る。
In other words, as also shown in FIG. 4, before the partial discharge is detected by the partial discharge detector 5a at time t3, there is no detection by the acoustic detector 5b and the opening/closing operation is detected by the opening/closing operation detector 20C at time t. , it can be seen that a crack 70 has occurred in the insulation operation shaft 65 due to the opening/closing operation. Therefore, (e) in FIG. 6 can be understood from the temporal transition pattern in FIG. 4 if the detector for detecting vibrations is excluded.

尚、第6図の(c)、(d)においては、そめ発生部位
、つまり導電性異物が絶縁物に付着したのか、導体に付
着したのか、低電界部にトラップされたのか判別できな
い。そこで、この判別のために第5図に示す放電電荷量
Qの推移特性図を用いる。つまり発生した導電性異物4
1.71は密封容器2内を浮遊するが、最終的には絶縁
的に問題とならない低電界部にトラップされて1部分放
電検出器5aおよび音響検出器5bによる検出がなくな
る場合と、第7図の導電性異物42のように導体3に付
着したり導電性異物43のように絶縁スペーサ4に付着
した場合とに分けて考えることができる。前者と後者は
部分放電の継続性によって判別することができ、また後
者の場合、つまり部分放電が継続する場合、導体3に付
着したときの放電電荷量Qは特性曲線lの如く時間が経
過しても推移の変化はほとんど見られないのに対し、絶
縁スペーサ4等の絶縁物に付着したときの放電電荷量Q
は特性曲線■の如く時間の経過と共に減衰する。従って
、後者の場合、放電電荷量Qの時間変化を考慮して1部
分放電検出器5aによる部分放電を検出した後、放電電
荷量のΔしにおける変化量を見ることにより、導電性異
物の付着位置。
In FIGS. 6(c) and 6(d), it is not possible to determine where the condensation occurs, that is, whether the conductive foreign matter is attached to an insulator, a conductor, or trapped in a low electric field area. Therefore, for this determination, a transition characteristic diagram of the amount of discharged charge Q shown in FIG. 5 is used. In other words, the generated conductive foreign matter 4
1.71 floats in the sealed container 2, but is eventually trapped in a low electric field part that does not pose a problem in terms of insulation and is no longer detected by the partial discharge detector 5a and the acoustic detector 5b; It is possible to consider cases in which the foreign matter adheres to the conductor 3 like the conductive foreign matter 42 shown in the figure, and the case where the foreign matter adheres to the insulating spacer 4 like the conductive foreign matter 43 shown in the figure. The former and the latter can be distinguished by the continuity of the partial discharge, and in the latter case, that is, when the partial discharge continues, the amount of discharged charge Q when attached to the conductor 3 changes over time as shown by the characteristic curve l. However, the amount of discharged charge Q when attached to an insulating material such as the insulating spacer 4
decreases over time as shown by the characteristic curve (2). Therefore, in the latter case, after detecting the partial discharge by the first partial discharge detector 5a in consideration of the time change in the amount of discharged charge Q, by looking at the amount of change in the amount of discharged charge Q, it is possible to detect the adhesion of conductive foreign matter. position.

つまり部分放電の発生部位を標定することができる。In other words, it is possible to locate the location where partial discharge occurs.

上述の説明から分かるように、ガス絶縁機器で現実に生
じ得る部分放電は、第2図〜第4図中に一部を兼用して
示す5通りの時間的推移パターンと、部分放電の継続性
と、第5図に示す放′!!電荷量の時間的推移特性とを
用いて、発生要因と発生部位とを標定することができる
As can be seen from the above explanation, partial discharges that can actually occur in gas-insulated equipment have five temporal transition patterns, some of which are shown in Figures 2 to 4, and the continuity of partial discharges. And the release '! shown in Figure 5! ! The cause of the occurrence and the location of the occurrence can be located using the temporal change characteristics of the amount of charge.

第9図は第1図の診断装置の詳細を示すもので、第10
図のフローチャートと共に説明する。
Fig. 9 shows details of the diagnostic device shown in Fig. 1;
This will be explained with reference to the flowchart in the figure.

