JPH01247296A - Turbulence resistance reducing device - Google Patents

Turbulence resistance reducing device

Info

Publication number
JPH01247296A
JPH01247296A JP7774388A JP7774388A JPH01247296A JP H01247296 A JPH01247296 A JP H01247296A JP 7774388 A JP7774388 A JP 7774388A JP 7774388 A JP7774388 A JP 7774388A JP H01247296 A JPH01247296 A JP H01247296A
Authority
JP
Japan
Prior art keywords
fluid
resistance
strings
flat plate
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7774388A
Other languages
Japanese (ja)
Inventor
Koken Tsutsui
康賢 筒井
Shunichi Tsuge
柘植 俊一
Toshio Unno
敏夫 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7774388A priority Critical patent/JPH01247296A/en
Publication of JPH01247296A publication Critical patent/JPH01247296A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0025Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply
    • F15D1/003Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising surface features, e.g. indentations or protrusions
    • F15D1/0035Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising surface features, e.g. indentations or protrusions in the form of riblets
    • F15D1/004Influencing flow of fluids by influencing the boundary layer using passive means, i.e. without external energy supply comprising surface features, e.g. indentations or protrusions in the form of riblets oriented essentially parallel to the direction of flow

Abstract

PURPOSE:To reduce the turbulence resistance of a fluid to a great extent with simple construction by furnishing a number of strings on the surface of a resistance member, which are extending in the fluid direction, and arranging these strings with a specific value of height and spacing. CONSTITUTION:A number of strings 12 extending in the fluid flowing direction are furnished on the surface of a resistance member (flat plate) 11, and when the height and spacing of these strings 12 are represented by h and S, respectively, and their corrected values by h*, S* according to h*=hu*/nu and S*=Su*/nu, where u* is expressed by (gamma/rho)<1/2>, gamma is friction factor of flat plate surface, rho is fluid density, and nu is dynamic factor of fluid viscosity, and then the h and S shall be raised so as to become h*<5 and S*<50. Thereby the resistance becomes smaller than the flat plate 11. Therein h*=5 corresponds to the thickness of the viscous bottom layer of a turbulence boundary layer, so that the resistance reduces when the outside dia. of the strings 12, i.e. h, is smaller than the thickness of this viscous bottom layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は流体の抵抗を低減する装置に関し、更に詳しく
は流体の流れの内、乱流による抵抗を低減する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a device for reducing fluid resistance, and more particularly to a device for reducing resistance due to turbulence in fluid flow.

(従来の技術) 航空機、船舶、自動車その他流体関係機器においては、
流体による抵抗を低減することが重要な技術的課題であ
る。
(Prior art) In aircraft, ships, automobiles, and other fluid-related equipment,
Reducing fluid resistance is an important technical challenge.

流体は乱流状態になると著しく抵抗が増大する。そこで
、乱流における流体抵抗の低減が強く望まれている。
When a fluid becomes turbulent, its resistance increases significantly. Therefore, there is a strong desire to reduce fluid resistance in turbulent flow.

流体による抵抗を低減する装置としては、例えば形状を
流線形にする等、流体力学上の種々の手段が知られてい
る。
As devices for reducing fluid resistance, various fluid dynamic means are known, such as streamlining the shape, for example.

その中の一つに、トムス効果を利用するものが知られて
いる。
One of them is known to utilize the Thoms effect.

トムス効果とは、液体の中に高分子化合物の液をPPM
オーダーで混合させると、流体の抵抗が激減する現象の
ことを言う。
The Thoms effect refers to the PPM of a liquid containing a polymer compound in a liquid.
This refers to a phenomenon in which fluid resistance is drastically reduced when mixed in an orderly manner.

又、NASAによって開発されたりブレット(Ribl
et)を用いた流体抵抗の低減装置も非常に大きい反響
を呼んでいる。
Also developed by NASA is the Ribl
A fluid resistance reduction device using the above-mentioned method (et) is also attracting a great deal of attention.

