JPH01246769A - Fuel cell of molten carbonate type - Google Patents

Fuel cell of molten carbonate type

Info

Publication number
JPH01246769A
JPH01246769A JP63073093A JP7309388A JPH01246769A JP H01246769 A JPH01246769 A JP H01246769A JP 63073093 A JP63073093 A JP 63073093A JP 7309388 A JP7309388 A JP 7309388A JP H01246769 A JPH01246769 A JP H01246769A
Authority
JP
Japan
Prior art keywords
plate
metal members
gas
metal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073093A
Other languages
Japanese (ja)
Inventor
Masao Yamamoto
正夫 山本
Hisafumi Kaneko
尚史 金子
Hiroshi Tateishi
浩史 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63073093A priority Critical patent/JPH01246769A/en
Publication of JPH01246769A publication Critical patent/JPH01246769A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enhance contacting perrormance of different metal members with one other and prevent deterioration of the performance due to increase in the electric resistance by interposing a metal film layer, which is welded fast in a specific range of operating temp., between metal members in their electrical contacting areas. CONSTITUTION:By sputtering, Ag film layers 3 of approx. 20mum thick are provided in the portions of a gas dispersion plate 1 and a partition plate 2 which are in contact with an undulated plate for passage of gas, and through this layer 3 undulated plate 4 for passage of gas is arranged between the dispersed plate 1 and partition plate 2. Unitary cells are assembled using a laminate of cathode and anode with electrolyte liquid interposed and the component members, and the temp. is raised to the range from 300 deg.C to the actuating temp. to bond the dispersion plate 1 of component members with undulated plate 4 and the partition plate 2 with the undulated plate 4 by the layer 3. Thereby good electrical bond is secured between the metal members, and the contacting portions are prevented from oxidation and corrosion.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、溶融炭酸塩型燃料電池に関し、特に金属部材
間の電気的接触性を改良した溶融炭酸塩型燃料電池に係
わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a molten carbonate fuel cell, and particularly to a molten carbonate fuel cell with improved electrical contact between metal members. Involved.

(従来の技術) 溶融炭酸塩型燃料電池は、発電効率が高いことからリン
酸型燃料電池の次ぐ第2世代の燃料電池として考えられ
ている。この溶融炭酸塩型燃料電池は、対向して配置さ
れるカソードとアノードの電極間にアルカリ炭酸塩を主
体とする電解質板を挟み、更に画電極に夫々酸化剤ガス
及び燃料ガスを均一に流通させ、得られた電流を効率よ
゛く取出すための各種金属部材を設けた構造を有する。
(Prior Art) Molten carbonate fuel cells are considered as second generation fuel cells following phosphoric acid fuel cells because of their high power generation efficiency. In this molten carbonate fuel cell, an electrolyte plate mainly composed of alkali carbonate is sandwiched between the cathode and anode electrodes, which are arranged facing each other, and an oxidant gas and a fuel gas are uniformly distributed to the respective picture electrodes. It has a structure in which various metal members are provided to extract the obtained current efficiently.

ところで、溶融炭酸塩型燃料電池の作動温度は850〜
700℃と高い上、電解質板からアルカリ炭酸塩(電解
質)の滲み出しがあるため、各種金属部材は著しい酸化
と腐蝕を受ける。酸化と腐蝕は、アノード側、カソード
側を流れるガス、水蒸気や腐蝕性の強いアルカリ炭酸塩
によるものである。
By the way, the operating temperature of a molten carbonate fuel cell is 850~
As the temperature is as high as 700°C and alkali carbonate (electrolyte) oozes out from the electrolyte plate, various metal members are subject to significant oxidation and corrosion. Oxidation and corrosion are caused by gases, water vapor, and highly corrosive alkali carbonates flowing on the anode and cathode sides.

即ち、カソード側では発電に必要な酸化剤ガスである酸
素による酸化、アノード側では燃料ガスである水素と酸
素が反応した結果生成される水蒸気による酸化が夫々な
され、特にアルカリ炭酸塩が滲み出してくると酸化が著
しく加速される。特に、アルカリ炭酸塩は金属表面の酸
化皮膜や金属母材そのものを激しく腐蝕する。
That is, on the cathode side, oxidation occurs with oxygen, which is an oxidant gas necessary for power generation, and on the anode side, oxidation occurs with water vapor generated as a result of the reaction between hydrogen, which is a fuel gas, and oxygen, and alkali carbonates in particular ooze out. Oxidation is significantly accelerated. In particular, alkali carbonates severely corrode the oxide film on the metal surface and the metal base material itself.

