JPH01248674A - Manufacture of photovoltaic element - Google Patents

Manufacture of photovoltaic element

Info

Publication number
JPH01248674A
JPH01248674A JP63076721A JP7672188A JPH01248674A JP H01248674 A JPH01248674 A JP H01248674A JP 63076721 A JP63076721 A JP 63076721A JP 7672188 A JP7672188 A JP 7672188A JP H01248674 A JPH01248674 A JP H01248674A
Authority
JP
Japan
Prior art keywords
substrate
substrates
laminated
photovoltaic element
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63076721A
Other languages
Japanese (ja)
Inventor
Koshiro Mori
森 幸四郎
Akira Hanabusa
花房 彰
Yasuhiro Saito
康博 斉藤
Michio Osawa
道雄 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63076721A priority Critical patent/JPH01248674A/en
Publication of JPH01248674A publication Critical patent/JPH01248674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To decrease manhours by simultaneously cutting a first substrate, a second substrate for protecting the surface and a third substrate for reinforcement and holding and arraying a plurality of solar cells singly separated on a fourth substrate in a matrix manner. CONSTITUTION:All of laminated substrates up to first - third substrates 1-3 except a fourth substrate 4 are cut into laminated multi-layer boards, and a plurality of independently detached photovoltaic element 5 are arranged and held onto the fourth substrate 4, thus manufacturing the title photovoltaic element. When a solar cell is used as the photovoltaic element 5, terminal sections 6 at a positive pole and a negative pole are fitted at both ends of the photovoltaic element normally, and leads are led out to the terminal sections 6 through a heat seal method and soldering. The leads can be led out in such a manner that sections laminated onto the terminal sections and superposed to the terminal sections are employed previously as opening sections 7 in the second - fourth substrates 2-4 laminated onto the first substrate. Accordingly, the manufacture of the photovoltaic element in which processes are treated continuously by the substrates in large size is acquired, thus reducing the complicatedness of the treatment of each photovoltaic element in conventional devices and the manhours.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽電池やラインセンサー等の光起電力素子の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing photovoltaic elements such as solar cells and line sensors.

従来の技術 単結晶Si、多結晶Si、非晶質Si等の材料が太陽電
池に用いられ、工業化されている。単結晶Siや多結晶
Stを利用する場合には、サイズが数インチ、厚さが数
百ミクロンのウェハーを熱拡散工程でpn接合を形成し
て製造する。従ってウェハーは光起電力部及び基板も兼
ねた構造である。
2. Description of the Related Art Materials such as single crystal Si, polycrystalline Si, and amorphous Si are used in solar cells and have been industrialized. When using single-crystal Si or polycrystalline St, a wafer having a size of several inches and a thickness of several hundred microns is manufactured by forming a pn junction using a thermal diffusion process. Therefore, the wafer has a structure that also serves as a photovoltaic portion and a substrate.

非晶質siを利用する場合は、非晶質Stが結晶性St
 よシも低温プロセスのため、透光性のソーダガラスを
基板として利用し、この基板上に光起電力部のpin接
合を形成した構造が多く利用されている。ソーダガラス
上に非晶質Siを形成する場合の基板サイズは、結晶性
シリコンが現時点で大兄数インチであるのに対して、1
0数インチ〜数10インチが可能であり、大面積化の点
でメリットが大きい。電卓用電源に使用する非晶質St
太陽電池のサイズは、はぼ横5c1n、縦1cr11で
ある。
When using amorphous Si, amorphous St becomes crystalline St.
Since it is a low-temperature process, a structure in which a translucent soda glass is used as a substrate and a pin junction of a photovoltaic part is formed on this substrate is often used. When forming amorphous Si on soda glass, the substrate size is 1 inch, whereas crystalline silicon is currently several inches wide.
It is possible to have a thickness of several tens of inches to several tens of inches, which has a great advantage in increasing the area. Amorphous St used for power supply for calculators
The size of the solar cell is approximately 5c1n in width and 1cr11 in height.