公知のりブレット方式は、第4図に示すように、流体の
流動方向に延びる微少なりプレット(リブ)1を流体機
器等の抵抗体2の表面に設けるものである。そして、リ
ブレット1の断面形状は第5図の(インないしくチ)に
示すように種々の形状が採用されている。
The known glue bullet system, as shown in FIG. 4, is a method in which minute prets (ribs) 1 extending in the direction of fluid flow are provided on the surface of a resistor 2 of a fluid device or the like. The riblet 1 has various cross-sectional shapes as shown in FIG.

このリブレット1を設けた抵抗体2によると、トムス効
果と同様、流体抵抗が低減する現象が見られる。
According to the resistor 2 provided with this riblet 1, a phenomenon in which fluid resistance is reduced is observed, similar to the Thoms effect.

(発明が解決しようとする課題) 上記公知の流体抵抗低減装置には次のような欠点があっ
た。
(Problems to be Solved by the Invention) The above-mentioned known fluid resistance reducing device has the following drawbacks.

まず、流線形等の形状による抵抗の低減装置では、抵抗
体の形状や構造に制約を与えるので、一般的ではない。
First, a resistance reducing device using a shape such as a streamline is not common because it imposes restrictions on the shape and structure of the resistor.

又、トムス効果を利用するものでは、液体中に高分子化
合物を混合させることが必要となるため、使用される流
体が限定される上、航空機や船舶、自動車等の最も要求
される機器に適用できないという欠点があった。
In addition, devices that utilize the Thoms effect require the mixing of polymer compounds into the liquid, which limits the fluids that can be used and is not applicable to the most demanding equipment such as aircraft, ships, and automobiles. The drawback was that it couldn't be done.

更に又、リブレットを利用するものは、現在のところ余
り実用化されていない。
Furthermore, devices using riblets have not been put into practical use much at present.

そこで、本発明の目的は、簡単な形状で、確実かつ大幅
に流体の抵抗が低減する装置を提供せんとするにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a device that has a simple shape and can reliably and significantly reduce fluid resistance.

(課題を解決するための手段) 本発明の特徴とするところは、次の点にある。(Means for solving problems) The features of the present invention are as follows.

抵抗体の表面に流体の流れ方向に延びる糸状体を多数設
け、該糸状体の高さを11、各糸状体の間隔をSとした
時、 h*=hu*/ν S本=Su*/ν u*=圧 τ:平板表面の摩擦係数 ρ:流体の密度 シ:流体の動粘性係数として b*<5、S*<50 となるように糸状体の高さ11及び間隔Sを定めた。
When a large number of filaments extending in the fluid flow direction are provided on the surface of the resistor, the height of the filaments is 11, and the interval between each filament is S, h*=hu*/ν S books=Su*/ ν u*=Pressure τ: Coefficient of friction on flat plate surface ρ: Density of fluid C: Coefficient of kinematic viscosity of fluid The height 11 and spacing S of the filaments were determined so that b*<5, S*<50. .

(実施例) 実施例の説明に入る前に、本発明に至った経緯について
述べて置く6 トムス効果については種々の説が言われているが、本発
明者等は、トムス効果について次のような仮説をたて、
これを実験結果と比較してみた。
(Example) Before going into the explanation of the example, let me describe the circumstances that led to the present invention.6 Various theories have been proposed regarding the Thoms effect, but the inventors of the present invention have proposed the following regarding the Thoms effect. make a hypothesis,
I compared this with experimental results.

即ち、高分子化合物は連鎖状の化合物であるから、液体
中に高分子を混合させると、その連鎖状高分子化合物が
ちょうど微細な繊毛のようになって抵抗体の表面に付着
し、これが流体に作用して抵抗の低減効果が生ずるので
はないが、と考えたのである。
In other words, since a polymer compound is a chain compound, when a polymer is mixed into a liquid, the chain polymer compound becomes just like minute cilia and adheres to the surface of the resistor, which causes the fluid to flow. The idea was that the effect of reducing resistance would not be caused by acting on the

この仮説が正しいとすれば、トムス効果は抵抗体の表面
にmixな繊毛を植毛した状態と同一であると考えられ
るから、平板の表面に多数の微細な繊毛を植毛し、この
平板表面の流体抵抗を測定してみた。
If this hypothesis is correct, the Thoms effect is considered to be the same as the state in which mixed cilia are implanted on the surface of a resistor. I tried measuring the resistance.