溶融炭酸塩型燃料電池を構成する各種金属部材は、得ら
れた電流を伝えるために導電性を有することが必要であ
り、従って各金属部材間の接触抵抗が増大すると電池性
能を低下させる。こうした接触抵抗とは、金属部材間の
機械的な接触によるものは勿論、金属部材表面が酸化や
腐蝕を受けた結果生じるオーミックな抵抗、酸化皮膜間
に生じるショットキーバリアによる抵抗を意味する。こ
の中、オーミックな抵抗とショットキーバリアによる抵
抗は、金属部材の酸化や腐蝕に関係するため、電池の作
動時間が長くなる程顕著となり、電池性能の長時間にな
るほど低下することになる。
The various metal members constituting a molten carbonate fuel cell need to have conductivity in order to transmit the resulting current, and therefore, if the contact resistance between the metal members increases, the cell performance will deteriorate. Such contact resistance means not only that caused by mechanical contact between metal members, but also ohmic resistance that occurs as a result of oxidation or corrosion on the surface of metal members, and resistance caused by a Schottky barrier that occurs between oxide films. Among these, the ohmic resistance and the resistance due to the Schottky barrier are related to oxidation and corrosion of metal members, so they become more noticeable as the battery operates for a longer time, and the battery performance deteriorates over a longer time.

一方、金属部材間の機械的な接触不良よる抵抗の増大は
主に電池の初期特性の低下を招く。こうした金属部材間
の機械的な接触不良の主因は、セル構成部材が大面積化
するほど平面化し難くなりうねりなどを生じること、平
面方向、垂直方向に温度分布が生じて熱応力が発生する
ために金属部材を変形させることである。この場合、電
池組立て時において各種金属部材は接合されていないた
め、前記うねりや変形が機械的不良に直接関与すること
になる。金属部材間の機械的不良箇所では、ガスが自由
に流れるため完全に接触している部分に比べて酸化され
易い状態にある。特に、僅かに接触して電気的な結合を
保っている部分では電池の作動時間と共に酸化が進行し
てオーミック抵抗、ショットキーバリアによる抵抗が増
大し、絶縁的な性質を示すようになる。
On the other hand, an increase in resistance due to poor mechanical contact between metal members mainly causes a decrease in the initial characteristics of the battery. The main causes of such poor mechanical contact between metal members are that the larger the area of the cell component, the more difficult it is to flatten it, resulting in waviness, and the generation of thermal stress due to temperature distribution in the plane and vertical directions. This is to deform a metal member. In this case, since the various metal members are not joined when assembling the battery, the waviness and deformation are directly involved in mechanical failure. Mechanically defective locations between metal members are more susceptible to oxidation than locations where they are in complete contact because gas flows freely. Particularly, in parts that are in slight contact to maintain electrical connection, oxidation progresses as the battery operates, increasing ohmic resistance and Schottky barrier resistance, and exhibiting insulating properties.

このようなことから、電池全体を高い応力で押え込み、
金属部材間の機械的接触性を改善することが考えられる
。しかしながら、割れ易い電解質板が組み込まれた燃料
電池では応力を大幅に高めることは電池性能の劣化を招
くことから困難である。
For this reason, the entire battery is held down with high stress,
It is possible to improve mechanical contact between metal members. However, in a fuel cell in which a breakable electrolyte plate is incorporated, it is difficult to significantly increase the stress because it causes deterioration of the cell performance.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、各種金属部材間の接触性を高めて電気抵抗の増大
による長期的な電池性能の劣化を防止した溶融炭酸塩型
燃料電池を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention was made to solve the above-mentioned conventional problems, and it improves the contact between various metal members and prevents long-term deterioration of battery performance due to increased electrical resistance. It is an object of the present invention to provide a molten carbonate fuel cell in which

(課題を解決するための手段) 本発明は、各種の金属部材を組立てて構成された溶融炭
酸塩型燃料電池において、前記金属部材間の電気的接触
部位に300℃から作動温度の範囲で接合する金属薄膜
層を介在したことを特徴とする溶融炭酸塩型燃料電池で
ある。
(Means for Solving the Problems) In a molten carbonate fuel cell constructed by assembling various metal members, the present invention provides bonding at an electrical contact portion between the metal members at an operating temperature range of 300°C. This is a molten carbonate fuel cell characterized by having a metal thin film layer interposed therebetween.

上記金属薄膜層は、電池組立て時では金属部材間の接合
に関与せず、電池の昇温過程である300℃〜作動温度
で軟化して金属部材間を接合する作用をなすものである
。特に、金属部材の接触部位の酸化や金属部材そのもの
の変形を極力抑制する観点から金属として電解質板中の
アルカリ炭酸塩が溶融する温度以下で軟化して金属部材
間を接合するものを選択することが望ましい。かかる金
属としては、例えばAg、Au、Cu、N1 もしくは
これらの合金を挙げることができる。これらの、中でC
uは酸化剤ガスで酸化して脆化し易いために燃料ガス側
の金属部材の接合に使用することが望ましい。前記N1
は、酸化剤ガス及びアルカリ炭酸塩の共存状態で激しく
腐蝕されるため燃料ガス側の金属部材の接合に使用する
ことが望ましい。
The metal thin film layer does not participate in bonding between the metal members during battery assembly, but softens during the temperature rising process of the battery, from 300° C. to the operating temperature, and serves to bond the metal members together. In particular, from the viewpoint of suppressing oxidation of the contact parts of metal parts and deformation of the metal parts themselves as much as possible, it is necessary to select a metal that softens below the temperature at which the alkali carbonate in the electrolyte plate melts and joins the metal parts. is desirable. Examples of such metals include Ag, Au, Cu, N1, and alloys thereof. Among these, C
Since u is easily oxidized by oxidizing gas and becomes brittle, it is desirable to use it for joining metal members on the fuel gas side. Said N1
Because it is severely corroded in the coexistence of oxidizing gas and alkali carbonate, it is desirable to use it for joining metal members on the fuel gas side.