このサイズの太陽電池は通常1枚の大サイズのソーダガ
ラス上に縦横マトリックスに複数個形成した後、ガラス
スクライバ−により、第3図に示すような各々単一の太
陽電池に分離する方法で製造する。さらに非晶質S1は
低温プロセスのため、透光性又は着色性耐熱性樹脂フィ
ルム上にも形成でき、上記とほぼ同様の製造プロセスで
1枚の大サイズ樹脂フィルム基板から複数個の太陽電池
が製造できる。このように大サイズの基板から単一の太
陽電池に分離した後に、測定、リード線付け。
Solar cells of this size are usually manufactured by forming multiple solar cells in a vertical and horizontal matrix on a single large sheet of soda glass, and then separating them into single solar cells using a glass scriber, as shown in Figure 3. do. Furthermore, since amorphous S1 is a low-temperature process, it can also be formed on transparent or colored heat-resistant resin films, and multiple solar cells can be produced from a single large-sized resin film substrate using the same manufacturing process as above. Can be manufactured. After separating the large substrate into a single solar cell, measurements and lead wires are attached.

検査を個別に行ない、梱包工程では、多数個収納できる
所定のパレットに収納し、出荷するという作業方法が通
常行なわれている。
The usual work method is to individually inspect the products, and in the packaging process, store them on a predetermined pallet that can accommodate a large number of products, and then ship them.

発明が解決しようとする課題 上記のように非晶質Si太陽電池は大サイズの基板が利
用でき、多数の太陽電池を同一基板から製作可能である
が、従来の工程では単一の太陽電池に分離し、後工程で
この分離した太陽電池を個別に処理するため、煩雑且つ
工数もかかり、コストアップになるという問題点と、樹
脂フィルムを使用した場合は、単一の太陽電池に分離し
た際に個々の素子が曲折やたわみを生じ、工程上処理が
困難であるなどの問題点があった。
Problems to be Solved by the Invention As mentioned above, large-sized substrates can be used for amorphous Si solar cells, and many solar cells can be manufactured from the same substrate. The problem is that the separated solar cells are separated and processed individually in the post-process, which is complicated and takes a lot of man-hours, which increases costs. However, there were problems in that the individual elements were bent or bent, making processing difficult.

課題を解決するための手段 本発明は太陽電池(光起電力素子)を形成した第1基板
、又は、この第1基板と表面保護用の第2基板との多層
板、あるいはこれにさらに補強用の第3基板を積層した
多層板をセパレート用基板上に積層し、且つ、この積層
した多層板において、第1基板又は、この第1基板と表
面保護用の第2基板及び又は補強用の第3基板を同時に
切断することにより、セパレート用第4基板上に単一に
分離した太陽電池を複数個マトリックス状に保持。
Means for Solving the Problems The present invention is directed to a first substrate on which a solar cell (photovoltaic element) is formed, or a multilayer board consisting of this first substrate and a second substrate for surface protection, or a reinforcing substrate. A multilayer board in which a third board is laminated is laminated on a separate board, and in this laminated multilayer board, the first board or the first board and a second board for surface protection and/or a second board for reinforcement are stacked. By cutting the three substrates at the same time, a plurality of single solar cells are held in a matrix on the fourth substrate for separation.

配列するものである。It is something that is arranged.

作  用 上記の如くセパレート用第4基板上に積層した1枚ない
し複数枚の基板を切断することで、分離された太陽電池
はセパレート用第4基板上の定位置に保持することが可
能である。
Function By cutting one or more substrates laminated on the fourth substrate for separation as described above, it is possible to hold the separated solar cells in a fixed position on the fourth substrate for separation. .

実施例 以下図面をもとに本発明の詳細な説明する。Example The present invention will be described in detail below based on the drawings.

第1図は本発明を実施する概念図を示す。ガラス又は樹
脂フィルムからなる第1基板1上に光起電力素子6を複
数形成する。光起電力素子5はガラス又は樹脂フィルム
上に低温プロセスで製作可能で、且つ工業的に電卓等に
広く利用されている非晶質Si太陽電池が適している。
FIG. 1 shows a conceptual diagram for implementing the present invention. A plurality of photovoltaic elements 6 are formed on a first substrate 1 made of glass or resin film. The photovoltaic element 5 is suitably an amorphous Si solar cell that can be manufactured on glass or resin film by a low-temperature process and is widely used industrially in calculators and the like.