検出器群によって検出された信号は、第10図の工程8
0の如く、ある設定レベルよりも大きいか否かを判別す
る比較器15a〜15c、35a〜35Cをそれぞれ通
して第1メモリ16a〜16c、36a〜36cに一旦
蓄える。補助演算装置91は工程81の如く、比較器の
設定レベルよりも大きな信号が入力された場合、その第
1メモリの内容を第2メモリ92へ転送する。第1メモ
リの内容が第2メモリ92へ転送されると、第10図の
工程82の如く第2メモリ92は任意の時刻t、とその
時の信号の大きさQ5を記憶する。一方、部分放電検出
器5aの検出信号が比較器15aの設定値より大きな場
合、すなわち部分放電が生じたことを工程83で検出し
た場合、比較器15aに接続されたコントローラ17に
より主演算装置93が起動する。次に第10図の工程8
4の如く前にも部分放電があったか否かを判定し、例え
ば、今初めて部分放電検出器5aが部分放電を検出した
とすると、詳細を第12図に示す異常診断プログラムB
を開始する。
The signal detected by the detector group is processed in step 8 of FIG.
The signals are temporarily stored in first memories 16a to 16c and 36a to 36c through comparators 15a to 15c and 35a to 35C, respectively, which determine whether or not the value is greater than a certain set level, such as 0. The auxiliary processing unit 91 transfers the contents of the first memory to the second memory 92 when a signal larger than the set level of the comparator is input as in step 81 . When the contents of the first memory are transferred to the second memory 92, the second memory 92 stores an arbitrary time t and the signal magnitude Q5 at that time, as shown in step 82 of FIG. On the other hand, if the detection signal of the partial discharge detector 5a is larger than the set value of the comparator 15a, that is, if it is detected in step 83 that a partial discharge has occurred, the controller 17 connected to the comparator 15a starts. Next, step 8 in Figure 10
For example, if the partial discharge detector 5a detects a partial discharge for the first time, the abnormality diagnosis program B whose details are shown in FIG.
Start.

この第12図は前述した第6図の一部をフローチャート
にしたもので、検出器群の信号の組合わせによって部分
放電の発生要因を標定し、その結果を第9図の出力装置
54で表示するようにしている。この第12図の表示内
容85,86,87には部位が含まれていないが、第6
図の如く部位も同時に表示させたり、各検出器の設置位
置と共に要因を表示させるなど種々の方法で出力表示を
行なうことができる。
This FIG. 12 is a flowchart of a part of the above-mentioned FIG. 6, in which the cause of partial discharge is located by the combination of the signals of the detector group, and the results are displayed on the output device 54 of FIG. I try to do that. Although the display contents 85, 86, and 87 of this FIG. 12 do not include parts,
The output can be displayed in various ways, such as displaying the location at the same time as shown in the figure, or displaying the cause along with the installation position of each detector.

ところで第12図の異物発生86の表示においては、そ
の導電性異物がどこに定着したかが不明であり、その部
位の表示ができない。先にも述べたように導電性異物は
絶縁的に無害な低電界部に至る場合や絶縁に悪影響を与
える。11!!縁物に付着することもある。この部位の
標定は次のように行なう。
By the way, in the display of foreign matter occurrence 86 in FIG. 12, it is unclear where the conductive foreign matter has settled, and the location cannot be displayed. As mentioned above, conductive foreign matter may reach the low electric field area, which is harmless in terms of insulation, or may have an adverse effect on insulation. 11! ! It may also adhere to the edges. Orientation of this part is performed as follows.

つまり、第10図の異常診断プログラムBが終了すると
、再度第10図のフローに従い、また所定のサンプリン
グ時間に従って検出が行なわれ、部分放電が継続してい
ないなら導電性異物は低電界部に捕獲されたのであり、
一方1部分放電が継続していることを部分放電検出器5
aが検出するなら、第1O図の工程82で第2メモリ9
2に再検出による新たな時刻と信号の大きさがtttQ
tとして記憶され、先の時刻t2と信号の大きさQ、に
記憶されていた情報は時刻t、−0と信号の大きさQ、
−□にシフトされる。次いで、部分放電が部分放電検出
器5aによって検出されているなら、工程83を経て工
程84に進み、工程84では先に部分放電が検出されて
いたので、今度は異常診断プログラムAが主演算装置9
3によって始動される。このため、異常診断プログラム
Aの開始、あるいはこのプログラムAに基づいて後述す
る表示があるときは、導電性異物が発生した後、低電界
部に捕獲されたのではなく、第7図に示す如く導体3に
付着したか、あるいは絶縁スペーサ4に付着したかのい
ずれかである。
In other words, when the abnormality diagnosis program B shown in Fig. 10 is completed, detection is performed again according to the flow shown in Fig. 10 and according to the predetermined sampling time, and if the partial discharge does not continue, the conductive foreign matter is captured in the low electric field area. It was done,
On the other hand, partial discharge detector 5 detects that partial discharge continues.
a is detected, the second memory 9 is detected in step 82 of FIG.
2, the new time and signal size due to redetection are tttQ
t, and the information stored at the previous time t2 and signal magnitude Q is now stored at time t, -0 and signal magnitude Q,
− Shifted to □. Next, if a partial discharge has been detected by the partial discharge detector 5a, the process proceeds to step 84 via step 83, and since a partial discharge has been detected earlier in step 84, the abnormality diagnosis program A is executed by the main processing unit. 9
3. Therefore, when the abnormality diagnosis program A starts or when a display described below based on this program A appears, it is assumed that a conductive foreign object has not been captured in the low electric field area after it has been generated, but as shown in Figure 7. Either it was attached to the conductor 3 or it was attached to the insulating spacer 4.