ところが、この実験結果では、却って流体の抵抗が増大
してしまった。
However, in this experimental result, the resistance of the fluid actually increased.

そこで、本発明者等はこのように抵抗が増大した理由を
次のように考えた。
Therefore, the inventors of the present invention considered the reason for the increase in resistance as follows.

即ち、fj56図を参照して、平板3に植毛された微細
な繊毛4は流体の流れPによって変形させられ、曲がり
部分4Aが生ずる。この曲がり部分4Aが流体の抵抗を
増大させているらのと考えた。
That is, referring to Fig. fj56, the fine cilia 4 implanted on the flat plate 3 are deformed by the fluid flow P, and a bent portion 4A is generated. It was thought that this curved portion 4A increased the resistance of the fluid.

上記微細な繊毛で生じていると考えられる欠点を除くた
め、17図に示すように、流体の流れ方向Pに沿って延
びる多数の長くかつ微細な糸状体5を平板6の表面に多
数設置し、該糸状体5の外径及び設置間隔を変えて実験
した。その結果、糸状体5の外径、間隔いかんによって
は流体の抵抗が低減することを確かめた。即ち、糸状体
5の外径が乱流境界層の粘性底層よりも小さくかつ間隔
が所定値以下の場合には流体抵抗が低減することが判明
した。
In order to eliminate the defects that are thought to be caused by the fine cilia mentioned above, as shown in FIG. Experiments were conducted by changing the outer diameter and installation interval of the filament 5. As a result, it was confirmed that the fluid resistance was reduced depending on the outer diameter and spacing of the filamentous bodies 5. That is, it has been found that fluid resistance is reduced when the outer diameter of the filamentous body 5 is smaller than the viscous bottom layer of the turbulent boundary layer and the interval is equal to or less than a predetermined value.

一方、流体機器の表面に微少なリブレ・2Fを設置する
と、何故流体抵抗が低減するのかについては、未だ完全
に解明されていない。しかしながら、前記NASAの研
究では、リブレットがどのような形状であろうとも、リ
ブレットの高さを乱流の境界層の内の粘性底層の厚みよ
り高く(即ち、粘性底層から外側へ突出)しなければ抵
抗低減効果が生じないとしている。成程、流体力学の常
識からすれば、粘性底層の厚みの内部にある突起等が流
体の流れに影響を与えること等、側底、有り得ないもの
と考えられていたからである。
On the other hand, it has not yet been completely elucidated why fluid resistance is reduced when a minute Libre 2F is installed on the surface of a fluid device. However, in the NASA study, no matter what shape the riblet is in, the height of the riblet must be greater than the thickness of the viscous bottom layer (i.e., protrude outward from the viscous bottom layer) in the turbulent boundary layer. It is said that the resistance reduction effect will not occur if this is the case. This is because, from the common knowledge of fluid mechanics, it was thought that it was impossible for protrusions or the like within the thickness of the viscous bottom layer to affect the flow of fluid.

ところが、糸状体の高さを乱流境界層の粘性底層の厚み
よりも低くすると、流体抵抗が低減することが確認され
、NASAのりブレット方式が考えてもいなかったとこ
ろに抵抗低減の者しい個所があることが分かった。
However, it was confirmed that fluid resistance was reduced when the height of the filament was made lower than the thickness of the viscous bottom layer of the turbulent boundary layer, and the NASA glue bullet method found areas where drag was clearly reduced that had not been considered. It turns out that there is.

上記のように、トムス効果とりブレットによる抵抗低減
効果は、−見別異の現象のようにみられるが、本発明者
等の研究によると、非常に類似した現象であることが分
かってきた。
As mentioned above, the drag reduction effect of the Thoms effect bullet appears to be a completely different phenomenon, but according to research conducted by the present inventors, it has been found that they are very similar phenomena.

以下、本発明者等による実験について説明する。Experiments conducted by the inventors will be described below.