そして第1基板には、ソーダーガラス、パイレックスガ
ラス、石英ガラスなどのガラス板、ポリイミド、ポリエ
チレンテレフタレート、ポリエーテルサルホンなどのフ
ィルムが使用できる。
For the first substrate, a glass plate such as soda glass, pyrex glass, or quartz glass, or a film made of polyimide, polyethylene terephthalate, polyether sulfone, or the like can be used.

この太陽電池の形成条件は、ガラス又は耐熱性樹脂基板
に、例えば電子ビーム蒸着法で酸化インジウム製透明電
極を約700人で形成し、次にプラズマCvD法で非晶
質S1のp型層、l型層、n型層を約100人、5oo
o人、400人の厚さで順次形成、次に電子ビーム蒸着
法でA/、Cr、Ti電極を2000人形成、次にエポ
キシ樹脂に工りパッシペーシロすることにより、信頼性
の確保できる素子が製作できる。・ この第1基板1の光入射側とその反対側に表面保護用の
第2基板礼補強用の第3基板3を積層する。第2基板、
第3基板の材料は、ポリエヌテルやアクリル製フィルム
でよく、フィルム厚は0.1〜0.2咽程度でよい。そ
して第1基板1と第2、第3基板を貼り付けて積層する
ために、第1基板1と第2基板2との間、第1基板1と
第3基板3との間隙に接着剤を含む接着層を介在させる
The conditions for forming this solar cell were as follows: a transparent electrode made of indium oxide was formed on a glass or heat-resistant resin substrate by about 700 people using, for example, an electron beam evaporation method, and then a p-type layer of amorphous S1 was formed using a plasma CVD method. Approximately 100 L-type layers and N-type layers, 5oo
A device with guaranteed reliability was created by forming 2000 A/, Cr, and Ti electrodes using electron beam evaporation, and then using epoxy resin and passivation. Can be manufactured. - A third substrate 3 for reinforcing the second substrate for surface protection is laminated on the light incident side and the opposite side of the first substrate 1. a second substrate;
The material of the third substrate may be polyester or acrylic film, and the film thickness may be about 0.1 to 0.2 mm. Then, in order to paste and laminate the first substrate 1 and the second and third substrates, an adhesive is applied between the first substrate 1 and the second substrate 2 and between the first substrate 1 and the third substrate 3. An adhesive layer containing the adhesive layer is interposed.

この接着層を介在させる方法は、予め接着層が積層され
た第2基板2や第3基板3を貼り付けることで可能であ
る。次に第1基板〜第3基板を積層した多層板を、セパ
レート用第4基板上に貼り付けて積層する。貼り付は積
層する方法は、第1基板と第2基板の積層方法と同様に
実施する。以上の如く第4基板上に第1基板〜第3基板
を積層できる。本実施例ではセパレート用第4基板上に
第1〜第3基板を積層した例について記述したが、この
実施例以外に、第4基板上に光起電力素子を形成した第
1基板のみを積層する場合、第4基板上に第1基板と表
面保護用の第2基板との多層板を積層する場合や、第4
基板上に第1基板と補強用の第3基板との多層板を積層
する場合なども実施可能である。そしてこれらの基板に
おいて、例えば第1基板〜第4基板が全て樹脂フィルム
の場合、又は第4基板が樹脂フィルムで、第1基板がガ
ラス基板である場合なども実施可能である。
This method of interposing the adhesive layer is possible by pasting the second substrate 2 or the third substrate 3 on which the adhesive layer is laminated in advance. Next, a multilayer board in which the first to third substrates are laminated is attached and laminated on the fourth substrate for separation. The laminating method for pasting is carried out in the same manner as the method for laminating the first substrate and the second substrate. As described above, the first to third substrates can be stacked on the fourth substrate. In this example, an example was described in which the first to third substrates were laminated on the fourth substrate for separation, but in addition to this example, only the first substrate on which a photovoltaic element was formed on the fourth substrate was laminated. In this case, a multilayer board consisting of the first substrate and a second substrate for surface protection is laminated on the fourth substrate, or
It is also possible to laminate a multilayer board including a first substrate and a third reinforcing substrate on the substrate. In these substrates, for example, it is also possible to implement the case where the first to fourth substrates are all resin films, or the fourth substrate is a resin film and the first substrate is a glass substrate.

これらの積層した多層板を切断加工により、第4基板を
除いて他の第1〜第3基板までの積層基板をすべて切断
し、第4基板上で独立に切り離された複数個の光起電力
素子を配列保持して製作できる。光起電力素子として太
陽電池の場合は通常、素子の両端に、十極、−極の端子
部6が設けられており、この端子部6にヒートシール法
や半田付けによるリード取出しを行なう。このリード取
出しを可能にするために、第1基板に積層する第2゜第
3.第4基板で端子部に積層され、且つ端子部に重なる
部分を予め開孔部7とすることにより実施できる。
By cutting these laminated multilayer plates, all the other laminated substrates from the first to third substrates except the fourth substrate are cut, and a plurality of photovoltaic cells are separated independently on the fourth substrate. Can be manufactured by holding elements in an array. In the case of a solar cell as a photovoltaic element, terminal portions 6 of ten poles and a negative pole are usually provided at both ends of the element, and leads are taken out from the terminal portions 6 by heat sealing or soldering. In order to make this lead extraction possible, the second and third substrates are laminated on the first substrate. This can be carried out by forming the hole 7 in advance in the portion of the fourth substrate that is laminated on the terminal portion and overlaps the terminal portion.

上記の如くリード端子部との対応部が開孔しているので
、この端子取出部に、印刷法でAqペースト、Cペース
)、Niペースト、半田ヘースト。
As mentioned above, since the corresponding part with the lead terminal part is opened, this terminal extraction part is printed with Aq paste, C paste), Ni paste, and solder paste.

A g/Cuペース)、Cuペースト導電層を塗布する
法や無電解メッキ法でN i 、 Cu 、 A g導
電層を塗布する法や半田ディップ、半田リフロー法など
で導電層を塗布して導電性と基板への接着性を強化する
ことができる。
A conductive layer can be applied using a method such as applying a conductive layer using Cu paste (Ag/Cu paste), a method using an electroless plating method to apply a conductive layer of Ni, Cu, or Ag, or a conductive layer using a solder dip or solder reflow method. It can enhance the properties and adhesion to the substrate.

第2図は本発明の実施例において、セパレート用第4基
板4上に、第1〜第3基板を積層後、この第1基板1〜
第3基板3を切断加工し、第1基板1上に形成した複数
個の太陽電池素子を第4基板上に接着、保持した状態で
独立に切離した様子を示し、7は第1基板〜第4基板を
積層した状態でリード端子を取出すための開孔部である
FIG. 2 shows an embodiment of the present invention in which the first to third substrates are laminated on the fourth substrate for separation 4, and then the first to third substrates are laminated on the fourth substrate for separation.
The third substrate 3 is cut and a plurality of solar cell elements formed on the first substrate 1 are adhered to and held on the fourth substrate and then separated separately. This is an opening for taking out lead terminals in a state where four boards are stacked.

上側では光起電力素子として非晶質St太陽電池を例に
説明したが、非晶質Si材料で、pin接合や光導電度
を応用するカラーセンサー、−次元イメージセンサ−等
にも本発明の製作工程が利用できる。
Although the explanation above uses an amorphous St solar cell as an example of a photovoltaic element, the present invention can also be applied to color sensors, -dimensional image sensors, etc. that use amorphous Si materials and apply pin junctions and photoconductivity. Manufacturing process available.

発明の効果 以上記述したように本発明ではセパレート用基板上で複
数の素子を配列、保持できるので次のような効果が期待
できる。■ 犬サイズの基板で工程を一貫して処理する
素子の製造方法のため、従来例々の素子を処理していた
煩雑さと、工数削減ができ、大幅なコストダウンができ
る。■ 積層する基板間に接着層を介在させるので、個
々の素子を大サイズ基板から取り、機器に搭載する際に
機器側に従来よりも確実に、且つ強固に固定できる。■
 特に耐熱性の樹脂フィルム基板の場合には、可撓性の
為に基板の曲折やたわみが生じ、工程上取扱いが困難で
あったが、補強用基板を貼り付けた状態で工程処理する
ために、取扱いが容易になる。
Effects of the Invention As described above, in the present invention, a plurality of elements can be arranged and held on a separate substrate, so the following effects can be expected. ■ Since the device manufacturing method uses a dog-sized substrate to process the entire process, it is possible to reduce the complexity and man-hours required to process conventional devices, resulting in significant cost reductions. (2) Since an adhesive layer is interposed between the laminated substrates, when individual elements are taken from a large-sized substrate and mounted on a device, they can be fixed to the device side more reliably and firmly than before. ■
In particular, in the case of heat-resistant resin film substrates, the flexibility causes the substrate to bend or bend, making it difficult to handle during the process. , handling becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による各々の基板の積層前の斜視図、第
2図はその積層後の斜視図、第3図は第1図に於いて分
離された太陽電池の斜視図である。 1・・・・・・第1基板、6・・・・・・第1基板に形
成した光起電力素子、2・・・・・・補強用の第2基板
、3・・・・・・表面保護用の第3基板、4・・・・・
・セパレート用の第4基板、6・・・・・・リード端子
部、7・・・・・・開孔部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名l−
第1基板 4− 七パ1/−)用の第4基板 5− 第1基板C;形成しに 光8電力素子 /−m−第1基版 7−間尺部 8− 尤S電力堝子
FIG. 1 is a perspective view of each substrate according to the present invention before being laminated, FIG. 2 is a perspective view of the substrate after being laminated, and FIG. 3 is a perspective view of a solar cell separated in FIG. 1. 1... First substrate, 6... Photovoltaic element formed on the first substrate, 2... Second substrate for reinforcement, 3... Third substrate for surface protection, 4...
- Fourth substrate for separation, 6... Lead terminal portion, 7... Opening portion. Name of agent: Patent attorney Toshio Nakao and one other person
1st substrate 4 - 4th substrate 5 - 1st substrate C; Formed optical 8 power element/-m - 1st base plate 7 - Measuring section 8 - S power holder

Claims (6)

【特許請求の範囲】[Claims] (1)単数又は複数の光起電力素子を形成した第1基板
、又はこの第1基板上の光起電力素子の光入射側に表面
保護用の第2基板を積層した多層板あるいは上記光起電
力素子の光入射側とは反対側に補強用の第3基板を積層
した多層板を、セパレート用第4基板上に積層した後、
切断加工により、第1基板又は第1と第2及び又は第3
基板を同時に切断し、第4基板上に単数又は複数の独立
分離した光起電力素子を保持配列したことを特徴とする
光起電力素子の製造方法。
(1) A first substrate on which one or more photovoltaic elements are formed, or a multilayer plate in which a second substrate for surface protection is laminated on the light incident side of the photovoltaic elements on this first substrate, or the above-mentioned photovoltaic element. After laminating a multilayer board with a third reinforcing substrate laminated on the side opposite to the light incidence side of the power element on the fourth separating substrate,
By cutting, the first substrate or the first and second and/or third substrates are cut.
1. A method for manufacturing a photovoltaic device, comprising cutting the substrates at the same time, and holding and arranging one or more independently separated photovoltaic devices on a fourth substrate.
(2)各々の基板を積層して多層板を形成する際に、各
基板間に接着剤を含む接着層を挿入したことを特徴とす
る特許請求の範囲第1項記載の光起電力素子の製造方法
(2) The photovoltaic device according to claim 1, characterized in that an adhesive layer containing an adhesive is inserted between each substrate when laminating the respective substrates to form a multilayer board. Production method.
(3)各々の基板を積層して多層板を形成する際に、第
2基板、第3基板、第4基板には、第1基板上に形成し
た光起電力素子のリード端子部に積層され、且つ、重な
る開孔部を設けたことを特徴とする特許請求の範囲第1
項又は第2項記載の光起電力素子の製造方法。
(3) When laminating each substrate to form a multilayer board, the second, third, and fourth substrates are laminated to the lead terminal portion of the photovoltaic element formed on the first substrate. Claim 1 characterized in that, and overlapping opening portions are provided.
A method for manufacturing a photovoltaic device according to item 1 or 2.
(4)光起電力素子のリード端子部は、ペースト印刷法
、無電解メッキ法、半田ディップ法、半田リフロー法等
で導電層を形成したことを特徴とする特許請求の範囲第
1項から第3項のいずれかに記載の光起電力素子の製造
方法。
(4) The lead terminal portion of the photovoltaic element has a conductive layer formed by a paste printing method, an electroless plating method, a solder dipping method, a solder reflow method, etc. 4. A method for manufacturing a photovoltaic device according to any one of Item 3.
(5)第1基板、第2基板、第3基板、第4基板の各々
が樹脂フィルムからなり、且つ少なくとも第1、第2基
板が透光性であることを特徴とする光起電力素子の製造
方法。
(5) A photovoltaic element characterized in that each of the first substrate, second substrate, third substrate, and fourth substrate is made of a resin film, and at least the first and second substrates are translucent. Production method.
(6)第1基板が透光性ガラス、第4基板が樹脂フィル
ムからなり、且つ上記2基板を積層したことを特徴とす
る光起電力素子の製造方法。
(6) A method for manufacturing a photovoltaic device, characterized in that the first substrate is made of translucent glass, the fourth substrate is made of a resin film, and the two substrates are laminated.
JP63076721A 1988-03-30 1988-03-30 Manufacture of photovoltaic element Pending JPH01248674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076721A JPH01248674A (en) 1988-03-30 1988-03-30 Manufacture of photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076721A JPH01248674A (en) 1988-03-30 1988-03-30 Manufacture of photovoltaic element

Publications (1)

Publication Number Publication Date
JPH01248674A true JPH01248674A (en) 1989-10-04

Family

ID=13613430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076721A Pending JPH01248674A (en) 1988-03-30 1988-03-30 Manufacture of photovoltaic element

Country Status (1)

Country Link
JP (1) JPH01248674A (en)

Similar Documents

Publication Publication Date Title
US3874931A (en) Solar cell array
US8975510B2 (en) Foil-based interconnect for rear-contact solar cells
TWI390747B (en) Photovoltaic modules manufactured using monolithic module assembly techniques
KR101422706B1 (en) Method of coupling photovoltaic cells and film for implementing it
AU709512B2 (en) Group of solar cell elements, and solar cell module and production method thereof
US6096569A (en) Method of and apparatus for manufacturing thin solar battery
EP2053661B1 (en) Solar cell module
EP1939946A1 (en) Cis-type thin film solar battery module and process for producing the same
TW201225318A (en) Monolithic module assembly using back contact solar cells and metal ribbon
JP5193605B2 (en) Photovoltaic panel
WO2023108984A1 (en) Photovoltaic module and preparation method therefor
JP2014003064A (en) Method of manufacturing solar battery module, device for manufacturing solar battery module, and coating material for manufacturing solar battery module
US3616528A (en) Solid state matrices
EP2994941B1 (en) Solar panel and method for manufacturing such a solar panel
WO2009149040A2 (en) Method for the fabrication of semiconductor devices on lightweight substrates
JPH01248674A (en) Manufacture of photovoltaic element
JPH06310744A (en) Thin film solar cell module and connection method thereof
JP2983674B2 (en) Method for manufacturing photovoltaic device
JP5569139B2 (en) Solar cell module
US20120260973A1 (en) Busing sub-assembly for photovoltaic modules
JP2001102604A (en) Method for controlling manufacturing process of photoelectric conversion device
JP4245131B2 (en) Method for manufacturing thin film solar cell
EP3025376A1 (en) Adhering an encapsulant sheet for a photovoltaic module
JP3260859B2 (en) Solar cell module and method of manufacturing the same
JP2001352084A (en) Thin-film solar cell and its manufacturing method