異常診断プログラムAは第11図に示す通りで、第5図
の判定を行なう。つまり、第2メモリ92の時刻t5と
時刻t、−0の信号の大きさQ、とQ、、が工程90で
比較され、例えば第5図における時刻し2と時刻上〇の
放′trl電荷量の大きさが比較される。導体3に導電
性異物42が付着すると、特性曲線lの如くそのときの
QlとQll、とはほぼ等しいので、Qll。−Ql、
=ΔQ≧0となり、この例では「ガス空間放電」に依存
する部分に付着したことを表示する。一方、導電性異物
43が絶縁スペーサ4に付着していると、特性曲線■の
如<Q[、−Ql□=ΔQ<Oとなり、この例では。
The abnormality diagnosis program A is as shown in FIG. 11, and performs the determination shown in FIG. That is, the magnitudes Q, Q, of the signals at time t5 and time t, -0, in the second memory 92 are compared in step 90, and, for example, the released 'trl charges at time 2 and time 0 in FIG. The magnitude of the quantities is compared. When a conductive foreign substance 42 adheres to the conductor 3, Ql and Qll are almost equal as shown in the characteristic curve l, so Qll. -Ql,
=ΔQ≧0, and in this example, it is indicated that it has adhered to a portion dependent on “gas space discharge”. On the other hand, if the conductive foreign matter 43 is attached to the insulating spacer 4, the characteristic curve (2) becomes <Q[, -Ql□=ΔQ<O, in this example.

「沿面放電」に依存する部分に付着したことを表示する
Displays that it has adhered to areas that depend on "creeping discharge".

このようにして、要因と部位を第1図の出力装置54で
表示することができ、この表示に基づいて適切かつ迅速
な対応を講じることができる。尚、この出力装置54は
、比較器15a〜15c、35a〜35cの設定値を機
種や使用環境等に応じて変更するための入力装置を兼用
するのが望ましい。
In this way, the cause and location can be displayed on the output device 54 of FIG. 1, and appropriate and prompt measures can be taken based on this display. It is preferable that the output device 54 also serves as an input device for changing the set values of the comparators 15a-15c, 35a-35c depending on the model, usage environment, etc.

上記した実施例においては、第2図から第4図に示した
時間的推移パターンを判定するための時間的推移情報を
、第1図および第6図に示す検出器群によって得たが、
降雪雨検出器20aを湿度検出器に置換したりすること
ができるので1例示した検出器に限らないし、またそれ
に合わせて時間的推移パターンを変更することができる
In the above embodiment, the temporal transition information for determining the temporal transition patterns shown in FIGS. 2 to 4 was obtained by the detector groups shown in FIGS. 1 and 6.
Since the snowfall/rain detector 20a can be replaced with a humidity detector, the detector is not limited to the one example shown, and the temporal transition pattern can be changed accordingly.

[発明の効果] 以上説明したように本発明は、予め決定した時間的推移
パターンを識別するために各種の時間的推移情報を得る
検出器群を設け、この検出器群の信号に基づいて判定し
た時間的推移パターンと。
[Effects of the Invention] As explained above, the present invention provides a group of detectors that obtain various temporal transition information in order to identify a predetermined temporal transition pattern, and makes a determination based on the signals of this group of detectors. and the temporal transition pattern.