第1図及び第2図に示すように、平板11に釣り糸から
なる糸状体12を貼り付け、これを風洞内に設置して抵
抗を測定した。
As shown in FIGS. 1 and 2, a filament 12 made of fishing line was attached to a flat plate 11, and this was placed in a wind tunnel to measure resistance.

糸状体12の外径、即ち、高さ11は、0.12hun
、 0,090aon、0.0641fin+の3f!
II類、糸状体12の間隔Sは、2mu+、1.5IO
+11.1.0+m、 0.75++oo、0.5+o
+nの5種類で実験した。
The outer diameter of the filamentous body 12, that is, the height 11 is 0.12 hours.
, 3f of 0,090aon, 0.0641fin+!
Class II, the spacing S of filamentous bodies 12 is 2mu+, 1.5IO
+11.1.0+m, 0.75++oo, 0.5+o
Experiments were conducted with 5 types of +n.

上記実験の結果を定性的に言えば、高さ1】が及び間隔
Sが比較的小さいところで流体の抵抗が低減した。
To put the results of the above experiment qualitatively, the fluid resistance was reduced when the height 1] and the distance S were relatively small.

第3図は、縦軸に糸状体の高さの補正値II*、横軸に
糸状体の間隔の補正値S木を採り、試験資料No、1な
いしNo、10について、それぞれの点での糸状体を設
置しない場合の抵抗値と比べた場合の抵抗低減率(%)
を表わしたものである。
In Figure 3, the vertical axis is the correction value II* of the filament height, and the horizontal axis is the correction value S tree of the filament spacing. Resistance reduction rate (%) compared to the resistance value when no filament is installed
It represents.

ここで、 h * = bu * /ν S車=Su*/ν 、*477巧 τ:平板表面の摩擦係数 ρ:流体の密度 シ:流体の動粘性係数である。here, h * = bu * / ν S car = Su*/ν , *477 Takumi τ: Friction coefficient of flat plate surface ρ: Density of fluid; ρ: Kinematic viscosity coefficient of fluid.

図からも分かるように、 6本く5、S*<SO にて平板と比べて抵抗が低減していることが分かる。As you can see from the figure, 6 pieces 5, S*<SO It can be seen that the resistance is reduced compared to a flat plate.

この中で、h本=sは乱流境界層の粘性底層の厚みに相
当するものであるから、結局、糸状体の外径、即ち高さ
11は該粘性底層の厚みよりも小さい時に、抵抗が低減
するということが分かった。
In this, h = s corresponds to the thickness of the viscous bottom layer of the turbulent boundary layer, so when the outer diameter of the filament, that is, the height 11 is smaller than the thickness of the viscous bottom layer, the resistance was found to be reduced.

上記本発明の結果と前記NASAのりブレット方式とを
対比すると、リブレット方式ではb*>10 となっているので、本発明による結果と異なっている。
Comparing the results of the present invention with the NASA glue bullet method, the riblet method has b*>10, which is different from the results of the present invention.

このような異なりがどうして生ずるかについては、未だ
明らかとはなっていないが、リブレット方式では平板の
表面に簡単な機械加工を施してリブレットを形成してい
るため、隣合わせなリブレットが互いに緩やかな連続面
で連なっていたり、あるいは傾斜面で連なったりしてい
るからであると判断される。
It is not yet clear how this difference occurs, but in the riblet method, riblets are formed by simple machining on the surface of a flat plate, so adjacent riblets are loosely connected to each other. It is determined that this is because they are connected on a plane or on an inclined surface.

本発明による糸状体では隣合わせた糸状体が直線面で連
なっている。このため、粘性底層の内部での流体のふる
まいがリブレット方式とは異なって、このような結果と
なったものと解釈している。
In the filamentous body according to the present invention, adjacent filamentous bodies are connected in a straight line. For this reason, we interpret that the behavior of the fluid inside the viscous bottom layer is different from that in the riblet method, leading to this result.

