JPH01247785A - Two-cylinder compressor - Google Patents

Two-cylinder compressor

Info

Publication number
JPH01247785A
JPH01247785A JP7335888A JP7335888A JPH01247785A JP H01247785 A JPH01247785 A JP H01247785A JP 7335888 A JP7335888 A JP 7335888A JP 7335888 A JP7335888 A JP 7335888A JP H01247785 A JPH01247785 A JP H01247785A
Authority
JP
Japan
Prior art keywords
compression element
stage compression
stage
low
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7335888A
Other languages
Japanese (ja)
Inventor
Shoichi Yoshida
正一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7335888A priority Critical patent/JPH01247785A/en
Publication of JPH01247785A publication Critical patent/JPH01247785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To improve efficiency of a compressor by a method wherein compression timing of a high-stage compression element is set forward of that of a low-stage compression element by approx. 270 deg. in phase. CONSTITUTION:In a two-cylinder rotary compressor, a low-stage compression element 5 and a high-stage compression element 6 are located vertically with respect to two crank shafts 2, 3. Compressed gas sucked from an inlet port 19 of a low-stage cylinder 9 is led from an exhaust port 22 via a passage 23 to an inlet port 24 of a high-stage cylinder 10, and then it is further compressed to be exhausted via an exhaust port 26 out of a casing 1. In this constitution, by setting compression timing of the high-stage compression element 6 forward of that of the low-stage compression element 5 by 270 deg. in phase, sucked volume in the high-stage compression element 6 gradually increased within an exhaust range (120 deg. to 350 deg.) of the low-stage compression element 5, making the sucking completion position of the high-stage compression element 6 differ. This causes the high-stage compression element 6 to start at a position where sucking pressure of the high stage is maximum, so as to eliminate sucking loss and improve efficiency of the compressor.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、低段圧縮要素に高段圧縮要素を直列に接続し
た2シリンダコンルッサに係り、特に低段圧縮要素の吐
出に対する高段圧縮要素の吸込みタイミングを改善して
効率の向上を図った2シリンダコンプレッサに関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a two-cylinder compressor in which a high-stage compression element is connected in series to a low-stage compression element, and in particular, This invention relates to a two-cylinder compressor that improves efficiency by improving the suction timing of a high-stage compression element relative to the discharge of air.

(従来の技術) 一般に空気調和機等に使用される2シリンダロータリコ
ンプレツサは、密閉ゲージング内に2つのクランク部が
形成されたクランク軸を有する電動要素と、各クランク
部に嵌装されたロータと各ロータを収容するシリンダと
からなる低段及び高段の圧縮要素とを配置してなり、そ
の低段圧縮要素のシリンダの吐出口には高段圧縮要素の
シリンダの吸込口が接続されている。
(Prior Art) A two-cylinder rotary compressor that is generally used in air conditioners, etc. consists of an electric element having a crankshaft with two crank parts formed in a sealed gauge, and a rotor fitted in each crank part. and a cylinder accommodating each rotor, and a low-stage and high-stage compression element are arranged, and the discharge port of the cylinder of the low-stage compression element is connected to the suction port of the cylinder of the high-stage compression element. There is.

そして、かかる従来のコンプレッサにあっては、低段圧
縮要素のシリンダから吐出されな圧気を更に高段圧縮要
素で圧縮するために、例えば第5図に示すように同位相
に配置されたシリンダ9゜10に対してクランク部2,
3の位相を180゛ずらずことにより、第6図に示すよ
うに高段圧縮要素6の圧縮タイミングを低段圧縮要素5
のそれよりも位相で180°ずらして設定していた。
In such a conventional compressor, in order to further compress the pressure air discharged from the cylinder of the low-stage compression element in the high-stage compression element, the cylinders 9 are arranged in the same phase as shown in FIG. Crank part 2 for ゜10,
As shown in FIG.
The phase was set to be 180° shifted from that of .

