JPH01248019A - Magnetic encoder - Google Patents

Magnetic encoder

Info

Publication number
JPH01248019A
JPH01248019A JP7331088A JP7331088A JPH01248019A JP H01248019 A JPH01248019 A JP H01248019A JP 7331088 A JP7331088 A JP 7331088A JP 7331088 A JP7331088 A JP 7331088A JP H01248019 A JPH01248019 A JP H01248019A
Authority
JP
Japan
Prior art keywords
power
power source
electromotive force
magnetic encoder
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7331088A
Other languages
Japanese (ja)
Inventor
Hideo Tsuchiya
英雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7331088A priority Critical patent/JPH01248019A/en
Publication of JPH01248019A publication Critical patent/JPH01248019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To enable the supplying of a power to an increment/decrement counter constantly regardless of power failure, by providing a magnetic encoder with an induced electromotive force drawing means to taken out an inducted electromotive force generated with the rotary motion of the magnetic encoder as supply power to said counter. CONSTITUTION:A rotary drum 1 is adapted to turn in a direction of the same angle as an angle of joint rotation of a robot arm 4 and angle of rotation information thereof is inputted into an increment/decrement counter 6 from a magnetic sensor 5. In the normal operation, a power from a power source 10 is taken into a backup power source 9 through a charge adjusting circuit 11 and a power from a coil 7 for power generation is done thereinto through a charge adjusting circuit 8 to maintain the function of the increment/decrement counter 6. In case of a power failure, when power stored in a backup power source 9 is about to consume, by external operation of the robot arm 4, the rotary drum 1 is revolved thereby supplying an induced electromotive force taken-in with the coil 7 for power generation through the backup power source 9 to be supplied to the incremental/decremental counter.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は磁気エンコーダに係シ、特にカウンタを予備電
力でバックアップした磁気エンコーダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a magnetic encoder, and more particularly to a magnetic encoder in which a counter is backed up by backup power.

(従来の技術) 従来、産業用ロボットの関節駆動などに使用されるモー
タの内部には、モータの回転角度を検知するためのエン
コーダが組込まれておシ、これによりロボットの関節位
置が制御され、適切なロボット作業が実現する。
(Prior art) Conventionally, motors used to drive the joints of industrial robots have built-in encoders to detect the rotation angle of the motor, and this controls the joint positions of the robot. , appropriate robot work will be realized.

一般にエンコーダは、アブソリュート方式(以下、AB
S方式と略す)と、インクリメンタル方式(以下、IN
C型と略す)に大別される。ABS方式は、電源投入直
後の回転軸の絶対角度が検出できるようなしくみとなっ
ており、零点補正などの調整を行う必要なしに、正確な
角度情報を即座に提供することが可能である。一方、I
NC方式は、回転前と回転後の角度の差を検出するしく
みのものであり、ABS方式のように、電源投入直後の
回転軸の絶対角度を検出することはできない。
Generally, encoders use the absolute method (hereinafter referred to as AB
S method) and incremental method (hereinafter IN
Type C). The ABS method is designed to detect the absolute angle of the rotating shaft immediately after power is turned on, and can immediately provide accurate angle information without the need for zero point correction or other adjustments. On the other hand, I
The NC method is a system that detects the difference between the angles before and after rotation, and cannot detect the absolute angle of the rotating shaft immediately after power is turned on, unlike the ABS method.

しかしAB、S方式は、角度検出のための機構が複雑な
ため、一般にINC方式よシ大形化したものとなってお
シ、ロボットの関節などのように比較的小形のモータを
用いる必要がある用途に対しては、ABS方式は敬遠さ
れる傾向にある。そのため、INC方式にその角度情報
を記憶させておくアップダウンカウンタを設け、更にこ
のアップダウンカウンタに供給される電力が停電や緊急
停止などの際に消滅しないように、予備電源でバックア
ップしたものが用いられるようになっている。
However, because the AB and S methods have a complicated mechanism for angle detection, they are generally larger than the INC method, and require the use of relatively small motors, such as those used in robot joints. ABS systems tend to be avoided for certain applications. Therefore, the INC system is equipped with an up-down counter that stores the angle information, and in order to prevent the power supplied to this up-down counter from disappearing in the event of a power outage or emergency stop, a back-up power supply is used to It is now in use.

このような方法を用いると、エンコーダの零点補正は最
初の1回で済み、以後は電源投入直後の回転軸の絶対角
度の検出が可能となる。
When such a method is used, the zero point correction of the encoder only needs to be performed once at the beginning, and thereafter it becomes possible to detect the absolute angle of the rotation axis immediately after the power is turned on.

しかし、従来の予備電源はアルカリ電池などを主として
使用し、電源からの平常時の電力による充電でまかなわ
れていたため、停電時間が長いと充電された電力を全て
消耗してしまい、モータ駆動の際に再び零点補正を行わ
なければならなかった。そのため、電力消費の大きい光
学式エンコーダなどでなく、比較的電力消費の少ない磁
気エンコーダが用いられる場合が多いが、それでも問題
を解決するには至っていない。
However, conventional backup power sources mainly use alkaline batteries and are charged with normal power from the power source, so if the power outage lasts for a long time, all the stored power is consumed, and when the motor is driven. I had to perform zero point correction again. For this reason, a magnetic encoder that consumes relatively little power is often used instead of an optical encoder that consumes a lot of power, but this still does not solve the problem.

(発明が解決しようとする課題) 上述のように従来は、長時間の停電などによ)予備電源
の電力を消耗してしまうと、再び零点補正などを行わな
ければならず、例えばモータをロボットの関節に用いた
場合には、運転再開の前に行 零点補正を兼ねた予備運転を丹わなければならず、生産
性に大きく影響する。
(Problems to be Solved by the Invention) As mentioned above, in the past, when the backup power supply was consumed (due to a long power outage, etc.), zero point correction had to be performed again. When used in joints, a preliminary operation that also serves as line zero point correction must be carried out before restarting operation, which greatly affects productivity.

本発明は以上の問題点を解決し、停電時などにも常にア
ップダウンカウンタに電力を供給することの可能な磁気
エンコーダの提供を目的とする。
The present invention aims to solve the above problems and provide a magnetic encoder that can always supply power to an up/down counter even during a power outage.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の目的を達成するために本発明においては、磁気エ
ンコーダに誘導起電力取込手段を設け、磁気エンコーダ
の回転運動によう生じる誘導起電力を取り出してアップ
ダウンカウンタへの供給電力とするものとした。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a magnetic encoder with an induced electromotive force capturing means, and extracts the induced electromotive force generated by the rotational movement of the magnetic encoder, The power is supplied to the counter.

(作用) このように発電用コイルを設けることにより、予備電源
の電力が消耗してしまっても、例えばエンコーダを手動
で回転させることによってアップダウンカウンタへの供
給電力が発生する。従って、停電時などにも常にアップ
ダウンカウンタに電力を供給することの可能な磁気エン
コーダが実現する。
(Function) By providing the power generation coil in this way, even if the power of the backup power source is exhausted, power can be supplied to the up-down counter by manually rotating the encoder, for example. Therefore, a magnetic encoder is realized that can always supply power to the up/down counter even during a power outage.

(実施例) 以下、図面に従って本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例を示す磁気エンコーダを具備し
たロボットのブロック線図である。回転ドラム1は、そ
の回転中心軸をモータ2及び減速機3の出力軸の中心軸
と一致させておシ、ロボットアーム4の関節回転角度と
同じ角度だけ同じ方向に回転するしくみになっている。
FIG. 1 is a block diagram of a robot equipped with a magnetic encoder showing an embodiment of the present invention. The rotary drum 1 has its rotation center axis aligned with the center axes of the output shafts of the motor 2 and the reducer 3, and rotates in the same direction by the same angle as the joint rotation angle of the robot arm 4. .

回転ドラム1の外周には複数の永久磁石が、N極とS極
とを交互に外周面に向けた状態で並設されている。この
回転ドラム1の外周付近には、永久磁石の磁束のへ 変化を検知するために、磁気横部手段である磁気センサ
5が、回転ドラム1とわずかな間隙を介して取付けであ
る。この磁気センサ5から得られた永久磁石の磁束情報
は、回転ドラム1の回転角度情報として記憶手段である
アップダウンカウンタ6に入力される。
A plurality of permanent magnets are arranged in parallel around the outer periphery of the rotating drum 1 with their N poles and S poles facing the outer periphery alternately. A magnetic sensor 5, which is magnetic transverse means, is attached near the outer periphery of the rotating drum 1 with a slight gap between it and the rotating drum 1 in order to detect changes in the magnetic flux of the permanent magnet. The magnetic flux information of the permanent magnet obtained from the magnetic sensor 5 is inputted as rotation angle information of the rotary drum 1 to an up/down counter 6 which is a storage means.

一方、回転ドラム1の外周付近には、永久磁石の発生す
る誘導起電力を得るために、誘導起電力取込手段である
発電用コイル7が回転ドラム1とわずかな間隙を介して
取付けである。この発電用コイル7から得られた電力は
、整流回路や逆流防止回路を含んだ充電調整回路8を通
υ、電力備蓄手段であるバックアップ電源9に取込まれ
る。更に、電源10から供給される電力も、過充電防止
回路や逆流防止回路を含んだ充電調整回路11を通シ、
バックアップ電源9に取り−すれる。そして、このバッ
クアップ電源9及び充電調整回路11からの電力がアッ
プダウンカウンタ6に入力され、アップダウ、ンカウン
タ6を常時起動させる。
On the other hand, near the outer periphery of the rotating drum 1, in order to obtain the induced electromotive force generated by the permanent magnet, a power generating coil 7, which is an induced electromotive force capture means, is installed with a small gap between the rotating drum 1 and the rotating drum 1. . The electric power obtained from the power generation coil 7 passes through a charge adjustment circuit 8 including a rectifier circuit and a backflow prevention circuit, and is taken into a backup power source 9 which is an electric power storage means. Furthermore, the power supplied from the power supply 10 is also passed through a charge adjustment circuit 11 including an overcharge prevention circuit and a backflow prevention circuit.
Connect to backup power source 9. The power from the backup power source 9 and the charge adjustment circuit 11 is input to the up/down counter 6, and the up/down counter 6 is activated at all times.

発電用コイル7で得られた電力は、増幅器12によって
回転ドラム1の回転速度情報に変換され、この速度信号
及びアップダウンカウンタ6の角度信号がCPU(Ce
ntral Processing Unit ) 1
3に入力される。CPU13内では、ロボットアーム4
の制御に係るモータ2の最適駆動パターンを集中管理し
、モータ2に適切な指令を送る。
The power obtained by the power generation coil 7 is converted into rotational speed information of the rotating drum 1 by the amplifier 12, and this speed signal and the angle signal of the up/down counter 6 are sent to the CPU (Ce
ntral Processing Unit) 1
3 is input. Inside the CPU 13, the robot arm 4
The optimal drive pattern of the motor 2 related to the control of the motor 2 is centrally managed, and appropriate commands are sent to the motor 2.

以上のようなシステムを有する本発明においては、平常
時は1!源10からの電力が充電調整回路11を通り、
直接アップダウンカウンタ6に入力され、アップダウン
カウンタ6を起動させる。そして停電などによりミ源1
0からの電力供給が停止した場合、充電調整回路11が
、平常時に電源10からの電力をバックアンプ電源9に
蓄えておく機能を持っているために、バックアップ電源
9からの電力でアップダウンカウンタ6は起動する。
In the present invention having the above-described system, the normal time is 1! Power from source 10 passes through charge regulation circuit 11;
The signal is directly input to the up/down counter 6, and the up/down counter 6 is activated. Then, due to a power outage, Migen 1
If the power supply from 0 is stopped, the charging adjustment circuit 11 has a function of storing the power from the power supply 10 in the backup amplifier power supply 9 during normal times, so the up-down counter is activated by the power from the backup power supply 9. 6 starts.

更に、充電調整回路11を介してバックアップ電源9に
蓄えられていた電力が消耗してしまいそうになった場合
、今度は、ロボットアーム4の外部操作により回転ドラ
ム1を回転させることによって、発生した誘導起電力を
発電用コイル7で取込み、充電調整回路8、バンクアッ
プ電源9を介してアップダウンカウンタ6に供給するこ
とができる。
Furthermore, when the electric power stored in the backup power supply 9 via the charge adjustment circuit 11 is about to be exhausted, this time, by rotating the rotary drum 1 by external operation of the robot arm 4, The induced electromotive force can be taken in by the power generation coil 7 and supplied to the up/down counter 6 via the charge adjustment circuit 8 and the bank up power supply 9.

このように、従来においては電源10からの電力の蓄え
が消耗してしまうとアップダウンカウンタ6の機能は停
止し、電源10の復帰後にロボットアーム4の予備運転
をしなければ正確な角度情報は得られなかったが、本発
明では、停電時に外力を加えることが禁止されている傾
向にあったロボットアーム4に積極的に外力を加えるこ
とによって、バックアンプ電源9に電力が蓄えられ、ア
ップダウンカウンタ6の機能を維持させることができる
。従って、ロボットに予備運転などを行わせることによ
る作業効率の低下を未然に防止することが可能となる。
In this way, conventionally, when the stored power from the power source 10 is exhausted, the function of the up/down counter 6 stops, and accurate angle information cannot be obtained unless the robot arm 4 is operated in preliminary operation after the power source 10 is restored. However, in the present invention, by actively applying an external force to the robot arm 4, which tends to be prohibited from applying external force during a power outage, power is stored in the back amplifier power supply 9, and it is possible to The function of the counter 6 can be maintained. Therefore, it is possible to prevent a decrease in work efficiency caused by having the robot perform a preliminary operation or the like.

また発電用コイル7は、バックアップ電源9中の電力が
まだ残っている状態でも充電を行うことができるが、バ
ックアップ電源9中の電力がほとんどなくなってからあ
わてて充電を行うことのないように、バックアップ電源
9に非常用信号発生手段を設けてもよい。この場合、バ
ックアップ電源9の電圧がある基準以下に達したときに
、光または音などで警告がなされるしくみのものでよい
Furthermore, the power generation coil 7 can be charged even when the power in the backup power supply 9 is still remaining, but it is necessary to avoid charging the power generation coil 7 in a hurry when the power in the backup power supply 9 is almost exhausted. The backup power supply 9 may be provided with emergency signal generation means. In this case, when the voltage of the backup power supply 9 reaches a certain standard or lower, a warning may be issued with light or sound.

また、発電用コイル7で回転ドラム1の回転速度も同時
に検出することができることから、速度検出用に高分解
能のセンサを新たに取付ける必要もなくなる。そして角
度、速度を共に検出できる制御性の良い磁気エンコーダ
が実現する。
Furthermore, since the rotational speed of the rotating drum 1 can be detected at the same time by the power generation coil 7, there is no need to newly install a high-resolution sensor for speed detection. This creates a magnetic encoder with good controllability that can detect both angle and speed.

〔発明の効果〕 以上のように本発明によれば、停電時などKも常にアッ
プダウンカウンタに電力を供給することの可能な磁気エ
ンコーダが実現する。
[Effects of the Invention] As described above, according to the present invention, a magnetic encoder capable of constantly supplying power to the up/down counter even during a power outage or the like is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を示す磁気エンコーダのシステムブロッ
ク線図である。 ■・・・回転ドラム、5・・・磁気検出手段(磁気セン
サ)、6・・・記憶手段(アップダウンカウンタ)、7
・・・誘導起電力取込手段(発電用コイル)、9・・・
備蓄手段(バックアップ電源)、10・・・電源。
FIG. 1 is a system block diagram of a magnetic encoder showing the present invention. ■... Rotating drum, 5... Magnetic detection means (magnetic sensor), 6... Storage means (up/down counter), 7
...Induced electromotive force capturing means (power generation coil), 9...
Storage means (backup power supply), 10...power supply.

Claims (2)

【特許請求の範囲】[Claims] (1)永久磁石が複数並設された回転ドラムと、前記回
転ドラムの回転による前記永久磁石の磁束の変化から、
前記回転ドラムの回転角度を検知する磁気検出手段と、 前記磁気検出手段から検出される前記回転ドラムの回転
角度情報を記憶する記憶手段と、前記記憶手段に対して
電力を供給する電源と、前記電源が機能中に前記電源か
ら電力を充電し、前記電源が機能停止中に前記記憶手段
に対して充電した電力を供給する電力備蓄手段と、 前記回転ドラムの回転により前記永久磁石が発生する誘
導起電力を、前記備蓄手段に供給する誘導起電力取込手
段とからなることを特徴とする磁気エンコーダ。
(1) From a rotating drum in which a plurality of permanent magnets are arranged in parallel, and changes in the magnetic flux of the permanent magnets due to the rotation of the rotating drum,
a magnetic detection means for detecting a rotation angle of the rotary drum; a storage means for storing rotation angle information of the rotary drum detected by the magnetic detection means; a power source for supplying electric power to the storage means; power storage means for charging electric power from the power source while the power source is functioning and supplying the charged electric power to the storage means when the power source is not functioning; and induction generated by the permanent magnet by rotation of the rotating drum. A magnetic encoder comprising induced electromotive force capturing means for supplying electromotive force to the storage means.
(2)前記誘導起電力取込手段は、前記回転ドラムの回
転速度も検出することを特徴とする、請求項1記載の磁
気エンコーダ。
(2) The magnetic encoder according to claim 1, wherein the induced electromotive force capturing means also detects the rotational speed of the rotating drum.
JP7331088A 1988-03-29 1988-03-29 Magnetic encoder Pending JPH01248019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7331088A JPH01248019A (en) 1988-03-29 1988-03-29 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7331088A JPH01248019A (en) 1988-03-29 1988-03-29 Magnetic encoder

Publications (1)

Publication Number Publication Date
JPH01248019A true JPH01248019A (en) 1989-10-03

Family

ID=13514467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7331088A Pending JPH01248019A (en) 1988-03-29 1988-03-29 Magnetic encoder

Country Status (1)

Country Link
JP (1) JPH01248019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2703450A1 (en) * 1993-03-31 1994-10-07 Aut Comp Absolute incremental numerical encoder, installation and machine comprising this encoder
JP2007051989A (en) * 2005-08-19 2007-03-01 Yaskawa Electric Corp Generating set for multiple rotation type absolute value encoder and multiple rotation type absolute value encoder provided with generating set
JP2018105894A (en) * 2014-07-18 2018-07-05 株式会社ニコン Encoder device, drive device, stage device, and robot device
JP2020204625A (en) * 2016-01-18 2020-12-24 株式会社ニコン Encoder device, driving device, stage device, and robot device
JP2021001908A (en) * 2020-10-01 2021-01-07 株式会社ニコン Encoder device, drive device, stage device, and robot device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2703450A1 (en) * 1993-03-31 1994-10-07 Aut Comp Absolute incremental numerical encoder, installation and machine comprising this encoder
JP2007051989A (en) * 2005-08-19 2007-03-01 Yaskawa Electric Corp Generating set for multiple rotation type absolute value encoder and multiple rotation type absolute value encoder provided with generating set
JP4678506B2 (en) * 2005-08-19 2011-04-27 株式会社安川電機 Power generator for multi-rotation absolute value encoder and multi-turn absolute encoder with power generator
JP2018105894A (en) * 2014-07-18 2018-07-05 株式会社ニコン Encoder device, drive device, stage device, and robot device
JP2020204625A (en) * 2016-01-18 2020-12-24 株式会社ニコン Encoder device, driving device, stage device, and robot device
US11243096B2 (en) 2016-01-18 2022-02-08 Nikon Corporation Encoder apparatus, drive apparatus, stage apparatus, and robot apparatus
JP2021001908A (en) * 2020-10-01 2021-01-07 株式会社ニコン Encoder device, drive device, stage device, and robot device

Similar Documents

Publication Publication Date Title
KR930008780B1 (en) Speed control apparatus of movable equipment
EP0753933B1 (en) Method for starting permanent magnet synchronous motor with rotational position detector, and motor controller
JP3305331B2 (en) Angular position detector for controlling synchronous motor excited by permanent magnet
EP0365736B1 (en) Device for tracking and recording the position reached by a moving part, in particular for industrial-robot control
CN101266497A (en) Large power long range permanent magnetism synchronous linear motor servo drive apparatus
JPH01248019A (en) Magnetic encoder
JP2005513979A (en) Rotation drive mechanism with balanced reaction
US5491391A (en) Start up circuit for continuous sine-wave commutated brushless motors
US5198735A (en) Method for eliminating position tracking errors in the presence of resolver excitation errors for motion control systems
US20200132508A1 (en) Battery-less multi-turn absolute rotary encoder using capacitor
JPH09292264A (en) Absolute encoder
US5229697A (en) Sampling bipolar peak detector for sensing a non-symmetrical decay of an AC voltage signal
US5200683A (en) Method for optimizing sampling rates for position tracking for motion control systems
US5198739A (en) Software controllable circuit for resolver excitation switching in a motion control system
JP3046469B2 (en) Multi-turn absolute encoder
JPH114587A (en) Starting method of permanent magnet synchronous motor and permanent magnet synchronous motor controller equipped with the method
JPH10117496A (en) Automatic follow-up device
JP3138087B2 (en) Loom fixed position stop control device
JPS6186812A (en) Sun tracking device
JPS5574385A (en) Quick stop system for brushless dc motor
JP2546576Y2 (en) Magnetic bearing spindle device
JPH036714A (en) Detection system for absolute position of rotary shaft
TW202428408A (en) Position detection systems and actuators
JPH05248363A (en) Driving gear for rotary pump
JP2022118298A (en) Servo motor with brake and motor control system