以上に説明した本発明では、糸状体を釣り糸で構成した
が、本発明の糸状体は釣り糸により構成されるものに限
定されない。例えば、塗料によって糸状体と等価の構成
を形成するものも本発明に含まれるものであり、更には
表面加工によって本発明の糸状体と等価の構成を形成す
るものも本発明に含まれるものである。
In the present invention described above, the filamentous body is composed of a fishing line, but the filamentous body of the present invention is not limited to one composed of a fishing line. For example, the present invention also includes those that form a structure equivalent to the filamentous body using paint, and furthermore, those that form a structure equivalent to the filamentous body of the present invention through surface treatment. be.

(発明の効果) 以上説明したように、本発明によると、簡単な構成で乱
流中の抵抗体に作用する抵抗を大きく低減できるもので
ある。
(Effects of the Invention) As described above, according to the present invention, the resistance acting on the resistor in turbulent flow can be greatly reduced with a simple configuration.

しかも、トムス効果による抵抗低減効果は流体側に工夫
を加えて得られるものであるから、抵抗体側だけの要素
では得られなかったが、本発明によるとトムス効果と同
等の抵抗低減効果を抵抗体側だけの要素で得られるもの
となる。
Furthermore, the resistance reduction effect due to the Thoms effect can be obtained by adding innovations to the fluid side, so it could not be obtained only with elements on the resistor side. However, according to the present invention, the resistance reduction effect equivalent to the Thoms effect can be achieved on the resistor side. It can be obtained with only these elements.

このため、例えば航空機、船舶、自動車等に適用するこ
とも可能となり、その用途は非常に広111゜
Therefore, it can be applied to aircraft, ships, automobiles, etc., and its applications are extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための斜視図、t
jS2図は第1図のA−A断面図、第3図は縦軸にh木
、横軸に8本を採り、本発明の抵抗低減製箔と平板との
比較で抵抗抵抗効果を示した線図、第4図はりブレット
方式を説明する断面図、第5図の(イ)ないしくチ)は
第4図のりブレットの断面形状を説明するための略断面
図、第6図は平板に繊毛を植毛して実験した平板の新面
図、第7図は、第6図の平板を改良して本発明の端緒と
なった糸付き平板を説明する略断面図である。 11:平板 12:糸状体 第1図 ′#1″4図 第5図 (イ)                   (ロ)
□   /(へ必 (ハ)                (ニ)(ホ)
              (へ))(ト)(千) 7ゾソヘへ   幽へ
FIG. 1 is a perspective view for explaining one embodiment of the present invention,
Figure jS2 is a sectional view taken along the line A-A in Figure 1, and Figure 3 shows the resistance resistance effect by comparing the resistance-reducing foil of the present invention with a flat plate, with the vertical axis showing h wood and the horizontal axis showing 8 pieces. Figure 4 is a cross-sectional view to explain the beam bullet method, Figure 5 (a) or 5) is a schematic cross-sectional view to explain the cross-sectional shape of the glue bullet in Figure 4, and Figure 6 is a cross-sectional view to explain the cross-sectional shape of the beam bullet method. FIG. 7 is a new view of the flat plate in which cilia were implanted and tested, and is a schematic cross-sectional view illustrating a flat plate with threads, which is an improved version of the flat plate shown in FIG. 6 and is the beginning of the present invention. 11: Flat plate 12: Filiform body Figure 1 '#1'' 4 Figure 5 (A) (B)
□ /(へし(は) (2)(8)
(to)) (to) (thousand) 7 to zosohe to yuu

Claims (1)

【特許請求の範囲】 抵抗体の表面に流体の流れ方向に延びる糸状体を多数設
け、該糸状体の高さをh、各糸状体の間隔をSとした時
、 h*=hu*/ν S*=Su*/ν u*=√(τ/ρ)、 τ:平板表面の摩擦係数 ρ:流体の密度 ν:流体の動粘性係数 として h*<5、S*<50 となるように糸状体の高さh及び間隔Sを定めてなるこ
とを特徴とする乱流抵抗低減装置。
[Claims] When a large number of filamentous bodies extending in the fluid flow direction are provided on the surface of the resistor, the height of the filamentous bodies is h, and the interval between each filamentous body is S, h*=hu*/ν. S*=Su*/ν u*=√(τ/ρ), τ: Friction coefficient of flat plate surface ρ: Density of fluid ν: Kinematic viscosity coefficient of fluid so that h*<5, S*<50 A turbulent flow resistance reducing device characterized in that the height h and the interval S of filamentous bodies are determined.
JP7774388A 1988-03-30 1988-03-30 Turbulence resistance reducing device Pending JPH01247296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7774388A JPH01247296A (en) 1988-03-30 1988-03-30 Turbulence resistance reducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7774388A JPH01247296A (en) 1988-03-30 1988-03-30 Turbulence resistance reducing device