(発明が解決しようとする課題) しかしながら上記コンプレッサにおいては、低段圧縮要
素が圧縮ガスを吐出するタイミングと高段圧縮要素がそ
の圧縮ガスを吸込むタイミングとがうまくあっていなか
ったので、これらの中間圧力が変動し、効率が悪いとい
う問題があった。
(Problem to be Solved by the Invention) However, in the above compressor, the timing at which the low-stage compression element discharges compressed gas and the timing at which the high-stage compression element sucks in the compressed gas do not match well. There were problems with pressure fluctuations and poor efficiency.

これを具体的に説明すると、第6図に示すように低段圧
縮要素の吐出開始は約120°から始まり、350°で
終了する。これに対して高段圧縮要素の吸込は位相が1
80°ずれていることから、約210°から始まり一回
転して210°で終了するタイミングとなっている。
To explain this specifically, as shown in FIG. 6, the discharge of the low stage compression element starts at approximately 120° and ends at 350°. On the other hand, the suction of the high-stage compression element has a phase of 1.
Since they are shifted by 80 degrees, the timing starts at approximately 210 degrees and completes one rotation at 210 degrees.

同図から明らかなように高段側吸込圧力PsHは周期的
に変動している。その理由を、第5図を参照して説明す
ると、低段圧縮要素5が吐出を開始して終了するまでの
間(120’〜350 ” )に高段圧縮要素6は吸込
内容積が180’(低段側ブレード上支点が0°基準)
が最大となり、210°付近で最小となる。従って、第
6図に示すように吐出開始から180゛付近までPSH
が低く、その後吐出量に対して内容積が減るのでPsH
は上昇し、270°付近で最大となる。
As is clear from the figure, the high stage side suction pressure PsH fluctuates periodically. The reason for this will be explained with reference to FIG. 5. Between the time when the low stage compression element 5 starts and ends the discharge (from 120' to 350'), the suction internal volume of the high stage compression element 6 is 180'. (The upper fulcrum of the lower blade is based on 0°)
is maximum and minimum near 210°. Therefore, as shown in Fig. 6, the PSH
is low, and the internal volume decreases with respect to the discharge amount, so PsH
increases and reaches its maximum around 270°.

そこで、高段圧縮要素は210°付近で吸込みを完了す
るので、低い圧力(低段側吐出圧力)から圧縮を開始し
なければならず、第7図に斜線で示すような圧縮ロス(
吸込ロス)を生じ、コンプレッサの効率の低下を招いて
いた。
Therefore, since the high stage compression element completes suction at around 210°, compression must be started from a low pressure (low stage side discharge pressure), resulting in compression loss (as shown by diagonal lines in Fig. 7).
(suction loss), resulting in a decrease in compressor efficiency.

本発明は上記事情を考慮してなされたもので、圧縮ロス
をなくして効率を大幅に向上できる2シリンダコンプレ
ッサを提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a two-cylinder compressor that can eliminate compression loss and significantly improve efficiency.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明は、低段圧縮要素に
高段圧縮要素を直列に接続した2シリンダコンプレッサ
において、上記高段圧縮要素の圧縮タイミングを、上記
低段圧縮要素のそれよりも位相で270°前後進めて設
定したものである。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention provides a two-cylinder compressor in which a high-stage compression element is connected in series to a low-stage compression element. The compression timing is set to be approximately 270° in phase ahead of that of the low-stage compression element.

(作 用) これにより高段圧縮要素の吸込内容積が低段圧縮要素の
吐出区間(120°〜350 ” )の間に次第に増え
て行くようになる。そして、高段圧縮要素は、その吸込
完了が210゛から27o°前後の位置にずれ、第6図
のPSHが最大の位置で圧縮を開始するようになり、吸
込ロスがなくなり、コンプレッサの効率が大幅に向上す
る。
(Function) As a result, the suction internal volume of the high-stage compression element gradually increases during the discharge section (120° to 350'') of the low-stage compression element. The completion point shifts from 210° to around 27°, and compression starts at the maximum PSH position in FIG. 6, eliminating suction loss and greatly improving compressor efficiency.