部分放電の継続性と、放電電荷量の時間特性とから部位
を標定する診断装置を設けたため、この標定した部位に
基づいて、適切で、かつ迅速な対応を講じることができ
、ガス絶縁機器の信頼性を向上することができる。
Since we have installed a diagnostic device that locates the site based on the continuity of partial discharge and the time characteristics of the amount of discharge charge, it is possible to take appropriate and prompt measures based on this located site, and it is possible to improve the performance of gas-insulated equipment. Reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるガス絶縁機器の異常診
断装置の概略構成図、第2図、第3図および第4図はそ
れぞれ異なる部分放電の時間的推移パターン図、第5図
は放電電荷量の時間特性図、第6図は部分放電に至る時
間的推移情報を得る検出器群の組合わせ図、第7図およ
び第8図は部分放電要因と部位を示すガス絶縁母線およ
びガス絶縁断路器の断面図、第9図は第1図の診断装置
の詳細を示すブロック図、第10図、第11図および第
12図は診断装置のプログラムを示すフローチャートで
ある。 5a・・・部分放電検出器、5b・・・音響検出器、5
c・・・温度検出器、6・・・診断装置、20a・・・
降雪雨検出器、20b・・・地震検出器、20c・・・
開閉動作検出器、50・・・演算装置、51・・・比較
データ、53・・・記憶装置、54・・・出力装置。 第1図 ZOC・開閉動イを検出外 第2図 時間 第3図 第4図 第5図 第6図 部位 第7図 第9図 第10図 第12図 7°ロア′ラム日
FIG. 1 is a schematic configuration diagram of an abnormality diagnosis device for gas insulated equipment according to an embodiment of the present invention, FIGS. 2, 3, and 4 are diagrams of different temporal transition patterns of partial discharges, and FIG. Figure 6 is a diagram of the combination of detector groups that obtains information on the temporal transition leading to partial discharge. Figures 7 and 8 are diagrams showing the causes and locations of partial discharge. FIG. 9 is a block diagram showing details of the diagnostic device of FIG. 1, and FIGS. 10, 11, and 12 are flowcharts showing programs of the diagnostic device. 5a...partial discharge detector, 5b...acoustic detector, 5
c...Temperature detector, 6...Diagnostic device, 20a...
Snowfall and rain detector, 20b...Earthquake detector, 20c...
Opening/closing operation detector, 50... Arithmetic device, 51... Comparison data, 53... Storage device, 54... Output device. Fig. 1: ZOC/opening/closing movement is not detected Fig. 2: Time Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 6 Part Fig. 7 Fig. 9 Fig. 10 Fig. 12 Fig. 7° lower ram date

Claims (1)

【特許請求の範囲】 1、絶縁性ガスを充填した密封容器内に電気機器を構成
したガス絶縁機器に設けられて部分放電検出器を含む部
分放電に至る時間的推移情報を得る検出器群と、上記部
分放電検出器によつて部分放電を検出したとき、それ以
前の上記検出器群からの信号に基づいて得られる部分放
電の時間的推移パターン、上記部分放電の継続性および
放電電荷量の時間特性とから部分放電の発生部位を標定
する診断装置とを備えたことを特徴とするガス絶縁機器
の異常診断装置。 2、上記特許請求の範囲第1項記載のものにおいて、上
記検出器群は、上記部分放電検出器と、音響検出器と、
温度検出器と、降雪雨検出器と、地震検出器と、開閉動
作検出器とから構成したことを特徴とするガス絶縁機器
の異常診断装置。
[Scope of Claims] 1. A group of detectors that are installed in gas-insulated equipment that constitutes electrical equipment in a sealed container filled with insulating gas and that obtains information on the time course of partial discharge, including a partial discharge detector. , when a partial discharge is detected by the partial discharge detector, the temporal transition pattern of the partial discharge obtained based on the signals from the previous detector group, the continuity of the partial discharge, and the amount of discharged charge. What is claimed is: 1. An abnormality diagnostic device for gas-insulated equipment, comprising: a diagnostic device for locating a partial discharge occurrence site based on time characteristics. 2. In the device according to claim 1, the detector group includes the partial discharge detector, the acoustic detector,
An abnormality diagnosis device for gas insulated equipment, characterized by comprising a temperature detector, a snowfall/rain detector, an earthquake detector, and an opening/closing operation detector.
JP63072069A 1988-03-28 1988-03-28 Abnormality diagnosis device for gas insulation equipment Expired - Fee Related JP2740179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072069A JP2740179B2 (en) 1988-03-28 1988-03-28 Abnormality diagnosis device for gas insulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072069A JP2740179B2 (en) 1988-03-28 1988-03-28 Abnormality diagnosis device for gas insulation equipment

Publications (2)

Publication Number Publication Date
JPH01248926A true JPH01248926A (en) 1989-10-04
JP2740179B2 JP2740179B2 (en) 1998-04-15

Family

ID=13478745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072069A Expired - Fee Related JP2740179B2 (en) 1988-03-28 1988-03-28 Abnormality diagnosis device for gas insulation equipment

Country Status (1)