Publications (1)

Publication Number Publication Date
JPH01247296A true JPH01247296A (en) 1989-10-03

Family

ID=13642390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7774388A Pending JPH01247296A (en) 1988-03-30 1988-03-30 Turbulence resistance reducing device

Country Status (1)

Country Link
JP (1) JPH01247296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751049A1 (en) * 1996-07-15 1998-01-16 Inst Francais Du Petrole MODIFIED SURFACE TO REDUCE THE TURBULENCE OF A FLUID AND METHOD OF TRANSPORTING
CN108167280A (en) * 2017-04-07 2018-06-15 邹建宇 A kind of processing that resistance is reduced to vehicle, ship, aircraft surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278500A (en) * 1985-05-31 1986-12-09 ミネソタ マイニング アンド マニュファクチュアリング コンパニ− Method of reducing drag resistance and drag resistance reducing article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278500A (en) * 1985-05-31 1986-12-09 ミネソタ マイニング アンド マニュファクチュアリング コンパニ− Method of reducing drag resistance and drag resistance reducing article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751049A1 (en) * 1996-07-15 1998-01-16 Inst Francais Du Petrole MODIFIED SURFACE TO REDUCE THE TURBULENCE OF A FLUID AND METHOD OF TRANSPORTING
EP0819601A1 (en) * 1996-07-15 1998-01-21 Institut Francais Du Petrole Surface modified with respect to reducing the turbulence in a fluid and method of transport using this surface
US6193191B1 (en) 1996-07-15 2001-02-27 Institut Francais Du Petrole Modified surface for reducing the turbulences of a fluid and transportation process
CN108167280A (en) * 2017-04-07 2018-06-15 邹建宇 A kind of processing that resistance is reduced to vehicle, ship, aircraft surface

Similar Documents

Publication Publication Date Title
Zdravkovich et al. Flow past short circular cylinders with two free ends
US8141936B2 (en) Method of reducing drag on the outer surface of a vehicle
Lomax The wave drag of arbitrary configurations in linearized flow as determined by areas and forces in oblique planes
CH702593A2 (en) Body with a surface structure for reducing a flow resistance of the body in a fluid.
BR102015031082A2 (en) wing and drag reduction device to reduce wing tip vortex effects
JPH01247296A (en) Turbulence resistance reducing device
Tien et al. Local heat transfer and fluid flow characteristics for airflow oblique or normal to a square plate
CH455714A (en) Mixing tank
US5303882A (en) Corner vortex suppressor
Kamiya et al. On the aerodynamic force acting on a circular cylinder in the critical range of the Reynolds number
Suh et al. Drag reduction factor due to ground effect
DE3207539A1 (en) Propeller with two double blades - for a wind power plant
Panton Effects of a contoured apex on vortex breakdown
EP1266824B1 (en) Body, especially aircraft component, exposed to flow stream
SU1086246A1 (en) Gas or liquid flow around surface
Thompson Effect of the leading-edge extension (LEX) fence on the vortex structure over the F/A-18
DE2508103A1 (en) Low drag aerodynamic/hydrodynamic surface structure - has low profile ridges/grooves to establish surface layer turbulence skin
Hasegawa et al. Hairy Chemical Coating for Drag Reduction
Wright et al. Laminar frictional resistance with pressure gradient
Gilliam An investigation of the effects of discrete wing tip jets on wake vortex roll up
DE202022107124U1 (en) Measuring device for determining the flow of a flowing medium through a channel
KR870011372A (en) Multi-level aberration
Goodman Modification of the Karman-vortex street in the freestream
Munk Note on vortices on their relation to the lift of airfoils
DE3722839A1 (en) Ideal streamlined body