JPH0124784B2 - - Google Patents

Info

Publication number
JPH0124784B2
JPH0124784B2 JP56106284A JP10628481A JPH0124784B2 JP H0124784 B2 JPH0124784 B2 JP H0124784B2 JP 56106284 A JP56106284 A JP 56106284A JP 10628481 A JP10628481 A JP 10628481A JP H0124784 B2 JPH0124784 B2 JP H0124784B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
chlorine
palladium
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56106284A
Other languages
Japanese (ja)
Other versions
JPS5810548A (en
Inventor
Ryuichiro Tsumura
Katsuji Myata
Usaji Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56106284A priority Critical patent/JPS5810548A/en
Publication of JPS5810548A publication Critical patent/JPS5810548A/en
Publication of JPH0124784B2 publication Critical patent/JPH0124784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、芳香族ニトロ化合物と一酸化炭素から
対応するイソシアナート類を直接合成する方法に
関するものである。 更に詳細には、本発明は貴金属またはその化合
物とヘテロ芳香環式窒素化合物の混合物、該窒素
化合物の配位した貴金属の錯体、及び該錯体と該
窒素化合物の混合物から成る群から選ばれた少な
くとも1種を含む触媒の存在下へ塩素を添加する
ことにより、芳香族ニトロ化合物と一酸化炭素を
高温加圧反応させて対応する芳香族イソシアナー
ト類を直接製造する方法に関するものである。 イソシアナート類は主としてポリウレタンの原
料として実用上極めて有用な物質であり、中でも
トリレンジイソシアナートは最も大規模に生産さ
れている。 イソシアナート類の現行の工業的製造法は、ニ
トロ化合物を還元してアミンとし、次いで一酸化
炭素と塩素から別途合成したホスゲンをアミンに
反応させてイソシアナート類を得る方法である。
しかし中間に水素や塩素を使用せず且、毒性の強
いホスゲンを取扱うことなく、ニトロ基を一酸化
炭素と直接反応させて1工程でイソシアナート基
に変えることにより芳香族イソシアナートが製造
できれば望ましい。この直接イソシアナート化法
では、ニトロ化合物から一段反応でしかも塩酸を
副生することなくイソシアナート類を製造できる
ことからも経済的に有利となる。 芳香族ニトロ化合物と一酸化炭素を高温加圧下
に貴金属化合物を主成分とする適当な触媒の存在
下に次式に従つて反応させて、芳香族イソシアナ Ar(NO2o+3nCO→Ar(NCO)o+2nCO2
……() ート類を直接合成する方法は公知であり、貴金属
化合物を主触媒とする種々な触媒系が多数提案さ
れているが未だ実用化されていない。それは、本
反応を実施するために高価な主触媒を多量に必要
とし、その上複雑な金属助触媒や促進剤を用いる
ために触媒の回収が困難となり、しかもイソシア
ナートの収率が低いことに起因している。 反応式()による芳香族イソシアナート類の
直接合成法としては、例えば、米国特許第
3576835号により貴金属化合物とヘテロ芳香族窒
素化合物の混合物及びこれらの錯体から成る触媒
を用いる方法が知られているが、触媒を多量に用
いてもイソシアナートの収率は低く、実用性がな
い。 米国特許第3884952号では芳香族ニトロ化合物
を蒸発させ、活性パラジウム触媒とハロゲン供与
性ガスの存在下に、この蒸気と一酸化炭素を気相
反応させる方法が知られている。しかし、この方
法でもイソシアナート収率が極めて低く、また蒸
発させ難い有用なジニトロ化合物は原料に用いら
れない。 特開昭49−108001号では還移金属と沃素または
臭素とから成る触媒の存在下で反応が行われてい
るが、イソシアナートが確認されるに過ぎない。 また、ハロゲン誘導体を用いる方法としては、
特開昭48−99144号でハロゲン化水素を添加する
方法が公知であるが、原料2,4−ジニトロルエ
ン(以下DNTと略記する)に対してパラジウム
触媒を2.5モル%用いても2,4−トリレンジイ
ソシアナート(以下TDIと略記する)の収率は38
%と低く、ハロゲン化水素による反応装置の腐食
が問題となる。特公昭45−35774号では助触媒の
バナジウム酸化物に酸ハロゲン化物(ホスゲン)
を併用してTDIの収率11.9%を得ているが、この
方法も実用性に乏しい。 他方、米国特許第3481968号では、芳香族ニト
ロ化合物とハロゲン化酸化物、例えばホスゲンと
一酸化炭素とを金属触媒の存在下に反応させてハ
ロゲン化芳香族イソシアナートを、低収率ではあ
るが、合成する方法を提供している。 以上の様に、沃素、臭素またはハロゲン化水素
や酸ハロゲン化物の様なハロゲン誘導体を芳香族
ニトロ化合物の一酸化炭素による還元的カルボニ
ル化反応の助触媒、反応促進剤または反応試剤と
して使用するイソシアナートの製造法は公知であ
るが、塩素を助触媒または促進剤として用いる方
法は知られていない。 前述の公知の方法では、触媒の活性や選択性が
低いために、高価な貴金属の主触媒を原料ニトロ
化合物に対して多量に用いなければならず、その
上目的物の収率も低い欠点がある。また主触媒が
反応中に分解して反応器壁に折出付着(プレート
アウト)し、触媒活性が一層低下すると共に、触
媒回収も困難となる欠点がある。更に触媒の活性
を高めるために種々な公知の助触媒を追加すると
触媒の回収が一層煩雑となるので経済的ではな
い。また反応装置の腐食も問題となる。 本発明者らは、これらの欠点を解決するため
に、ハロゲン、特に塩素の触媒的機能を鋭意研究
した結果、驚くべきことに塩素がイソシアナート
直接合成反応の助触媒として前助の臭素、沃素ま
たはハロゲン誘導体よりも遥かに有効な効果を発
現することを見出した。 更にその使用形態を検討することにより、上記
の欠点が解決されることを見極め本発明を完成し
た。 本発明の主たる目的は活性と選択性の優れた新
規な触媒を低濃度で用いて、芳香族ニトロ化合物
と一酸化炭素を反応させて対応するイソシアナー
ト類を工業的に直接製造する実用的な方法を提供
することにある。 また、本発明の他の目的は、触媒を極めて単純
な成分にせしめ、最も簡単には触媒中の金属成分
が主触媒の貴金属のみであり、助触媒を揮発性物
質とすることにより触媒として循環・回収使用の
容易なものを提供することにある。 また更に別の目的は、腐食性の極めて小さい触
媒を提供し、従つて反応装置に常用の材料を用い
ることのできる方法を提供することにある。 即ち、本発明はルテニウム、ロジウム、パラジ
ウム、オスミウム、イリジウム及び白金からなる
群から選ばれる貴金属またはその化合物とヘテロ
芳香環式窒素化合物の混合物、該窒素化合物の配
位した該貴金属の錯体、及び該錯体と該窒素化合