(実施例) 以下、本発明の一実施例を添付図面に基づいて詳述する
(Example) Hereinafter, an example of the present invention will be described in detail based on the accompanying drawings.

2シリンダロータリコングレツサを示す第2図において
、1は竪型密閉ゲージングであり、このゲージング1内
には2つのクランク部2.3が形成されたクランク軸4
を有する電動要素(図示省略)が配置されると共に、こ
れらクランク部2゜3に位置させて上下に低段圧縮要素
5と高段圧縮要素6とが配置されている。低段及び高段
の圧縮要素5.6はクランク部2.3に嵌装されたロー
ラ7.8と、これらローラ7.8を面心回転可能に収容
するシリンダ9.10と、シリンダ9゜10内を仕切る
ベーン11,12(第1図参照)とから主に構成されて
いる。
In FIG. 2 showing a two-cylinder rotary congressor, 1 is a vertical closed gauging, and within this gauging 1 is a crankshaft 4 in which two crank parts 2.3 are formed.
A low-stage compression element 5 and a high-stage compression element 6 are disposed above and below the crank portion 2.degree.3. The low-stage and high-stage compression elements 5.6 each include a roller 7.8 fitted to the crank part 2.3, a cylinder 9.10 that accommodates these rollers 7.8 so as to be rotatable on their face center, and a cylinder 9. It is mainly composed of vanes 11 and 12 (see FIG. 1) that partition the inside of the container 10.

高段側シリンダ10よりも排除容積の大きい低段側シリ
ンダ9は上記クランク軸4の中央部を回転自在に支持す
る主軸受フレーム13の下面にボルト14により固定さ
れ、クランク軸4の下端部を回転自在に支持する副軸受
フレーム15は高段側シリンダ10の下面にボルト16
により固定されている。低段側シリンダ9は鋳物により
形成され、鋳物の場合加工が容易であるため、この低段
側シリンダ9には上記ボルト14.16を螺着するため
の雌ねじ部17が形成されている。高段側シリンダ10
は焼結により形成され、焼結の場合シリンダ状態でばか
穴が容易に形成できるので、この高段側シリンダ10に
は上記下方のボルト16を通すためのばか穴18が形成
されている。
The low-stage cylinder 9, which has a larger displacement volume than the high-stage cylinder 10, is fixed by a bolt 14 to the lower surface of the main bearing frame 13 that rotatably supports the center of the crankshaft 4, and the lower end of the crankshaft 4 is The sub-bearing frame 15, which is rotatably supported, has bolts 16 attached to the lower surface of the high-stage cylinder 10.
Fixed by The lower cylinder 9 is formed of a cast metal, and since a cast metal is easy to process, the lower cylinder 9 is formed with a female thread 17 for screwing the bolts 14 and 16 thereinto. High stage cylinder 10
is formed by sintering, and in the case of sintering, a hole can be easily formed in the cylinder state, so a hole 18 for passing the lower bolt 16 is formed in this higher stage cylinder 10.

低段側シリンダ9には吸込口19が形成されると共に、
上下のシリンダ9.10間に介設された中間フレーム2
0と主軸受フレーム13とには吐出弁21を有する吐出
口22が形成され、これら吐出口22から吐出されたガ
スが第1図に示すように通路23を通って高段側シリン
ダ1oの吸込口24に導入されるようになっている。高
段側シリンダ10の底壁を形成する副軸受フレーム15
には、吐出弁25を有する吐出口26が形成され、この
吐出口26より吐出されたガスはケーシング1内を上昇
してゲージングlの上部に形成された図示しない出口か
ら吐出されるようになっている。主軸受フレーム13と
副軸受フレーム15とには吐出口22.26を覆うバル
ブカバ27.28が取付けられている。
A suction port 19 is formed in the lower stage cylinder 9, and
Intermediate frame 2 interposed between upper and lower cylinders 9 and 10
0 and the main bearing frame 13 are formed with discharge ports 22 having discharge valves 21, and the gas discharged from these discharge ports 22 passes through a passage 23 as shown in FIG. It is adapted to be introduced into the mouth 24. Sub-bearing frame 15 forming the bottom wall of the high-stage cylinder 10
A discharge port 26 having a discharge valve 25 is formed therein, and the gas discharged from the discharge port 26 rises within the casing 1 and is discharged from an outlet (not shown) formed at the upper part of the gauging l. ing. Valve covers 27.28 covering the discharge ports 22.26 are attached to the main bearing frame 13 and the sub-bearing frame 15.

かかる構成におい°ζ、特に高段圧縮要素6の圧縮タイ
ミングが低段圧縮要素5のそれよりも位相で270°進
めて設定されている。具体的には第1図に示すようにク
ランク部2,3が180°の位相をずらして形成される
と共に、シリンダ9゜10か90゛の位相をずらして形
成され、合わせて高段圧縮要素6の圧縮タイミングが低
段圧縮要素5のそれよりも位相で270°進んでいる。
In this configuration, the compression timing of the high-stage compression element 6 is set to be 270 degrees ahead of that of the low-stage compression element 5 in terms of phase. Specifically, as shown in Fig. 1, the crank parts 2 and 3 are formed with a phase shift of 180 degrees, and the cylinders are formed with a phase shift of 9 degrees, 10 degrees, or 90 degrees, and together with the high-stage compression element. The compression timing of element 6 is 270° ahead of that of lower stage compression element 5 in terms of phase.

そして、これらシリンダ9.10は第3図a、bに示す
ようにアークスポット位置を円周方向にずらした合計6
点スボントのアークスポット溶接30によりケーシング
1内に固定されている。
These cylinders 9 and 10 have a total of 6 arc spots with their arc spots shifted in the circumferential direction as shown in Fig. 3a and b.
It is fixed within the casing 1 by arc spot welding 30 of the point spont.

このような構成によれば、高段圧縮要素6の吸込内容積
が低段圧縮要素5の吐出区間(120’〜350°)の
間に次第に増大して行くようになり、高段圧縮要素6の
吸込完了が第6図の270゛の位置にずれ、Pstlが
最大の位置で圧縮を開始するようになるため、吸込ロス
がなくなり、コンプレッサの効率が大幅に向上する。
According to such a configuration, the suction internal volume of the high-stage compression element 6 gradually increases during the discharge section (120' to 350°) of the low-stage compression element 5, The completion of suction is shifted to the 270° position in FIG. 6, and compression starts at the position where Pstl is at its maximum, eliminating suction loss and greatly improving the efficiency of the compressor.

また、低段側及び高段側のシリンダ9.10をそれぞれ
スポット溶接によりケーシングlに固定るすようにしな
ので、軸方向の剛性が増し、高速でも軸振れが少なくな
り、しかもスポット位置を円周方向にずらしたことによ
り、ゲージング1の振動モードが6点で押えられ、低騒
音となる。
In addition, since the low-stage and high-stage cylinders 9 and 10 are each fixed to the casing l by spot welding, axial rigidity is increased and axial runout is reduced even at high speeds. By shifting in the direction, the vibration mode of gauging 1 is suppressed at six points, resulting in low noise.

低段側の大シリンダ9を高段側の小シリンダ10よりも
主軸受フレーム13側に配置したので、大シリンダ9を
副軸受フレーム151111に配室したものや低段側と
高段側とを同じ大きさのシリンダとしたものと異なり、
第4図に示すように小さいバランサ31を電動要素のロ
ータ32の下側に1個取付けるだけでよい。
Since the large cylinder 9 on the low stage side is placed closer to the main bearing frame 13 than the small cylinder 10 on the higher stage side, it is possible to arrange the large cylinder 9 in the sub bearing frame 151111 or to separate the low stage side and the high stage side. Unlike cylinders of the same size,
As shown in FIG. 4, it is only necessary to attach one small balancer 31 to the lower side of the rotor 32 of the electric element.

また、低段側シリンダ9を加工の容易な鋳物で形成し、
これに雌ネジ部17をタップ加工するようにし、高段側
シリンダ10をシンタ状態でばか穴18が作れる焼結で
形成するようにしたので、それぞれのシリンダ9.10
を最小のコストで作ることができ、コストダウンが図れ
る。
In addition, the low-stage cylinder 9 is formed of easy-to-process casting,
The female threaded portion 17 is tapped, and the high-stage cylinder 10 is formed by sintering that allows the hole 18 to be made in the sintered state, so that each cylinder 9.10
can be produced at minimum cost, reducing costs.

なお、高段圧縮要素6の圧縮タイミングを低段圧縮要素
5のそれよりも位相で2700前後進めて設定すればよ
いので、シリンダ9.10を同一位相にしてクランク部
2.3の位相を270°ずらすなど、種々の組合せが可
能である。
Note that the compression timing of the high-stage compression element 6 can be set to be about 2700 degrees ahead of that of the low-stage compression element 5, so the cylinders 9.10 can be set in the same phase and the phase of the crank part 2.3 can be set to 2700 degrees ahead of that of the low-stage compression element 5. Various combinations are possible, such as shifting by °.

また、上記実施例では両シリンダ9.10をスポット溶
接によりケーシング1内に固定するようにしたが、主軸
受フレーム13と一方のシリンダ9又は10とをスポッ
ト溶接によりケーシング1内に固定するようにし、ても
よい。低段側シリンダ9を焼結により形成し、高段側シ
リンダ10を1IJJ物により形成するようにしていも
よい。
Further, in the above embodiment, both cylinders 9 and 10 are fixed within the casing 1 by spot welding, but the main bearing frame 13 and one cylinder 9 or 10 are fixed within the casing 1 by spot welding. , may be done. The lower stage cylinder 9 may be formed by sintering, and the higher stage cylinder 10 may be formed from 1IJJ material.

[発明の効果] 以上要するに本発明によれば次のような1憂れた効果を
発揮する。
[Effects of the Invention] In summary, according to the present invention, the following remarkable effects are achieved.

高段圧縮要素の圧縮位相を低段圧縮要素のそれよりも2
70゛前後進めて設定したので、高段圧縮要素の吸込内
容積が低段圧縮要素の吐出区間(120°〜350 ’
 )の間に次第に増えていくようになり、吸込みロスが
なくなり、コンプレッサの効率が大幅に向上する。
The compression phase of the high-stage compression element is 2 times higher than that of the low-stage compression element.
Since the setting is advanced by about 70°, the suction internal volume of the high-stage compression element is set to be advanced by about 70°, so the suction internal volume of the high-stage compression element is equal to the discharge section of the low-stage compression element (120°~350'
), the suction loss is eliminated and the compressor efficiency is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略構成図、第2図は
圧縮要素部分の縦断面図、第3図は低段及び高段のシリ
ンダスポットFj接位置を示す断面図、第4図はコンプ
レッサのバランスモデル図、第5図は従来例を示す概略
構成図、第6図は回転角と圧力との関係を示すグラフ、
第7図はシリンダ内容積と圧力との関係を示すグラフで
ある。 図中、5は低段圧縮要素、6は高段圧縮要素である。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of a compression element portion, FIG. The figure is a balance model diagram of a compressor, Figure 5 is a schematic configuration diagram showing a conventional example, and Figure 6 is a graph showing the relationship between rotation angle and pressure.
FIG. 7 is a graph showing the relationship between cylinder internal volume and pressure. In the figure, 5 is a low-stage compression element, and 6 is a high-stage compression element.

Claims (1)

【特許請求の範囲】[Claims] 1、低段圧縮要素に高段圧縮要素を直列に接続した2シ
リンダコンプレッサにおいて、上記高段圧縮要素の圧縮
タイミングを、上記低段圧縮要素のそれよりも位相で2
70゜前後進めて設定したことを特徴とする2シリンダ
コンプレッサ。
1. In a two-cylinder compressor in which a high-stage compression element is connected in series to a low-stage compression element, the compression timing of the high-stage compression element is set 2 times in phase relative to that of the low-stage compression element.
A 2-cylinder compressor characterized by being advanced by about 70 degrees.
JP7335888A 1988-03-29 1988-03-29 Two-cylinder compressor Pending JPH01247785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7335888A JPH01247785A (en) 1988-03-29 1988-03-29 Two-cylinder compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7335888A JPH01247785A (en) 1988-03-29 1988-03-29 Two-cylinder compressor

Publications (1)

Publication Number Publication Date
JPH01247785A true JPH01247785A (en) 1989-10-03

Family

ID=13515866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7335888A Pending JPH01247785A (en) 1988-03-29 1988-03-29 Two-cylinder compressor

Country Status (1)

Country Link
JP (1) JPH01247785A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133367A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Multistep gas compressor provided with bypass valve device
US5322424A (en) * 1991-11-12 1994-06-21 Matsushita Electric Industrial Co., Ltd. Two stage gas compressor
JPH109171A (en) * 1996-06-19 1998-01-13 Matsushita Electric Ind Co Ltd Closed type compressor
US6824367B2 (en) * 2002-08-27 2004-11-30 Sanyo Electric Co., Ltd. Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
US6892454B2 (en) * 2001-11-30 2005-05-17 Sanyo Electric Co., Ltd. Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US7491042B2 (en) * 2005-12-16 2009-02-17 Sanyo Electric Co., Ltd. Multistage compression type rotary compressor
JP2013002326A (en) * 2011-06-14 2013-01-07 Nippon Soken Inc Rolling piston-type compressor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133367A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Multistep gas compressor provided with bypass valve device
US5322424A (en) * 1991-11-12 1994-06-21 Matsushita Electric Industrial Co., Ltd. Two stage gas compressor
JPH109171A (en) * 1996-06-19 1998-01-13 Matsushita Electric Ind Co Ltd Closed type compressor
US6892454B2 (en) * 2001-11-30 2005-05-17 Sanyo Electric Co., Ltd. Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US6824367B2 (en) * 2002-08-27 2004-11-30 Sanyo Electric Co., Ltd. Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
US7491042B2 (en) * 2005-12-16 2009-02-17 Sanyo Electric Co., Ltd. Multistage compression type rotary compressor
US7611343B2 (en) 2005-12-16 2009-11-03 Sanyo Electric Co., Ltd. Multistage compression type rotary compressor
US7611342B2 (en) 2005-12-16 2009-11-03 Sanyo Electric Co., Ltd. Multistage compression type rotary compressor
US7621729B2 (en) 2005-12-16 2009-11-24 Sanyo Electric Co., Ltd. Multistage compression type rotary compressor
JP2013002326A (en) * 2011-06-14 2013-01-07 Nippon Soken Inc Rolling piston-type compressor

Similar Documents

Publication Publication Date Title
JPH078864Y2 (en) Compressor
JPH01247785A (en) Two-cylinder compressor
US6270329B1 (en) Rotary compressor
US20080236192A1 (en) Rotary compressor and heat pump system
JPH07229481A (en) Double rotary type scroll compressor
CN104948466B (en) Rotary compressor and the freezing cycle device with it
JP3629836B2 (en) Scroll fluid machinery
JPS62225793A (en) Closed type scroll compressor
JPH029193B2 (en)
JPH0410392Y2 (en)
JPS6361512B2 (en)
JPS6119834B2 (en)
KR200239620Y1 (en) Rotary compressor
JPH0156277B2 (en)
JPH0250087U (en)
JPH05332264A (en) Scroll compressor
KR970000498B1 (en) Rotary compressor
JPS62253991A (en) Rotary compressor
KR950000958Y1 (en) Rotary compressor
JPH06307362A (en) Rotary compressor
KR200141253Y1 (en) Enclosed type compressor
JPS59145385A (en) Ring type pump
JPH0643514Y2 (en) Vane compressor
JP2513782B2 (en) Rotary compressor
JPH0255639B2 (en)