Country Link
JP (1) JP2740179B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237045A (en) * 2004-02-17 2005-09-02 Meidensha Corp Device and method for detecting generation of mold crack
JP2008032595A (en) * 2006-07-31 2008-02-14 Japan Ae Power Systems Corp Partial discharge part locating method of three-phase batch gas insulation equipment
JP2008076209A (en) * 2006-09-21 2008-04-03 Hitachi Ltd System for analyzing degree of discharge in power generation, transforming and receiving facility apparatus
JP2009261202A (en) * 2008-03-25 2009-11-05 Jfe Steel Corp Electric discharge detection/identification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385358A (en) * 1977-01-06 1978-07-27 Yasuo Fukunaga Method of removing improper electric circuit with discharge phenomenon
JPS5879430A (en) * 1981-11-06 1983-05-13 株式会社東芝 Device for automatically monitoring internal partial discharge of transformer
JPS5910125A (en) * 1982-07-05 1984-01-19 株式会社富士電機総合研究所 Internal part discharge monitor for high voltage stational device
JPS6014180A (en) * 1983-07-05 1985-01-24 Mitsubishi Electric Corp Detection for partial discharge position of high-voltage electric apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385358A (en) * 1977-01-06 1978-07-27 Yasuo Fukunaga Method of removing improper electric circuit with discharge phenomenon
JPS5879430A (en) * 1981-11-06 1983-05-13 株式会社東芝 Device for automatically monitoring internal partial discharge of transformer
JPS5910125A (en) * 1982-07-05 1984-01-19 株式会社富士電機総合研究所 Internal part discharge monitor for high voltage stational device
JPS6014180A (en) * 1983-07-05 1985-01-24 Mitsubishi Electric Corp Detection for partial discharge position of high-voltage electric apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237045A (en) * 2004-02-17 2005-09-02 Meidensha Corp Device and method for detecting generation of mold crack
JP4561117B2 (en) * 2004-02-17 2010-10-13 株式会社明電舎 Mold crack occurrence detection device and detection method
JP2008032595A (en) * 2006-07-31 2008-02-14 Japan Ae Power Systems Corp Partial discharge part locating method of three-phase batch gas insulation equipment
JP4740421B2 (en) * 2006-07-31 2011-08-03 株式会社日本Aeパワーシステムズ Partial discharge site location method for three-phase gas insulation equipment
JP2008076209A (en) * 2006-09-21 2008-04-03 Hitachi Ltd System for analyzing degree of discharge in power generation, transforming and receiving facility apparatus
JP2009261202A (en) * 2008-03-25 2009-11-05 Jfe Steel Corp Electric discharge detection/identification device

Also Published As

Publication number Publication date
JP2740179B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
JP2751834B2 (en) Fault diagnosis system for high voltage power equipment
EP0333139B1 (en) Energization fault detection system
KR100231522B1 (en) Monitoring apparatus for gis
JP2005147890A (en) Insulation abnormality diagnostic device
JP4740421B2 (en) Partial discharge site location method for three-phase gas insulation equipment
JPH01248926A (en) Malfunction diagnosing device gas insulated apparatus
JP6118627B2 (en) Vacuum leak monitoring device for vacuum valve
CN107688139A (en) GIS disc insulator creeping discharge monitoring methods based on Leakage Current
JP3347004B2 (en) Partial discharge detection device
KR0169969B1 (en) Power apparatus, power transmission/distribution unit, and tripping method therefor
KR100576908B1 (en) Apparatus for detecting defacts in Gas Insulated Switchgear
CN112711023A (en) Method for detecting residues in GIS
JPH01232626A (en) Abnormal current supply sensing device for gas-insulated switching apparatus
KR100244738B1 (en) Monitoring apparatus of circuit breaker for gis
JP2001343418A (en) Partial discharge diagnostic apparatus
JPH052047A (en) Apparatus for predictive maintenance
JPH02159580A (en) Detecting method of abnormality of gas-insulated device
JP2745959B2 (en) Main circuit abnormal section detection device of hermetic switchgear
JPH05146014A (en) Device and method for monitoring gas-insulated machinery and apparatus
JPH01182765A (en) Partial discharge diagnosing apparatus
KR200307604Y1 (en) Insulating tester for GIS
JP2697480B2 (en) Main circuit abnormality detection device of hermetic switchgear
JP2024085106A (en) Gas leakage estimation method of gas insulation opening/closing device
JPH1152003A (en) Apparatus for diagnosing partial discharge of gas-insulated electric apparatus
JPH04194675A (en) Apparatus for monitoring partial discharge of electric machinery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees