JPH01248570A - Photosensor using avidin-biotin and manufacture thereof - Google Patents

Photosensor using avidin-biotin and manufacture thereof

Info

Publication number
JPH01248570A
JPH01248570A JP63074605A JP7460588A JPH01248570A JP H01248570 A JPH01248570 A JP H01248570A JP 63074605 A JP63074605 A JP 63074605A JP 7460588 A JP7460588 A JP 7460588A JP H01248570 A JPH01248570 A JP H01248570A
Authority
JP
Japan
Prior art keywords
avidin
substrate
membrane
protein
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63074605A
Other languages
Japanese (ja)
Other versions
JPH0719927B2 (en
Inventor
Ikuyuki Hara
原 生之
Atsushi Miyake
淳 三宅
Sugio Kawamura
川村 杉生
Noboru Tomizuka
富塚 登
Toshikazu Majima
真島 利和
Hideki Toyotama
豊玉 秀樹
Hiroaki Sugino
杉野 弘明
Shuichi Ajiki
秀一 安食
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Stanley Electric Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Stanley Electric Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63074605A priority Critical patent/JPH0719927B2/en
Publication of JPH01248570A publication Critical patent/JPH01248570A/en
Publication of JPH0719927B2 publication Critical patent/JPH0719927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To secure a lipid film with directionality on a substrate having electrodes by coupling the film containing biotined protein including photoelectric conversion function on an avidined substrate by avidin-biotin synergistic action. CONSTITUTION:A thin filmy electrode 5 formed by depositing conductive substance such as SnO2, ITO, gold or the like on a glass substrate 4 is employed as a fixing substrate, a thin film 6 is further formed of a substance such as nitrocellulose having high protein absorption capacity on its surface, and avidin 7 is absorbed. After the abidined glass substrate is treated as required with a biotin chromosphore film to be reacted, it is cleared of uncoupled chromatophore film with physiological saline water (PBS). A chromatophore film 8 is secured by such an operation. A lipid film containing protein can be immobilized with directionality by this securing method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光電変換機能を有する蛋白質を含む脂質膜を
利用した感光装置とその製造方法に関し、特に光電変換
機能を有する蛋白質を含む脂質膜を基板上に固定化した
感光装置とその製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a photosensitive device using a lipid membrane containing a protein having a photoelectric conversion function and a method for manufacturing the same, and particularly to a lipid membrane containing a protein having a photoelectric conversion function. The present invention relates to a photosensitive device in which is immobilized on a substrate and a method for manufacturing the same.

[従来の技術] 光電変換機能を有する蛋白質を含む脂質膜として、たと
えばチラコイド膜が知られている。植物、藍藻、光合成
細菌等の光合成能を有する細胞に含まれるチラコイド膜
は、光合成低能に関する蛋白質および脂質を含む生体膜
である。この種の膜は、方向性を持って配列した光合成
反応中心蛋白質複合体を有し、光を吸収した時、膜を挾
んで電位差を生じる能力を持つ、このため、光電変換素
子等の感光装置への光合成能を有する細胞の利用が期待
されている。
[Prior Art] For example, a thylakoid membrane is known as a lipid membrane containing a protein having a photoelectric conversion function. Thylakoid membranes contained in cells with photosynthetic ability such as plants, blue-green algae, and photosynthetic bacteria are biological membranes containing proteins and lipids related to low photosynthetic ability. This type of membrane has a photosynthetic reaction center protein complex arranged in a directional manner, and when it absorbs light, it has the ability to sandwich the membrane and generate a potential difference.For this reason, it is used in photosensitive devices such as photoelectric conversion elements. It is expected that cells with photosynthetic ability will be used for this purpose.

従来の調製方法によると、チラコイド膜は細胞を破砕し
た後に微細な膜断片らしくは膜小胞として得られる場合
が多い。このような膜を挾んで生ずる電位差を直接外部
に取り出すことは困難であった。そこで測定の場合も、
螢光等を利用した間接的測定方法により、主として溶液
状態での光電変換機構等の研究が成されてきた(たとえ
ば、 Hethods in Enzymolooy 
69巻、409−715頁(1980年)Acadel
lic Press)。
According to conventional preparation methods, thylakoid membranes are often obtained as minute membrane fragments or membrane vesicles after disrupting cells. It has been difficult to directly extract the potential difference generated by sandwiching such a membrane to the outside. Therefore, in the case of measurement,
Research on photoelectric conversion mechanisms, etc., mainly in solution state, has been carried out by indirect measurement methods using fluorescence, etc. (for example,
69, pp. 409-715 (1980) Acadel
lic Press).

「発明か解決しようとする問題点〕 光電変換機能を有する蛋白質を含む脂質膜を光電変換素
子として利用するには、膜の表裏を揃えて固定化し、膜
を挾んで生ずる電気的信号を取り出す技術の開発が望ま
れる。電気的信号は、たとえば、電位差ないしは電流で
ある。
"Problem to be solved by the invention" In order to use a lipid membrane containing a protein with a photoelectric conversion function as a photoelectric conversion element, a technology is required to immobilize the membrane with the front and back sides aligned and extract the electrical signal generated by sandwiching the membrane. The electrical signal is, for example, a potential difference or a current.

本発明の目的は電極を備えた基板上に光電変換機能を有
する蛋白質を含む脂質膜を方向性をもって固定化した感
光装置を提供することである。
An object of the present invention is to provide a photosensitive device in which a lipid film containing a protein having a photoelectric conversion function is directionally immobilized on a substrate provided with an electrode.

本発明の他の目的は基板上に光電変換機能を有する蛋白
質を含む脂質膜を方向性をもって固定化し、感光装置を
製造する方法を提供することである。
Another object of the present invention is to provide a method for manufacturing a photosensitive device by directionally immobilizing a lipid film containing a protein having a photoelectric conversion function on a substrate.

「問題点を解決するための手段] 電極を備えた基板上にアビジンを結合させる。“Means for solving problems” Bind avidin onto a substrate with electrodes.

一方、光電変換機能を有する蛋白質を含む脂質膜の特定
の部位を選択的にビオチン化する。
On the other hand, specific sites of the lipid membrane containing proteins with photoelectric conversion function are selectively biotinylated.

アビジン化した基板表面にビオチン化した光電変換機能
を有する蛋白質を含む脂質膜を、アビジン−ビオチン相
互作用によって、結合させることにより、脂質膜を方向
性を持たせて固定化する。
A lipid membrane containing a biotinylated protein having a photoelectric conversion function is bonded to the surface of an avidinized substrate through an avidin-biotin interaction, thereby immobilizing the lipid membrane with directionality.

光電変換機能を有する蛋白質を含む脂質膜として、たと
えば、植物の葉緑体、藍藻、光合成細菌等の細胞に含ま
れるチラコイド膜が用いられるが。
As a lipid membrane containing a protein having a photoelectric conversion function, for example, thylakoid membranes contained in cells such as plant chloroplasts, blue-green algae, and photosynthetic bacteria are used.

チラコイド膜の中でもロドシュードモナス・ビリシス(
ATCCI 9567)、ロドバクタ−スフェロイデス
(ATCC17023>等の細胞を破砕して得られる標
品であるクロマトホア膜は好適な材料である。
Among the thylakoid membranes, Rhodopseudomonas viricis (
A chromatophore membrane, which is a standard product obtained by disrupting cells of Rhodobacter spheroides (ATCCI 9567), Rhodobacter sphaeroides (ATCC 17023), etc., is a suitable material.

電極には、インジウム−錫・酸化物(ITO)。The electrode is indium-tin oxide (ITO).

酸化錫(Sn02)、金属蒸着膜、半導体等を用いるこ
とができる。電極基板の作成は、たとえば。
Tin oxide (Sn02), metal vapor deposition film, semiconductor, etc. can be used. For example, create an electrode substrate.

真空蒸着等の方法により、基板上に導電性膜を形成する
こと等により行うことかできる。
This can be done by forming a conductive film on the substrate using a method such as vacuum evaporation.

電極基板へのアビジン分子の結合は、たとえば。The binding of avidin molecules to electrode substrates, e.g.

化学結合、吸着等で行うことかできる。This can be done by chemical bonding, adsorption, etc.

種々のビオチン化試薬で、光電変換機能を有する蛋白質
を化学修飾する場合9条件を選択することにより、特定
の部位を選択的にビオチン化することができる。
When a protein having a photoelectric conversion function is chemically modified using various biotinylation reagents, a specific site can be selectively biotinylated by selecting nine conditions.

このようにしてビオチン化した脂質膜を、アビジン化し
た電極基板に取り付ける。
The thus biotinylated lipid membrane is attached to an avidinized electrode substrate.

[作用] アビジンとビオチンとは強い特異的相互作用を有する。[Effect] Avidin and biotin have a strong specific interaction.

光電変換機能を有する蛋白質を含む脂質膜の蛋白質複合
体の特定部位をビオチン化すると光電変換機能を有する
蛋白質を含む脂質膜がアビジン分子との結合性に関して
方向性を付与される。
When a specific site of a protein complex of a lipid membrane containing a protein having a photoelectric conversion function is biotinylated, the lipid membrane containing a protein having a photoelectric conversion function is given directionality with respect to binding with an avidin molecule.

アビジン化した基板表面にはビオチンが結合するので、
基板上に方向性をもって光電変換機能を有する蛋白質を
含む脂質膜を固定化できる。
Since biotin binds to the avidinized substrate surface,
A lipid film containing a protein having a photoelectric conversion function can be directionally immobilized on a substrate.

[実施例コ 光電変換機能を有する蛋白質を含む脂質膜の材料はたと
えばチラコイド膜であり、植物、藍藻、光合成細菌等の
細胞より調製することができる。
[Example] The material of the lipid membrane containing a protein having a photoelectric conversion function is, for example, a thylakoid membrane, which can be prepared from cells of plants, blue-green algae, photosynthetic bacteria, etc.

中でも光合成細菌ロドシュードモナスピリシス(ATC
C19567) 、Q ト/<’;’ タース7工0イ
デス(ATCC17023)等の細胞を破砕して得られ
るクロマトホア膜小胞は、好適な材料である。これらの
クロマトホア膜においては、光合成を行う反応中心の蛋
白質複合体のサブユニットにはり、M、H等のサブユニ
ットがある。タロマトホア膜懸濁液に、ビオチン基を有
する試薬を反応させ、蛋白質の化学修飾を行うと、Hサ
ブユニットを選択的にビオチン化する事ができる。この
ようにしてビオチン化を行ったタロマトホアは、アビジ
ンを介して基板上に方向性をもって固定化することが可
能である。
Among them, the photosynthetic bacterium Rhodopseudomonas spirisis (ATC)
Chromatophore membrane vesicles obtained by disrupting cells such as C19567) and Q<'><';' Tase70oides (ATCC17023) are suitable materials. In these chromatophore membranes, there are subunits such as M and H among the subunits of the protein complex that is the reaction center for photosynthesis. When a talomatophore membrane suspension is reacted with a reagent having a biotin group to chemically modify the protein, the H subunit can be selectively biotinylated. Talomatophore biotinylated in this manner can be directionally immobilized on a substrate via avidin.

すなわち、基板表面に化学結合、吸着等によってアビジ
ン分子を結合させ、さらにビオチン化したタロマトホア
膜を作用させる。ビオチン−アビジンの特異的な相互作
用によって、クロマトホア膜が方向性を持って基板に結
合する。
That is, avidin molecules are bonded to the substrate surface by chemical bonding, adsorption, etc., and then a biotinylated talomatophore membrane is applied. The specific biotin-avidin interaction causes the chromatophore membrane to directionally bind to the substrate.

このようにしてクロマトホア膜を固定化させ。In this way, the chromatophore membrane was immobilized.

電極を備えた感光装置について、光〜電位応答ないし光
−電流応答等の光電応答を検出利用する。
For photosensitive devices equipped with electrodes, a photoelectric response such as a photo-potential response or a photo-current response is used for detection.

以下に1図面を参服して本発明をさらに詳細に説明する
The present invention will be explained in more detail below with reference to one drawing.

[クロマトホア膜の調製] 光合成細菌であるロドシュードモナスビリシス(ATC
C19567)を、嫌気状態で、光照射下、30°Cで
培養した。得られた菌体より以下の手順によってタロマ
トホア膜を調製した。すなわち、菌体をフレンチプレス
によって破砕し、庶稠密度勾配遠心等の遠心分画法によ
って膜画分を調製し、50mM ノ炭酸ナトリウムNa
HC03(1)88.9)水溶液に透析しな(Arch
、 Biochem、 Biophys、、223巻2
82−290頁(1979年))。このようにして第1
図(A)に示すようなタロマトホア膜を調製した。脂質
膜2に光合成反応中心の蛋白質複合体1が埋め込まれた
構造を有している。
[Preparation of chromatophore membrane] Photosynthetic bacterium Rhodopseudomonas bilisis (ATC
C19567) was cultured under anaerobic conditions at 30°C under light irradiation. A talomatophore membrane was prepared from the obtained bacterial cells according to the following procedure. That is, the bacterial cells were disrupted using a French press, a membrane fraction was prepared by a centrifugal fractionation method such as concentrated density gradient centrifugation, and 50 mM sodium carbonate Na
HC03(1)88.9) Do not dialyze into aqueous solution (Arch
, Biochem, Biophys, Volume 223 2
82-290 (1979)). In this way the first
A talomatophore membrane as shown in Figure (A) was prepared. It has a structure in which a protein complex 1 serving as a photosynthetic reaction center is embedded in a lipid membrane 2.

[クロマトホア膜のビオチン化] タロマトホア膜のQffi液(A1020=10)に、
8mq/m lスルホスクシニミジル6−(ビオチンア
ミド)ヘキサノエートを加え、30℃で30分処理し、
膜蛋白質のビオチン化修飾を行う、ビオチン化したクロ
マトホア膜は第1図(B)に示すように、方向性をもっ
て、ビオチン基3を備える。ビオチン化後のクロマトホ
ア膜は、リン酸緩衝液(pH7,4)を含む生理的食塩
水(PBS)に恕濁する。
[Biotinylation of chromatophore membrane] In Qffi solution (A1020=10) of talomatophore membrane,
Add 8 mq/ml sulfosuccinimidyl 6-(biotinamido)hexanoate and treat at 30°C for 30 minutes.
A biotinylated chromatophore membrane, in which membrane proteins are modified by biotinylation, is provided with biotin groups 3 in a directional manner, as shown in FIG. 1(B). The biotinylated chromatophore membrane is suspended in physiological saline (PBS) containing phosphate buffer (pH 7,4).

[アビジンの基板表面への固定化コ 固定化の基板としては、ガラス基板4に酸化錫(Sn0
2 )、ITO,金等の導電性物質を蒸着させて薄膜状
電極5としたものを用い、第1図(C)に示すように、
その表面に蛋白質吸着能力の高いニトロセルロース等の
物質でさらに薄膜6をつくり、第1図(D)に示すよう
にアビジン7を吸着させる方法を用いる。このような薄
膜の作成については、ニトロセルロースの0.002%
酢酸アミル溶液(コロジオン溶液)50マイクロリツト
ルを2平方センチメートルの電極面状に載せて乾燻同化
させる方法、及び2%コロジオン溶液20マイクロリツ
トルを水面状に展開して1溶媒を蒸発させて固化した薄
膜を電極面に圧着する方法等か用いられる。これらの電
極を20μg/m1アビジンを含むPBSで30℃で2
0分処理を行い、アビジン分子7を吸着させる。上述の
ニトロセルロース薄膜6を介した固定化法は各種材料か
らなる基板へのアビジン固定化に広く用いることができ
る。
[As a substrate for co-immobilization of avidin on the substrate surface, tin oxide (Sn0
2), using a thin film electrode 5 made by depositing a conductive substance such as ITO or gold, as shown in FIG. 1(C),
A method is used in which a thin film 6 is further formed on the surface of a substance such as nitrocellulose having a high protein adsorption capacity, and avidin 7 is adsorbed as shown in FIG. 1(D). For the creation of such thin films, 0.002% of nitrocellulose
A method of placing 50 microliters of amyl acetate solution (collodion solution) on a 2 square centimeter electrode surface and dry-smoking assimilation, and a thin film solidified by spreading 20 microliters of 2% collodion solution on a water surface and evaporating one solvent. A method such as crimping the electrode onto the electrode surface is used. These electrodes were incubated with PBS containing 20 μg/ml avidin at 30°C for 2 hours.
Treatment is performed for 0 minutes to adsorb avidin molecule 7. The above-described immobilization method via the nitrocellulose thin film 6 can be widely used for immobilizing avidin on substrates made of various materials.

電極の素材によっては、ホルムアルデヒド、グルタルア
ルデヒド等の架橋試薬を用いて、アビジン分子を電極平
面に化学的に結合させることも可能である。
Depending on the material of the electrode, it is also possible to chemically bond avidin molecules to the electrode plane using a crosslinking reagent such as formaldehyde or glutaraldehyde.

ニトロセルロース薄膜は非共有結合でアビジン分子を吸
着し、架橋試薬の残基をつけた場合はアビジン分子と共
有結合すると考えられる。
It is thought that the nitrocellulose thin film adsorbs avidin molecules non-covalently, and when attached with residues of a cross-linking reagent, covalently bonds with the avidin molecules.

[ビオチン化りロマトホア膜のアビジン化基板表面への
固定化] アビジン化ガラス基板をビオチン化クロマ1ヘホア膜(
A1020=5.0)で30°Cで20分処理し、反応
f& P B Sで洗浄して未結合のクロマトホア膜を
除く0以上の操作により、第1図(E)に示すように、
クロマトホア膜8を固定化することができる。
[Immobilization of a biotinylated chromatophor membrane onto the surface of an avidinized substrate] An avidinized glass substrate was immobilized with a biotinylated chromatophor membrane (
A1020 = 5.0) at 30 °C for 20 minutes, and washed with reaction f&PBS to remove unbound chromatophore membranes. As shown in Figure 1 (E),
The chromatophore membrane 8 can be immobilized.

このt*1.7%ホルムアルデヒドを含むPBSで30
℃で30分処理を行い、PBSで洗浄してから第1図(
F)に示すようにアビジンをを含むPBSで処理する段
階に戻って、クロマトホア膜10の固定化を行う。この
ように複数回の固定化を行えば、クロマトホア膜の多層
積層を行うことができる。第1図(E)は、ガラス基板
4上の5n02電8i!5の表面にニトロセルロース薄
膜6を形成し、その上にアビジン7を吸着させ夕ロマト
ホア膜8を1回固定化した場合を示し、第1図(F)は
、同様に2回固定化積層した場合を示す。
This t*30 in PBS containing 1.7% formaldehyde.
After treatment at ℃ for 30 minutes and washing with PBS, Figure 1 (
As shown in F), returning to the step of treatment with PBS containing avidin, the chromatophore membrane 10 is immobilized. By performing immobilization multiple times in this manner, multilayer stacking of chromatophore membranes can be performed. FIG. 1(E) shows the 5n02 electric 8i! on the glass substrate 4! Figure 1 (F) shows a case in which a nitrocellulose thin film 6 is formed on the surface of the nitrocellulose film 6, on which avidin 7 is adsorbed and a chromatophore membrane 8 is immobilized once. Indicate the case.

また、積層の方法としては固定化クロマトホア膜の上に
コロジオン薄膜を重ね、その上に改めて固定化を行う方
法も用いられる。
Furthermore, as a method of lamination, a method of stacking a collodion thin film on an immobilized chromatophore membrane and then immobilizing it again is also used.

このような方法で、5n02電極5を備えたガラス基板
4上にロドシュードモナスビリシスのクロマトホア膜8
.10を10回積層した感光装置の吸収スペクトルを第
2図に示す、特徴的な光吸収が行われていることが判る
In this way, a chromatophore film 8 of Rhodopseudomonas bilisis was formed on a glass substrate 4 equipped with a 5n02 electrode 5.
.. FIG. 2 shows the absorption spectrum of a photosensitive device in which 10 layers were stacked 10 times, and it can be seen that characteristic light absorption occurs.

上述の固定化方法により、チラコイド膜を方向性をもっ
て固定化できる。
By the above immobilization method, the thylakoid membrane can be immobilized with directionality.

積層することもできる。チラコイド膜のみに限らず、蛋
白質を含む脂質膜を方向性を持って固定化できるものと
考えられる。
It can also be laminated. It is thought that it is possible to immobilize not only thylakoid membranes but also lipid membranes containing proteins with directionality.

タロマトホア膜を固定化した基板を1%牛血清アルブミ
ン(BSA)水溶液に浸した後、乾燥させる。
The substrate on which the talomatophore membrane is immobilized is immersed in a 1% bovine serum albumin (BSA) aqueous solution and then dried.

[光電応答の検出コ 基板上に固定化した脂質膜上に、対極となる電極を取り
付けて、光刺激を与え、光な応答による両e k間の電
気信号を取り出すことができる。たとえば、電位、電流
の変化を測定する。対極は。
[Detection of Photoelectric Response A counter electrode is attached to the lipid membrane immobilized on the co-substrate, optical stimulation is applied, and an electrical signal between both e and k due to the optical response can be extracted. For example, measuring changes in potential and current. The opposite is true.

感光装置の表面に水銀玉を載せる。金属薄膜を圧着する
。金属薄膜を蒸着する等の方法で形成できる。光刺激の
光源は、太陽光等自然のものでもよいし、ストロボラン
プ、発光ダイオード(LED)、レーザ、アーク燈等で
もよい。
A mercury ball is placed on the surface of the photosensitive device. Press the metal thin film. It can be formed by a method such as vapor deposition of a metal thin film. The light source for optical stimulation may be a natural source such as sunlight, or may be a strobe lamp, a light emitting diode (LED), a laser, an arc lamp, or the like.

第3図に感光装置の光電応答検出系の概略を示す、ガラ
ス基板15上の5n02電極14上にニトロセルロース
薄1B51!13を介してクロマトホア膜層12を固定
化積層した。その上に、水銀玉をのせる等の方法で対極
11を形成した。
FIG. 3 schematically shows a photoelectric response detection system of a photosensitive device. A chromatophore membrane layer 12 was fixed and laminated on a 5N02 electrode 14 on a glass substrate 15 via a thin nitrocellulose 1B51!13. On top of that, a counter electrode 11 was formed by placing a mercury ball or the like.

図中下側より、ストロボランプ、LED等の光源20か
ら光刺激をガラス基板15.5n02電@14、ニトロ
セルロース薄[13を介して、クロマトホア膜層12へ
与える。光刺激によって画電極11.14間に生じる電
位変化を導線16.1つで取り出し、差動アンプ17を
介してオシロスコープ18で観察した。
From the bottom of the figure, light stimulation is applied from a light source 20 such as a strobe lamp or LED to the chromatophore membrane layer 12 via a glass substrate 15.5n02 electrode@14 and a nitrocellulose thin layer 13. A potential change occurring between the picture electrodes 11.14 due to optical stimulation was taken out using a conductive wire 16.1 and observed with an oscilloscope 18 via a differential amplifier 17.

第4図に光刺激に対する感光装置の電位応答の例を示す
、ストロボランプ光の刺激に対して、ミリ秒以下の速い
応答の立ち上がりがみられた6本例においては、10回
固定化を行った感光装置を用いた。
Figure 4 shows an example of the potential response of a photosensitive device to light stimulation. In the 6 cases in which a rapid response of less than a millisecond was observed in response to strobe lamp light stimulation, the immobilization was performed 10 times. A photosensitive device was used.

[発明の効果] 光な変換機能を有する蛋白質を含む脂質膜を方向性をも
って固定化できる。
[Effects of the Invention] A lipid membrane containing a protein having a light conversion function can be directionally immobilized.

これにより、感光装置が実現できる。Thereby, a photosensitive device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタロマトホア膜の固定化を示す概略図であり、 (A>は未処理のタロマトホア膜、 (B)はビオチン化したタロマトホア膜、(C)はニト
ロセルロース膜を張った5n02電極を備えたガラス基
板、 (D)はニトロセルロース膜を張り、アビジンを吸着さ
せた5n02電極を備えたガラス基板、(E)はガラス
基板上の5n02電極上にニトロセルロース薄膜を張り
、アビジンを吸着させタロマトホア膜を固定化した場合
。 (F)は(E)と同様の固定化を2回行い1積層した場
合を示す。 第2図は5n02電極上にニトロセルロース薄膜を張り
、タロマトホア膜を10回固定化積層した7i、PBS
中にて測定した吸収スペクトルである。 第3図は感光装置の光電応答検出系の概略図である。 第4図はストロボランプ光の光刺激に対する感光装置の
電位応答を示す図である。タロマトホア膜を10回固定
化積層させた感光装置を用いて測定した。 符号の説明 1 光合成反応中心蛋白質複合体 2 脂質膜 3 ビオチン化試薬ニスルホスクシニミジル6−(ビオ
チンアミド)ヘキサノエート 4 ガラス基板 5 5n02電極 6 ニトロセルロース薄膜 7 ニトロセルロース薄膜に吸着されたアビジン 8 固定化1層目の脂質膜 9 固定化クロマトホア膜上に結合したアビジン 10 固定化2層目の脂質膜 11 対極となる電極 12 固定化、積層されたクロマトホア膜層13 ニト
ロセルロース薄膜 14 5n02電極 15 ガラス基板 16 対極に接続された導線 17 差動アンプ 18 オシロスコープ 19 5n02電5に接続された導線 20 光源 指定代理人 工業技術院微生物工業技術研究所長鈴木智
雄 復代理人  弁理士 高橋敬四部
Figure 1 is a schematic diagram showing the immobilization of talomatophore membranes, (A> is an untreated talomatophore membrane, (B) is a biotinylated talomatophore membrane, and (C) is a 5n02 electrode covered with a nitrocellulose membrane. (D) is a glass substrate with a 5n02 electrode on which a nitrocellulose membrane is attached and adsorbed avidin; (E) is a glass substrate with a nitrocellulose thin film attached to the 5n02 electrode on the glass substrate to which avidin is adsorbed and talomatophore is attached. When the membrane is immobilized. (F) shows the case where the same immobilization as in (E) is performed twice and one layer is stacked. Figure 2 shows a nitrocellulose thin film stretched on the 5n02 electrode, and a talomatophore membrane is immobilized 10 times. layered 7i, PBS
This is an absorption spectrum measured inside. FIG. 3 is a schematic diagram of a photoelectric response detection system of a photosensitive device. FIG. 4 is a diagram showing the potential response of the photosensitive device to optical stimulation of strobe lamp light. The measurement was performed using a photosensitive device in which talomatophore membranes were fixed and laminated 10 times. Explanation of symbols 1 Photosynthetic reaction center protein complex 2 Lipid membrane 3 Biotinylation reagent nisulfosuccinimidyl 6-(biotinamide) hexanoate 4 Glass substrate 5 5n02 electrode 6 Nitrocellulose thin film 7 Avidin 8 adsorbed on the nitrocellulose thin film Immobilization First layer lipid membrane 9 Avidin 10 bound on the immobilized chromatophore membrane Second immobilized lipid membrane 11 Counter electrode 12 Immobilized and stacked chromatophore membrane layer 13 Nitrocellulose thin film 14 5n02 electrode 15 Glass Board 16 Leading wire 17 connected to the counter electrode Differential amplifier 18 Oscilloscope 19 Leading wire 20 connected to 5n02 electric wire 5 Light source Designated agent Tomoo Suzuki Director, Institute of Microbial Technology, Agency of Industrial Science and Technology Patent attorney Keiji Takahashi

Claims (2)

【特許請求の範囲】[Claims] (1)、光電変換機能を有し、特定の部位がビオチン化
された蛋白質を含む脂質膜と、 アビジンを固定化した電極基板と を含む感光装置。
(1) A photosensitive device that has a photoelectric conversion function and includes a lipid membrane containing a protein biotinylated at a specific site and an electrode substrate on which avidin is immobilized.
(2)、基板をアビジンを含む処理剤で処理し、表面を
アビジン化する工程と、 光電変換機能を有する蛋白質を含む脂質膜をビオチンを
含む処理剤で処理し、蛋白質のビオチン化修飾を行う工
程と、 表面をアビジン化した基板にビオチン化修飾した光電変
換機能を有する蛋白質を含む脂質膜を作用させ、アビジ
ン−ビオチンの相互作用を利用して光電変換機能を有す
る蛋白質を含む脂質膜を基板上に固定化する工程と、 を含む感光装置の製造方法。
(2) The step of treating the substrate with a treatment agent containing avidin to avidinize the surface, and treating the lipid membrane containing a protein with a photoelectric conversion function with a treatment agent containing biotin to modify the protein with biotinylation. A lipid membrane containing a biotinylated protein with a photoelectric conversion function is applied to a substrate whose surface has been converted to avidin, and the lipid membrane containing a protein with a photoelectric conversion function is applied to the substrate using the avidin-biotin interaction. A method for manufacturing a photosensitive device, comprising:
JP63074605A 1988-03-30 1988-03-30 Photoelectric conversion device using avidin-biotin system and manufacturing method thereof Expired - Lifetime JPH0719927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074605A JPH0719927B2 (en) 1988-03-30 1988-03-30 Photoelectric conversion device using avidin-biotin system and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074605A JPH0719927B2 (en) 1988-03-30 1988-03-30 Photoelectric conversion device using avidin-biotin system and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01248570A true JPH01248570A (en) 1989-10-04
JPH0719927B2 JPH0719927B2 (en) 1995-03-06

Family

ID=13551965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074605A Expired - Lifetime JPH0719927B2 (en) 1988-03-30 1988-03-30 Photoelectric conversion device using avidin-biotin system and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0719927B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183150A (en) * 1991-12-27 1993-07-23 Oki Electric Ind Co Ltd Arrangement of ultrafine particle
WO2002042411A1 (en) * 2000-11-22 2002-05-30 Japan Science And Technology Corporation Apparatus for microscopic observation of long-term culture of single cell
JP2005274141A (en) * 2004-03-22 2005-10-06 Sanyo Electric Co Ltd Membrane protein fixing substrate and membrane protein fixing method
JP2014081365A (en) * 2012-09-26 2014-05-08 Fujita Gakuen Method for measuring antibody with protein on cell surface as antigen
CN113874728A (en) * 2019-01-30 2021-12-31 代表亚利桑那大学的亚利桑那校董事会 Bioelectronic circuits, systems, and methods of making and using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295600A (en) * 1986-11-20 1988-12-01 ハンス オー.リビ Lipid-protein composition and product and preparation of them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295600A (en) * 1986-11-20 1988-12-01 ハンス オー.リビ Lipid-protein composition and product and preparation of them

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183150A (en) * 1991-12-27 1993-07-23 Oki Electric Ind Co Ltd Arrangement of ultrafine particle
WO2002042411A1 (en) * 2000-11-22 2002-05-30 Japan Science And Technology Corporation Apparatus for microscopic observation of long-term culture of single cell
US7092154B2 (en) 2000-11-22 2006-08-15 Japan Science And Technology Corporation Apparatus for microscopic observation of long-term culture of single cell
JP2005274141A (en) * 2004-03-22 2005-10-06 Sanyo Electric Co Ltd Membrane protein fixing substrate and membrane protein fixing method
JP2014081365A (en) * 2012-09-26 2014-05-08 Fujita Gakuen Method for measuring antibody with protein on cell surface as antigen
CN113874728A (en) * 2019-01-30 2021-12-31 代表亚利桑那大学的亚利桑那校董事会 Bioelectronic circuits, systems, and methods of making and using the same

Also Published As

Publication number Publication date
JPH0719927B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US4092116A (en) Method for binding antibodies to a surface such that they remain active
CA2455932C (en) Assay electrodes having immobilized lipid/protein layers, methods of making the same and methods of using the same for luminescence test measurements
Paek et al. Development of rapid one-step immunochromatographic assay
JP4837743B2 (en) Modified cardiolipin and uses thereof
US6342389B1 (en) Modified phycobilisomes and uses therefore
US4172827A (en) Method for concentration and purification of antigens and antibodies
JPH0224548A (en) Electric detection of immunological reaction
Dilley [4] Ion transport (H+, K+ Mg2+ exchange phenomena)
JPH0779694B2 (en) Protection of proteins and similar products
JPH11246593A6 (en) Protection of proteins and the like
US5252719A (en) Process for preparing protein-oriented membrane
CN110292959B (en) Microfluidic chip and preparation method and application thereof
US5107104A (en) Photoelectric transducer having photosensitive chromoprotein film, i.e. bacteriorhodopsin
Breitwieser et al. 2-D protein crystals as an immobilization matrix for producing reaction zones in dipstick-style immunoassays
JPH01248570A (en) Photosensor using avidin-biotin and manufacture thereof
CN111426839A (en) 2019 novel coronavirus detection test paper and preparation process thereof
JP2632063B2 (en) Color image light receiving element
Hofer et al. Structural investigation of biological material in aqueous environment by means of infrared-ATR spectroscopy
JPH01248569A (en) Photosensor using antibody and manufacture thereof
JPS60222774A (en) Activated solid phase body and activating method thereof andimmunological reactive solid phase body and manufacture and check method thereof
JPH02504282A (en) Method of depositing or immobilizing molecules or substances on a carrier
KR100298130B1 (en) an apparatus for analyzing cholesterol of plasma lipoprotein and its method
KR100416490B1 (en) A process for preparing immuno membrane strip
WO1987001120A1 (en) Method of attaching biological substances to solid substrates
AU605746B2 (en) Method of attaching biological substances to solid substrates

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term