物の混合物から成る群から選ばれた少なくとも1
種の触媒と塩素の助触媒の存在下に、芳香族ニト
ロ化合物を一酸化炭素と高温高圧反応させてイソ
シアナート類を直接製造する方法である。 また更に本発明は、上記の触媒系に従来公知の
種々なるルイス酸、金属化合物、有機及び無機化
合物から成る助触媒、促進剤、添加剤等を1種ま
たはそれ以上併用して実施することができる。 本発明に原料として用いられる芳香族ニトロ化
合物は、芳香族モノ及びポリニトロ化合物であり
イソシアナート基及びこれと反応しない置換基を
含んでいてもよい。代表例としては、例えばニト
ロベンゼン、o−、m−及びp−ニトロトルエ
ン、o−ニトロ−p−キシレン、ニトロメシチレ
ン、1−クロロ−2−ニトロベンゼン、1,2−
ジクロロ−4−ニトロベンゼン、1−ブロモ−4
−ニトロベンゼン、1−フルオロ−4−ニトロベ
ンゼン、1−トリフルオロメチル−4−ニトロベ
ンゼン、o−、m−及びp−ニトロフエニルイソ
シアナート、o−及びp−ニトロアニソール、o
−及びp−ニトロフエネトール、ニトロベンツア
ルデヒド、ニトロベンゾイルクロリド、メチルニ
トロベンゾエート、ニトロベンゼンスルホニルク
ロリド、ニトロベンゾニトリル、2−イソシアナ
ート−4−ニトロトルエン、2−ニトロ−4−イ
ソシアナートトルエン、2−イソシアナート−6
−ニトロトルエン、ニトロナフタレン、5−ニト
ロナフチルイソシアナート、ニトロアンスラセ
ン、(4−イソシアナートフエニル)−(4′−ニト
ロフエニル)メタン、m−ジニトロベンゼン、
2,4−ジニトロトルエン、2,6−ジニトロト
ルエン、a,a′−ジニトロ−p−キシレン、ジニ
トロメシチレン、1−クロロ−2,4−ジニトロ
ベンゼン、2,4−ジニトロアニソール、1,5
−ジニトロナフタレン、4,4′−ジニトロビフエ
ニル、3,3′−ジメチル−4,4′−ジニトロビフ
エニル、ビス(p−ニトロフエニル)メタン、ビ
ス(p−ニトロフエニル)エーテル、ビス(p−
ニトロフエニル)チオエーテル、ビス(p−ニト
ロフエニル)スルホン、トリニトロベンゼン等が
ある。 これらの中でも特にニトロベンゼン、2,4−
及び2,6−ジニトロトルエン、1,2−ジクロ
ロ−4−ニトロベンゼン、1,5−ジニトロナフ
タレン、ビス(p−ニトロフエニル)メタン等は
実用的に望ましく用いられる。 主触媒として用いられる貴金属またはその化合
物としては、ルテニウム、ロジウム、パラジウ
ム、オスミウム、イリジウム及び白金の元素状物
質、またはこれら貴金属のハロゲン化物、硝酸
塩、イソシアニド、炭酸塩、カルボン酸塩、酸化
物、キレート類等の無機化合物やカルボニル、ア
ルキル、オレフイン、π−アリル等の配位子を含
む有機錯体が挙げられる。好ましくは例えばパラ
ジウムアスベスト、パラジウム−炭素、塩化パラ
ジウム、臭化パラジウム、沃化パラジウム、塩化
パラジウム酸ナトリウム、塩化テトラアンミンパ
ラジウム、ジクロロジアンミンパラジウム、塩化
ロジウム、臭化ロジウム、沃化ロジウム、塩化ロ
ジウム酸ナトリウム、塩化ロジウム酸アンモニウ
ム、ビス−エチレンパラジウムクロリド、ビス−
π−アリルパラジウムクロリド等がある。主触媒
は、例記した様に、例えばシリカ、アルミナ、シ
リカアルミナ、ゼオライト、カーボン、セライ
ト、ベントナイト、硅藻土、活性白土、炭酸カル
シウム、硫酸バリウム、石綿等に担持して、また
は混合して使用することができる。これにより触
媒の機能を調節し、取扱いと回収を容易にするこ
とができる。 主触媒の貴金属への配位子として作用するヘテ
ロ芳香環式窒素化合物とは、窒素原子を含む芳香
環から成る化合物であり、例えば、ピロール、N
−メチルピロール、ピラゾール、イミダゾール、
トリアゾール、ピリジン、α−、β−またはγ−
ピコリン、4−フエニルピリジン、4−ビニルピ
リジン、2−フルオロピリジン、2−クロロピリ
ジン、3−クロロ−ピリジン、2−ブロモピリジ
ン、3−ヒドロキシピリジン、2−メトキシピリ
ジン、α−ピコリンアルデヒド、α−ピコリン酸
メチルエステル、α−ピコリンアミド、2,6−
ジメチルピリジン、2−メチル−4−エチルピリ
ジン、2−クロロ−4−メチルピリジン、2,6
−ジシアノピリジン、5,6,7,8−テトラヒ
ドロキノリン、5,6,7,8−テトラヒドロイ
ソキノリン、キノリン、イソキニリン、アクリジ
ン、ベンゾキノリン、ベンゾイソキノリン、フエ
ナントリジン、ピリダジン、ピリミジン、ピラジ
ン、シンノリン、キナゾリン、キノキサリン、フ
タラジン、ナフサリジン、フエナジン等が挙げら
れる。 貴金属のハロゲン化物のヘテロ芳香環式窒素化
合物との錯体の代表例としてパラジウムとロジウ
ムについて例示すると、例えばビス(ピリジン)
ジクロロパラジウム()、ビス(ピリジン)ジ
ブロモパラジウム()、ビス(ピリジン)ジヨ
ードパラジウム()、ビス(α−ピコリン)ジ
クロロパラジウム()、ビス(キノリン)ジク
ロロパラジウム()、ビス(イソキノリン)ジ
クロロパラジウム、(ピリジン)(カルボニル)ジ
クロロパラジウム()、(2,6−ジメチルピリ
ジン)(カルボニル)ジクロロパラジウム()、
トリス(ピリジン)トリクロロロジウム()、
トリス(ピリジン)トリブロモロジウム()、
トリス(γ−ピコリン)トリクロロロジウム
()、トリス(イソキノリン)トリクロロロジウ
ム()等がある。 芳香族ニトロ化合物のカルボニル化によるイソ
シアナート類の生成は、上記の主触媒だけの存在
下においても進行するが(米国特許第3576835
号)、後述の比較例から明らかな様に触媒活性が
低過ぎて目的とするイソシアナート類の収率は極
めて低い。 イソシアナート類の直接製造法の経済性は触媒
の活性、選択性と回収性が最も関与している。従
つて貴金属を含む主触媒の活性と選択性を高め、
且つ高価な貴金属触媒の回収、再使用を容易にす
る助触媒の開発は最も重要であり、本発明はこれ
らに関し前記の欠点を改良する新規触媒系を開発
したものである。 本発明に助触媒として用いられる塩素は反応促
進効果が著しく、触媒量を添加するだけで貴金属
主触媒の使用量を大巾に引き下げることができ
る。イソシアナート直接製造法は触媒使用濃度に
よつてその経済性が大きく左右されるので、この
効果は製造コストの低減に著しく寄与することに
なる。 また塩素は適当量の使用により、他の助触媒の
一般的特性と異つて、反応選択性をそれ程下げる
ことなく触媒活性を高める効果を発現し得る点で
非常に望ましいものである。 本発明の使用条件下では塩素は、意外にも反応
中に系内有機物質の塩素化剤として作用すること
は認められない。また塩素の助触媒効果が、例え
ばもし芳香核が塩素化されゝば生じる塩化水素の
選択率激減を伴う反応促進効果とは明らかに異つ
た前記の望ましい特長を有することは実施例で証
明される。 また更に本発明の触媒系で別の金属助触媒を用
いない場合でもイソシアナートを高収率で得るこ
とができる。この様な場合には異種金属を反応液
に含まないので、特にパラジウム主触媒の分離回
収が容易となる利点が生じる。勿論本発明は他の
公知の助触媒、促進剤、添加剤等と併用すること
ができ、この際も塩素の使用が主触媒の分解を抑
制して、その再使用を容易にする効果を示す。 芳香族ニトロ化合物と一酸化炭素の反応は、不
可欠な触媒成分として、貴金属またはその化合物
(主触媒)、ヘテロ芳香環式窒素化合物(配位子)
と塩素(助触媒)の存在下に行われる。 主触媒の貴金属の使用量は、ニトロ化合物に対
して0.001から10モル%、望ましくは0.01から2
モル%の範囲である。ヘテロ芳香環式窒素化合物
の配位子は主触媒に対して、通常、1から500倍
モルであり、望ましくは2から100倍モルの範囲
が用いられる。助触媒としての塩素は反応条件に
よりその適当量は異なるが、主触媒に対して通常
は0.01から500倍モル、望ましくは0.1から50倍モ
ルの範囲が用いられる。塩素はガス状、液状また
は溶液状等の形態で用いられる。 触媒成分は使用方法が特定されるものではな
く、反応原料と任意の方法により液相中で接触さ
せて使用できる。 本発明の方法は溶剤を用いないで実施すること
もできるが、芳香族ニトロ化合物を溶剤で稀釈し
て反応させるのが望ましい。使用される溶剤は原
料や生成物に不活性な液体であればすべて有効で
あり、特に制限を受けるものではないが、通常は
例えばヘプタン、シクロヘキサン、ベンゼン、ト
ルエン、キシレン、各種石油留分の様な脂肪族、
脂環族及び芳香族炭化水素類、例えばジクロルメ
タン、パークロルエチレン、テトラクロルエタ
ン、クロルベンゼン、ジクロルベンゼン、クロロ
ナフタレンの様なハロゲン化炭化水素類、ニトリ
ル類、エーテル類、ケトン類等が用いられる。 溶剤の使用量は特に制限はなく全く任意であり
反応形式によつて適当量は異なる。しかしその使
用量は、通常は溶剤中の芳香族ニトロ化合物の濃
度として3から50重量%の範囲である。溶剤の混
合方法も特に制限はなく、芳香族ニトロ化合物、
主触媒及び助触媒と全く任意の順序と割合で混合
することができる。 反応原料として消費される一酸化炭素の量は化
学量論的には式()に従つてニトロ基1モル当
り3モルであり、同時に2モルの二酸化炭素が副
生される。実際に反応器内に仕込まれる一酸化炭
素の使用量は、芳香族ニトロ化合物の濃度、触媒
の使用量、反応器の形式、反応温度、反応圧力等
によつてその適当量が異なるが、最低限度は反応
器内のニトロ基量に対し3倍モルは必要であり、
通常は5から100倍モル、望ましくは7から20倍
モルの範囲である。また反応は副生する二酸化炭
素を含んだまま回分式で実施できるが、反応の進
行に応じて増加する二酸化炭素を反応器から除去
しながら、同時に一酸化炭素をリサイクルと補給
して、一酸化炭素に対する二酸化炭素の反応器内
モル比を小さく保つて反応させる方が望ましい。 反応温度は100〜250℃、望ましくは150〜230℃
の範囲が用いられる。 反応圧力は10〜1000Kg/cm2、通常は50〜500
Kg/cm2の範囲が用いられる。 反応時間は通常0.5〜10時間の範囲であり、前
記諸条件の選択に応じて実用的な最適時間がこの
範囲内で決定される。 本発明の実施形態を詳述すると、反応は回分
式、半連続式または連続式で実施することができ
る。通常は芳香族ニトロ化合物を溶剤に溶かした
溶液と触媒各成分は反応に先立ち混合して、また
は別々に反応器内へ供給される。反応器は一酸化
炭素で反応圧力に加圧され且つ反応温度に保たれ
る。連続式では連続的に反応器内の二酸化炭素混
合気体が排出され、一酸化炭素が圧入される。 所定時間を経過した反応混合物は、冷却されて
気液分離され、次いで過蒸留、抽出等に付さ
れ、製品イソシアナート類、溶剤、触媒及び副製
品に分けられる。分離回収された触媒と溶剤はそ
の尽または必要なら適当な処理を行なつて再び反
応に使用される。またもし反応混合液中に少量の
原料がまたはニトロイソシアナート中間体が残存
している場合は、同時にこれらも分離され反応器
へ循環できる。製品イソシアナート類は用途に応
じて慣用の精製操作が施される。 かくして本発明の方法に例えば、高活性な触媒
系の使用により芳香族ニトロ化合物から対応する
イソシアナート類を高収率で経済的に製造するこ
とができる。 次に実施例によつて本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。
尚、ニトロ化合物から目的とするイソシアナート
類への収率(または選択率)は触媒を増せば容易
に高めることができる。 以下、本発明を実施例で説明する。 実施例 1 オートクレーブ(SUS−316、500ml)に
DNT15.0g、ジクロロビス(キノリン)パラジ
ウム0.492g、キノリン7.46gと塩素ガス0.30gを
溶解させたO−ジクロルベンゼン195gを仕込み、
一酸化炭素で2回置換後に160Kg/cm2まで加圧し
た。撹拌しながら220℃に昇温し、同温度で3時
間10分反応後、室温に冷却して放圧し、反応液を
ガスクロマトグラフイー(15%シリコンDC550/
ガスクロームQ、150℃、ビフエニル内部標準)
で分析した。 生成液は原料DNTを含まず、11.83gのTDI、
微量の2−ニトロ−4−イソシアナートトルエン
(以下2N4ITと略記)と0.087gの4−ニトロ−2
−イソシアナートトルエン(以下4N2ITと略記)
を含有していた。DNTに対する収率は、TDIが
82.5%、その前駆体の4N2ITが0.6%であつた。
またDNT中のNO2基に対する得られた目的物
TDIと両前駆体中のNCO基の割合をNCO収率と
すると、これは82.8%となる。 反応後に、パラジウム主触媒から金属パラジウ
ムのプレートアウトは観察されず、仕込んだ錯体
の形でパラジウムが回収された。 また本明細書記載の実施例や本発明に属する実
験を繰返し行つたオートクレーブ、撹拌翼等の反
応装置について材質の腐食は認められなかつた。 実施例 2〜7 主触媒と塩素助触媒の使用量並びに反応時間を
表1記載の通りにし、またキノリンをPNTに対
して46モル%用いた以外は実施例1と同様に反応
を行つた。結果を表1に示す。 比較例 1 助触媒塩素の効果を明示するために、塩素を使
用せず、DNTを15.0gの代りに14.8g用いた以外
は実施例5〜7と同様の反応条件で反応を行つ
た。結果を表1に併記する。 本発明による塩素助触媒の効果は、一定のパラ
ジウムとキノリンの使用量において塩素の添加量
を変化させた実施例2〜4または5〜7の比較並
びに後者と塩素無添加の比較例1との比較から明
らかとなる。即ち塩素を用いることによりDNT
転化率が高まり、より短時間で100%に達すると
共に、目的とするTDI収率が約40%以上向上し
た。この反応促進効果は反応選択性を余り下げず
に機能している。主触媒濃度が異なる両実施例系
列共に塩素の使用量を増す程、反応促進効果が顕
著となりTDI収率が一般に増大することが分か
る。
The present invention relates to a method for directly synthesizing corresponding isocyanates from aromatic nitro compounds and carbon monoxide. More particularly, the present invention provides at least one compound selected from the group consisting of a mixture of a noble metal or a compound thereof and a heteroaromatic nitrogen compound, a complex of a noble metal coordinated with the nitrogen compound, and a mixture of the complex and the nitrogen compound. The present invention relates to a method for directly producing a corresponding aromatic isocyanate by reacting an aromatic nitro compound and carbon monoxide under high temperature and pressure by adding chlorine in the presence of a catalyst containing one type of catalyst. Isocyanates are practically extremely useful substances mainly as raw materials for polyurethane, and among them, tolylene diisocyanate is produced on the largest scale. The current industrial method for producing isocyanates is to reduce a nitro compound to an amine, and then react the amine with phosgene, which is separately synthesized from carbon monoxide and chlorine, to obtain isocyanates.
However, it would be desirable if aromatic isocyanates could be produced by directly reacting nitro groups with carbon monoxide and converting them into isocyanate groups in one step, without using hydrogen or chlorine in the intermediate, and without handling highly toxic phosgene. . This direct isocyanation method is economically advantageous because isocyanates can be produced from a nitro compound in a one-step reaction without producing hydrochloric acid as a by-product. An aromatic nitro compound and carbon monoxide are reacted at high temperature and pressure in the presence of a suitable catalyst containing a noble metal compound as a main component according to the following formula to form an aromatic isocyanate Ar(NO 2 ) o +3nCO→Ar(NCO ) o + 2nCO2
...() Methods for directly synthesizing compounds are well known, and many various catalyst systems using noble metal compounds as main catalysts have been proposed, but none have been put into practical use yet. In order to carry out this reaction, a large amount of expensive main catalyst is required, and in addition, the use of complex metal promoters and promoters makes it difficult to recover the catalyst, and furthermore, the yield of isocyanate is low. It is caused by As a method for directly synthesizing aromatic isocyanates using reaction formula (), for example, U.S. Patent No.
No. 3,576,835 discloses a method using a catalyst consisting of a mixture of a noble metal compound and a heteroaromatic nitrogen compound and a complex thereof, but even if a large amount of the catalyst is used, the yield of isocyanate is low and it is not practical. US Pat. No. 3,884,952 discloses a method in which an aromatic nitro compound is vaporized and the vapor is reacted with carbon monoxide in the gas phase in the presence of an active palladium catalyst and a halogen-donating gas. However, even with this method, the isocyanate yield is extremely low, and useful dinitro compounds that are difficult to evaporate cannot be used as raw materials. In JP-A-49-108001, the reaction is carried out in the presence of a catalyst consisting of a reduction metal and iodine or bromine, but only isocyanate is detected. In addition, as a method using halogen derivatives,
A method of adding hydrogen halide is known in JP-A No. 48-99144, but even if 2.5 mol% of palladium catalyst is used with respect to raw material 2,4-dinitroluene (hereinafter abbreviated as DNT), 2,4- The yield of tolylene diisocyanate (hereinafter abbreviated as TDI) is 38
%, and corrosion of the reactor due to hydrogen halides becomes a problem. In Japanese Patent Publication No. 45-35774, an acid halide (phosgene) is added to vanadium oxide as a co-catalyst.
A yield of TDI of 11.9% was obtained by using this method in combination, but this method is also not practical. On the other hand, in U.S. Pat. No. 3,481,968, a halogenated aromatic isocyanate is produced by reacting an aromatic nitro compound with a halogenated oxide, such as phosgene and carbon monoxide in the presence of a metal catalyst, albeit in a low yield. , provides a method for synthesis. As described above, isocytyl chloride is an isocyanate which uses iodine, bromine, or halogen derivatives such as hydrogen halides and acid halides as cocatalysts, reaction promoters, or reaction reagents in the reductive carbonylation reaction of aromatic nitro compounds with carbon monoxide. Although methods for producing Nate are known, methods using chlorine as a cocatalyst or promoter are not known. The above-mentioned known methods have the disadvantage that, due to low catalyst activity and selectivity, a large amount of an expensive precious metal main catalyst must be used relative to the starting nitro compound, and the yield of the target product is also low. be. In addition, the main catalyst decomposes during the reaction and adheres to the wall of the reactor (plate-out), further reducing the catalyst activity and making recovery of the catalyst difficult. Furthermore, adding various known co-catalysts to increase the activity of the catalyst will make recovery of the catalyst even more complicated, which is not economical. Corrosion of the reactor is also a problem. In order to solve these drawbacks, the present inventors have conducted intensive research on the catalytic function of halogens, especially chlorine, and have surprisingly found that chlorine can act as a co-catalyst in the direct isocyanate synthesis reaction. It has also been found that it exhibits far more effective effects than halogen derivatives. Further, by studying the usage pattern, it was determined that the above-mentioned drawbacks could be solved, and the present invention was completed. The main purpose of the present invention is to develop a practical method for directly producing the corresponding isocyanates industrially by reacting aromatic nitro compounds with carbon monoxide using a novel catalyst with excellent activity and selectivity at low concentrations. The purpose is to provide a method. Another object of the present invention is to make the catalyst extremely simple, and in the simplest case, the metal component in the catalyst is only the noble metal of the main catalyst, and by making the co-catalyst a volatile substance, it can be recycled as a catalyst.・Providing products that are easy to collect and use. Yet another object is to provide a catalyst that is extremely corrosive and to provide a process that allows the use of conventional materials for the reactor. That is, the present invention provides a mixture of a noble metal selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, and platinum and a heteroaromatic nitrogen compound, a complex of the noble metal coordinated with the nitrogen compound, and at least one selected from the group consisting of a mixture of a complex and the nitrogen compound;
This is a method for directly producing isocyanates by reacting aromatic nitro compounds with carbon monoxide at high temperature and high pressure in the presence of a seed catalyst and a chlorine promoter. Furthermore, the present invention can be carried out by using one or more of the conventionally known Lewis acids, metal compounds, organic and inorganic compounds, co-catalysts, promoters, additives, etc. in the above-mentioned catalyst system. can. The aromatic nitro compound used as a raw material in the present invention is an aromatic mono- or polynitro compound, and may contain an isocyanate group and a substituent that does not react with the isocyanate group. Representative examples include, for example, nitrobenzene, o-, m- and p-nitrotoluene, o-nitro-p-xylene, nitromesitylene, 1-chloro-2-nitrobenzene, 1,2-
Dichloro-4-nitrobenzene, 1-bromo-4
-Nitrobenzene, 1-fluoro-4-nitrobenzene, 1-trifluoromethyl-4-nitrobenzene, o-, m- and p-nitrophenyl isocyanate, o- and p-nitroanisole, o-
- and p-nitrophenetol, nitrobenzaldehyde, nitrobenzoyl chloride, methylnitrobenzoate, nitrobenzenesulfonyl chloride, nitrobenzonitrile, 2-isocyanato-4-nitrotoluene, 2-nitro-4-isocyanatotoluene, 2- Isocyanate-6
-nitrotoluene, nitronaphthalene, 5-nitronaphthylisocyanate, nitroanthracene, (4-isocyanatophenyl)-(4'-nitrophenyl)methane, m-dinitrobenzene,
2,4-dinitrotoluene, 2,6-dinitrotoluene, a,a'-dinitro-p-xylene, dinitromesitylene, 1-chloro-2,4-dinitrobenzene, 2,4-dinitroanisole, 1,5
-dinitronaphthalene, 4,4'-dinitrobiphenyl, 3,3'-dimethyl-4,4'-dinitrobiphenyl, bis(p-nitrophenyl)methane, bis(p-nitrophenyl)ether, bis(p-
Examples include nitrophenyl)thioether, bis(p-nitrophenyl)sulfone, trinitrobenzene, and the like. Among these, nitrobenzene, 2,4-
and 2,6-dinitrotoluene, 1,2-dichloro-4-nitrobenzene, 1,5-dinitronaphthalene, bis(p-nitrophenyl)methane, etc. are preferably used for practical purposes. The noble metals or compounds thereof used as the main catalyst include elemental substances of ruthenium, rhodium, palladium, osmium, iridium, and platinum, or halides, nitrates, isocyanides, carbonates, carboxylates, oxides, and chelates of these noble metals. and organic complexes containing ligands such as carbonyl, alkyl, olefin, and π-allyl. Preferably, for example, palladium asbestos, palladium-carbon, palladium chloride, palladium bromide, palladium iodide, sodium chloride palladate, tetraammine palladium chloride, dichlorodiammine palladium, rhodium chloride, rhodium bromide, rhodium iodide, sodium chloride rhodate, Ammonium chloride rhodate, bis-ethylene palladium chloride, bis-
Examples include π-allyl palladium chloride. The main catalyst can be supported on, for example, silica, alumina, silica-alumina, zeolite, carbon, celite, bentonite, diatomaceous earth, activated clay, calcium carbonate, barium sulfate, asbestos, etc., or mixed with it, as mentioned above. can be used. This allows the function of the catalyst to be adjusted and ease of handling and recovery. The heteroaromatic nitrogen compound that acts as a ligand to the noble metal of the main catalyst is a compound consisting of an aromatic ring containing a nitrogen atom, such as pyrrole, N
-Methylpyrrole, pyrazole, imidazole,
Triazole, pyridine, α-, β- or γ-
Picoline, 4-phenylpyridine, 4-vinylpyridine, 2-fluoropyridine, 2-chloropyridine, 3-chloro-pyridine, 2-bromopyridine, 3-hydroxypyridine, 2-methoxypyridine, α-picolinaldehyde, α -Picolinic acid methyl ester, α-picolinamide, 2,6-
Dimethylpyridine, 2-methyl-4-ethylpyridine, 2-chloro-4-methylpyridine, 2,6
-dicyanopyridine, 5,6,7,8-tetrahydroquinoline, 5,6,7,8-tetrahydroisoquinoline, quinoline, isoquiniline, acridine, benzoquinoline, benzoisoquinoline, phenanthridine, pyridazine, pyrimidine, pyrazine, cinnoline, Examples include quinazoline, quinoxaline, phthalazine, naphthalizine, phenazine and the like. Typical examples of complexes of noble metal halides with heteroaromatic nitrogen compounds include palladium and rhodium, such as bis(pyridine).
Dichloropalladium (), bis(pyridine) dibromopalladium (), bis(pyridine) diiodopalladium (), bis(α-picoline) dichloropalladium (), bis(quinoline) dichloropalladium (), bis(isoquinoline) dichloropalladium , (pyridine)(carbonyl)dichloropalladium (), (2,6-dimethylpyridine)(carbonyl)dichloropalladium (),
Tris (pyridine) trichlororhodium (),
tris(pyridine) tribromorodium (),
Examples include tris(γ-picoline) trichlororhodium (), tris(isoquinoline) trichlororhodium (), and the like. The production of isocyanates by carbonylation of aromatic nitro compounds proceeds even in the presence of the above-mentioned main catalyst alone (US Pat. No. 3,576,835).
As is clear from the comparative examples described below, the catalyst activity is too low and the yield of the target isocyanates is extremely low. The economic efficiency of the direct production method of isocyanates is most closely related to the activity, selectivity and recovery of the catalyst. Therefore, increasing the activity and selectivity of the main catalyst containing precious metals,
Furthermore, the development of co-catalysts that facilitate the recovery and reuse of expensive precious metal catalysts is of utmost importance, and in this regard, the present invention has developed a new catalyst system that improves the above-mentioned drawbacks. Chlorine used as a cocatalyst in the present invention has a remarkable effect of accelerating the reaction, and the amount of the noble metal main catalyst to be used can be greatly reduced by simply adding a catalytic amount. Since the economic efficiency of the direct isocyanate production method is greatly influenced by the concentration of the catalyst used, this effect will significantly contribute to reducing production costs. Further, chlorine is highly desirable in that, when used in an appropriate amount, it can exhibit the effect of increasing catalytic activity without significantly reducing reaction selectivity, unlike the general characteristics of other co-catalysts. Under the conditions of use of the present invention, chlorine is surprisingly not found to act as a chlorinating agent for organic substances in the system during the reaction. Furthermore, it is demonstrated by examples that the cocatalytic effect of chlorine has the above-mentioned desirable features that are clearly different from the reaction promoting effect accompanied by a drastic decrease in the selectivity of hydrogen chloride, which occurs if aromatic nuclei are chlorinated, for example. . Furthermore, isocyanate can be obtained in high yield even when no separate metal promoter is used in the catalyst system of the present invention. In such a case, since the reaction solution does not contain a different metal, there is an advantage that the palladium main catalyst can be easily separated and recovered. Of course, the present invention can be used in combination with other known promoters, promoters, additives, etc. In this case as well, the use of chlorine has the effect of suppressing the decomposition of the main catalyst and facilitating its reuse. . The reaction between aromatic nitro compounds and carbon monoxide uses a noble metal or its compound (main catalyst) and a heteroaromatic nitrogen compound (ligand) as essential catalyst components.
and chlorine (cocatalyst). The amount of noble metal used as the main catalyst is 0.001 to 10 mol%, preferably 0.01 to 2 mol%, based on the nitro compound.
The range is mol%. The amount of the ligand of the heteroaromatic nitrogen compound is generally 1 to 500 times the mole of the main catalyst, preferably 2 to 100 times the mole of the main catalyst. The appropriate amount of chlorine as a promoter varies depending on the reaction conditions, but it is usually used in an amount of 0.01 to 500 times the mole of the main catalyst, preferably 0.1 to 50 times the mole of the main catalyst. Chlorine is used in a gaseous, liquid or solution form. The method of use of the catalyst component is not specified, and it can be used by bringing it into contact with the reaction raw material in a liquid phase by any method. Although the method of the present invention can be carried out without using a solvent, it is preferable to dilute the aromatic nitro compound with a solvent before reacting. The solvent used is any liquid that is inert to the raw materials and products, and is not particularly limited, but it is usually a solvent such as heptane, cyclohexane, benzene, toluene, xylene, or various petroleum distillates. aliphatic,
Alicyclic and aromatic hydrocarbons, such as dichloromethane, perchlorethylene, tetrachloroethane, chlorobenzene, dichlorobenzene, halogenated hydrocarbons such as chloronaphthalene, nitriles, ethers, ketones, etc. are used. It will be done. The amount of the solvent to be used is not particularly limited and is completely arbitrary, and the appropriate amount varies depending on the type of reaction. However, the amount used usually ranges from 3 to 50% by weight of the aromatic nitro compound in the solvent. There are no particular restrictions on the method of mixing solvents, and aromatic nitro compounds,
They can be mixed with the main catalyst and co-catalyst in quite any order and proportions. The amount of carbon monoxide consumed as a reaction raw material is stoichiometrically 3 moles per mole of nitro group according to formula (), and at the same time 2 moles of carbon dioxide are by-produced. The amount of carbon monoxide actually used in the reactor varies depending on the concentration of the aromatic nitro compound, the amount of catalyst used, the type of reactor, reaction temperature, reaction pressure, etc., but the appropriate amount is the minimum amount. The limit is 3 times the molar amount relative to the amount of nitro groups in the reactor,
The amount is usually 5 to 100 times the amount, preferably 7 to 20 times the amount. In addition, the reaction can be carried out batchwise while containing the by-product carbon dioxide, but while the carbon dioxide that increases as the reaction progresses is removed from the reactor, at the same time carbon monoxide is recycled and replenished, monoxide It is preferable to carry out the reaction while keeping the molar ratio of carbon dioxide to carbon in the reactor small. Reaction temperature is 100-250℃, preferably 150-230℃
range is used. Reaction pressure is 10-1000Kg/cm 2 , usually 50-500
A range of Kg/cm 2 is used. The reaction time is usually in the range of 0.5 to 10 hours, and the practical optimum time is determined within this range depending on the selection of the above conditions. To elaborate on embodiments of the invention, the reaction can be carried out batchwise, semi-continuously or continuously. Usually, a solution of an aromatic nitro compound dissolved in a solvent and each component of the catalyst are mixed before the reaction or are fed separately into the reactor. The reactor is pressurized with carbon monoxide to reaction pressure and maintained at reaction temperature. In the continuous type, the carbon dioxide mixture gas in the reactor is continuously discharged and carbon monoxide is injected under pressure. The reaction mixture after a predetermined period of time is cooled, separated into gas and liquid, and then subjected to overdistillation, extraction, etc., and separated into product isocyanates, solvent, catalyst, and by-products. The separated and recovered catalyst and solvent are exhausted or, if necessary, subjected to appropriate treatment and used again in the reaction. Also, if small amounts of raw materials or nitroisocyanate intermediates remain in the reaction mixture, these can also be separated and recycled to the reactor at the same time. The product isocyanates are subjected to conventional purification operations depending on the intended use. Thus, for example, the use of a highly active catalyst system in the process of the invention makes it possible to economically prepare the corresponding isocyanates from aromatic nitro compounds in high yields. EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.
Note that the yield (or selectivity) from the nitro compound to the target isocyanate can be easily increased by increasing the catalyst. The present invention will be explained below with reference to Examples. Example 1 Autoclave (SUS-316, 500ml)
Prepared 195 g of O-dichlorobenzene in which 15.0 g of DNT, 0.492 g of dichlorobis(quinoline) palladium, 7.46 g of quinoline and 0.30 g of chlorine gas were dissolved.
After replacing with carbon monoxide twice, the pressure was increased to 160 Kg/cm 2 . The temperature was raised to 220°C with stirring, and after reacting at the same temperature for 3 hours and 10 minutes, it was cooled to room temperature, the pressure was released, and the reaction solution was subjected to gas chromatography (15% silicon DC550/
Gaschrome Q, 150℃, biphenyl internal standard)
It was analyzed in The product liquid does not contain raw material DNT, and contains 11.83g of TDI,
A trace amount of 2-nitro-4-isocyanatotoluene (hereinafter abbreviated as 2N4IT) and 0.087g of 4-nitro-2
-Isocyanate toluene (hereinafter abbreviated as 4N2IT)
It contained. The yield relative to DNT is
82.5%, and its precursor 4N2IT was 0.6%.
Also the obtained target for NO 2 group in DNT
If the NCO yield is the proportion of NCO groups in TDI and both precursors, this is 82.8%. After the reaction, no plate-out of metallic palladium was observed from the palladium main catalyst, and palladium was recovered in the form of the charged complex. Furthermore, no corrosion of the materials was observed in the reactors such as autoclaves and stirring blades in which the Examples described in this specification and the experiments pertaining to the present invention were repeatedly conducted. Examples 2 to 7 The reaction was carried out in the same manner as in Example 1, except that the amounts of the main catalyst and chlorine co-catalyst used and the reaction time were as shown in Table 1, and 46 mol% of quinoline was used based on PNT. The results are shown in Table 1. Comparative Example 1 In order to demonstrate the effect of chlorine promoter, a reaction was carried out under the same reaction conditions as in Examples 5 to 7, except that chlorine was not used and 14.8 g of DNT was used instead of 15.0 g. The results are also listed in Table 1. The effect of the chlorine co-catalyst according to the present invention was compared with Examples 2 to 4 or 5 to 7 in which the amount of chlorine added was varied at a constant amount of palladium and quinoline, and the latter with Comparative Example 1 in which no chlorine was added. It becomes clear from the comparison. That is, by using chlorine, DNT
The conversion rate increased, reaching 100% in a shorter time, and the desired TDI yield increased by about 40% or more. This reaction promoting effect functions without significantly reducing reaction selectivity. It can be seen that in both series of examples with different main catalyst concentrations, as the amount of chlorine used increases, the reaction promotion effect becomes more pronounced and the TDI yield generally increases.

【表】 実施例 8〜11 主触媒の使用量をPd/DNTで0.2重量%とし、
表2に記載の塩素使用量で5時間反応を行つた以
外は実施例2と全く同様にした。結果を表2に示
す。 比較例 2 塩素を使用せず、DNT15.0gの代りに14.8g用
いた以外は実施例8〜11と同様の条件で反応を行
つた。 比較例 3、4と5 塩素の代りに臭素、沃素とホスゲンダイマーを
それぞれ主触媒に対して15、15と8モル比で添加
して用いた以外は実施例9と同様に反応を行つ
た。結果を表2に併記する。 比較例 6 塩化水素をキノリン塩酸塩として主触媒に対し
て29モル比で塩素の代りに添加し、キノリンは全
体で所定量となる様に用いて、3.5時間反応させ
た以外は実施例8と同様に行つた。結果を表2に
併記する。
[Table] Examples 8 to 11 The amount of main catalyst used was 0.2% by weight of Pd/DNT,
The same procedure as in Example 2 was carried out except that the reaction was carried out for 5 hours using the amount of chlorine shown in Table 2. The results are shown in Table 2. Comparative Example 2 A reaction was carried out under the same conditions as in Examples 8 to 11, except that chlorine was not used and 14.8 g of DNT was used instead of 15.0 g. Comparative Examples 3, 4 and 5 The reaction was carried out in the same manner as in Example 9 except that bromine, iodine and phosgene dimer were added in molar ratios of 15, 15 and 8 to the main catalyst, respectively, in place of chlorine. The results are also listed in Table 2. Comparative Example 6 Same as Example 8 except that hydrogen chloride was added as quinoline hydrochloride in place of chlorine at a molar ratio of 29 to the main catalyst, quinoline was used in a predetermined amount in total, and the reaction was carried out for 3.5 hours. I went in the same way. The results are also listed in Table 2.

【表】 実施例8〜11と比較例2の考察からも、前述と
同様の塩素の助触媒効果が認められる。一般にこ
の種の逐次反応ではTDI収率が高まるにつれて全
イソシアナートの選択率が著しく下がり易い傾向
が知られているが、実施例9〜11では比較例2に
比べてTDI収率が3倍前後まで向上しているにも
拘らず、全イソシアナートの選択率が殆んど変ら
ない。従つて本発明の触媒における塩素は反応選
択率の低下を抑制しながら、反応速度を高めてジ
イソシアナートTDIの収率を著しく高める効果を
有することが容易に分かる。 臭素または沃素のハロゲンを添加すると、触媒
の活性と選択性が寧ろ著しく低下するが、塩素は
これらと全く逆の望ましい効果を示すことが比較
例3または4と実施例9の対応から明瞭である。 また実施例9と比較例5の対照から、助触媒と
して塩素はホスゲン(ダイマーの熱分解で容易に
生成する)よりも高いDNT転化率、TDI収率と
全イソシアナート選択率を与え、従つて反応促進
効果と選択性向上効果共に特異的に優れているこ
とが明らかとなる。塩化水素は反応を非常に速め
るが、選択率を極度に下げることが表2から分か
り、これに反して塩素は選択率を下げずにTDI収
率を高めることができる。 実施例 12 ニトロベンゼン20.3gをDNTの代りに用いて、
3時間反応させた以外は実施例9と同様にして反
応を行つた。フエニルイソシアナートの収率は
86.3%であつた。 実施例 13 塩化パラジウム0.100gをジクロロビス(キノ
リン)パラジウムの代りに用いた以外は実施例6
と同様に反応を行つた。生成物の収率はTDI74.0
%、2N4IT1.0%と4N2IT5.2%であつた。 実施例 14 三塩化ロジウム0.118gを主触媒にして反応を
5時間とした以外は実施例6と同様に反応を行つ
た。収率はTDI40.0%、2N4IT8.8%と4N2IT27.0
%であつた。 実施例 15 主触媒としてジクロロビス(ピリジン)パラジ
ウム0.095gとキノリンの代りにピリジン3.0gを
用いた以外は実施例10と同様に反応を行つた。
DNT転化率は97.4%で、収率はTDI28.2%、
2N4IT13.3%と4N2IT28.6%であつた。 比較例 7 実施例15の比較として、塩素を用いない場合
は、DNT転化率が63.5%、収率がTDI4.6%
2N4IT20.0%と4N2IT29.8%であつた。 実施例 16 実施例10に別の助触媒としてオキシ三塩化バナ
ジウム0.049gとオキシ三塩化燐0.087gを併用し
た場合には、収率としてTDI61.2%、2N4IT4.0
%と4N2IT12.3%が得られた。 実施例 17 実施例10に別の反応促進剤としてt−ブチルク
ロライド0.183gを併用した場合には、収率とし
てTDI68.7%、2N4IT0.7%と4N2IT5.2%が得ら
れた。
[Table] From the consideration of Examples 8 to 11 and Comparative Example 2, the same promoter effect of chlorine as mentioned above is recognized. It is generally known that in this type of sequential reaction, as the TDI yield increases, the selectivity for all isocyanates tends to decrease significantly, but in Examples 9 to 11, the TDI yield was approximately three times that of Comparative Example 2. Despite this improvement, the selectivity of all isocyanates remains almost unchanged. Therefore, it is easily seen that chlorine in the catalyst of the present invention has the effect of increasing the reaction rate and significantly increasing the yield of diisocyanate TDI while suppressing a decrease in reaction selectivity. It is clear from the correspondence between Comparative Examples 3 or 4 and Example 9 that when halogens such as bromine or iodine are added, the activity and selectivity of the catalyst are rather significantly reduced, but chlorine exhibits the completely opposite desired effect. . Also, from the comparison between Example 9 and Comparative Example 5, chlorine as a cocatalyst gives higher DNT conversion, TDI yield, and total isocyanate selectivity than phosgene (which is easily generated by thermal decomposition of dimer), and therefore It is clear that the reaction promotion effect and selectivity improvement effect are both uniquely excellent. It can be seen from Table 2 that hydrogen chloride greatly speeds up the reaction but severely reduces the selectivity, whereas chlorine can increase the TDI yield without reducing the selectivity. Example 12 Using 20.3 g of nitrobenzene instead of DNT,
The reaction was carried out in the same manner as in Example 9 except that the reaction was carried out for 3 hours. The yield of phenyl isocyanate is
It was 86.3%. Example 13 Example 6 except that 0.100 g of palladium chloride was used instead of dichlorobis(quinoline)palladium.
The reaction was carried out in the same manner. Product yield is TDI74.0
%, 2N4IT 1.0% and 4N2IT 5.2%. Example 14 A reaction was carried out in the same manner as in Example 6 except that 0.118 g of rhodium trichloride was used as the main catalyst and the reaction was carried out for 5 hours. Yield is TDI40.0%, 2N4IT8.8% and 4N2IT27.0
It was %. Example 15 The reaction was carried out in the same manner as in Example 10, except that 0.095 g of dichlorobis(pyridine)palladium was used as the main catalyst and 3.0 g of pyridine was used instead of quinoline.
DNT conversion rate was 97.4%, yield was TDI 28.2%,
2N4IT was 13.3% and 4N2IT was 28.6%. Comparative Example 7 As a comparison with Example 15, when chlorine is not used, the DNT conversion rate is 63.5% and the yield is TDI 4.6%.
2N4IT was 20.0% and 4N2IT was 29.8%. Example 16 When 0.049 g of vanadium oxytrichloride and 0.087 g of phosphorus oxytrichloride were used together as another promoter in Example 10, the yield was 61.2% TDI and 4.0 2N4IT.
% and 4N2IT12.3% were obtained. Example 17 When 0.183 g of t-butyl chloride was used as another reaction accelerator in Example 10, yields of 68.7% of TDI, 0.7% of 2N4IT, and 5.2% of 4N2IT were obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族ニトロ化合物と一酸化炭素とを、ルテ
ニウム、ロジウム、パラジウム、オスミウム、イ
リジウム及び白金からなる群から選ばれる貴金属
またはその化合物とヘテロ芳香環式窒素化合物の
混合物、該窒素化合物の配位した該貴金属の錯
体、及び該錯体と該窒素化合物の混合物から成る
群から選ばれた少なくとも一種を含む触媒の存在
下に、高温高圧で反応させるイソシアネート類の
製造法において、塩素を助触媒に用いることを特
徴とする芳香族イソシアナート類の製造方法。
1 A mixture of an aromatic nitro compound and carbon monoxide, a noble metal selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium, and platinum, and a heteroaromatic nitrogen compound; Using chlorine as a co-catalyst in a method for producing isocyanates in which the reaction is carried out at high temperature and pressure in the presence of a catalyst containing at least one selected from the group consisting of a complex of the noble metal and a mixture of the complex and the nitrogen compound. A method for producing aromatic isocyanates, characterized by:
JP56106284A 1981-07-09 1981-07-09 Preparation of aromatic isocyanate Granted JPS5810548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56106284A JPS5810548A (en) 1981-07-09 1981-07-09 Preparation of aromatic isocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56106284A JPS5810548A (en) 1981-07-09 1981-07-09 Preparation of aromatic isocyanate

Publications (2)

Publication Number Publication Date
JPS5810548A JPS5810548A (en) 1983-01-21
JPH0124784B2 true JPH0124784B2 (en) 1989-05-15

Family

ID=14429766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56106284A Granted JPS5810548A (en) 1981-07-09 1981-07-09 Preparation of aromatic isocyanate

Country Status (1)

Country Link
JP (1) JPS5810548A (en)

Also Published As

Publication number Publication date
JPS5810548A (en) 1983-01-21

Similar Documents

Publication Publication Date Title
US3993685A (en) Process for the production of urethanes
JPS5934702B2 (en) Method for producing α・α-dimethylbenzyl isocyanate or its nuclear substituted product
CA1056847A (en) Process for producing an aromatic urethane
CA1133009A (en) Process for the preparation of urethane
US3585231A (en) Preparation of aromatic isocyanates
JPS6318939B2 (en)
JPH0124784B2 (en)
US4469882A (en) Process for the production of aromatic carbamates
JPS61191660A (en) Production of aromatic isocyanate
US4629804A (en) Process for preparation of urethanes
JPS6342614B2 (en)
US3719699A (en) Process for the production of polyisocyanates
JPS6318576B2 (en)
JPH0528698B2 (en)
JPS6342615B2 (en)
JPS6160825B2 (en)
US3823174A (en) Process for preparation of aromatic isocyanates
US3600419A (en) Preparation of aromatic isocyanates
US4687872A (en) Process for the preparation of urethanes
US3657308A (en) Catalytic carbonylation of aromatic nitro compounds in the presence of organic carbonates
JPS585903B2 (en) Production method of aromatic isocyanate
JPS6160826B2 (en)
US3781321A (en) Preparation of aromatic isocyanates
US4709073A (en) Process for the preparation of urethanes
JPS61191662A (en) Production of aromatic isocyanate