このため、比較的安価で酸化、腐蝕を受は難いAgが好
適である。
For this reason, Ag is preferable because it is relatively inexpensive and resistant to oxidation and corrosion.

上記金属薄膜層を介在させる手段としては、金属部材間
に挟み込んでもよいが、組立て時の作業性を向上させる
ために金属部材の接触部位に予めメツキ法、塗布法、C
VD法、スパッタリング法、蒸着法等により被覆するこ
とが望ましい。特に、金属部材との密着性を考慮すると
メツキ法、スパッタリング法が望ましい。また、前記金
属薄膜層の被覆に際しては、金属部材の一方に被覆すれ
ばよいが、場合によっては両者の金属部材の接触部位に
同種又は異種の金属薄膜層を被覆してもよい。
The metal thin film layer may be interposed between the metal members, but in order to improve workability during assembly, the contact areas of the metal members may be pre-plated, coated, coated, etc.
It is desirable that the coating be performed by a VD method, a sputtering method, a vapor deposition method, or the like. In particular, plating and sputtering methods are preferred in consideration of adhesion to metal members. Further, when coating the metal thin film layer, it is sufficient to coat one of the metal members, but depending on the case, the contact portion between both metal members may be coated with the same or different metal thin film layer.

更に、金属薄膜層の厚さは該薄膜層による金属部材間の
接触性の向上と燃料電池の構成精度の観点から、5μm
〜0.2 rtusとすることが望ましく、より好まし
い厚さは10〜100μmの範囲である。
Furthermore, the thickness of the metal thin film layer is set to 5 μm from the viewpoint of improving the contact between metal members by the thin film layer and the construction accuracy of the fuel cell.
It is desirable that the thickness be ˜0.2 rtus, and the more preferable thickness is in the range of 10 to 100 μm.

(作用) 本発明によれば、金属部材間の電気的接触部位に300
℃から作動温度の範囲で接合する金属薄膜層を介在する
ことによって、作動時の昇温過程で各金属部材間の接触
部位が金属薄膜層により強固に接合、一体化できるため
、金属部材間での良好な電気的導通を確保できると共に
、接触部位が周囲のガスによって酸化、腐蝕されるのを
防止できる。特に、長時間の使用時で問題となる金属部
材間の接触部位の電気抵抗の増大を回避でき、長期間に
亙って安定した性能を有する燃料電池を実現できる。更
に、燃料電池では避けることができなかった温度分布に
伴う熱変形を構造的に抑え込める利点を有する。
(Function) According to the present invention, the electrical contact area between metal members has a
By interposing a metal thin film layer that joins within the operating temperature range from ℃ to the operating temperature, the contact areas between each metal member can be firmly joined and integrated by the metal thin film layer during the temperature rise process during operation, so the metal parts can be bonded together. Good electrical continuity can be ensured, and the contact area can be prevented from being oxidized and corroded by surrounding gas. In particular, it is possible to avoid an increase in electrical resistance at contact points between metal members, which is a problem during long-term use, and to realize a fuel cell that has stable performance over a long period of time. Furthermore, it has the advantage of structurally suppressing thermal deformation due to temperature distribution, which cannot be avoided with fuel cells.

(実施例) 以下、本発明の実施例を第1図を参照して詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIG.

まず、第1図に示すように5US310製のガス分散板
(孔あき板)■の後記ガス通路用波状板との接触部位、
及び5US310製の仕切り板2の同波状板との接触部
位に夫々スパッタリングにより厚さ約20μmのAg薄
膜層3を設けた後、これら分散板1と仕切り板2の間に
5US310製のガス通路用波状板4を前記各Ag薄膜
層3を介して配置して電池構成部品を作製した。
First, as shown in Fig. 1, the contact portion of the gas distribution plate (perforated plate) made of 5US310 with the corrugated plate for gas passage described below,
After providing an Ag thin film layer 3 with a thickness of about 20 μm by sputtering at the contact portion of the partition plate 2 made of 5US310 and the corrugated plate, a layer 3 of Ag thin film 3 with a thickness of about 20 μm is provided between the dispersion plate 1 and the partition plate 2 made of 5US310 for gas passage. The corrugated plate 4 was arranged with each of the Ag thin film layers 3 interposed therebetween to produce a battery component.

つづいて、この構成部品と、Nl −Cr多孔質体から
なるカソード、N1多孔質体からなるアノード間で混合
アルカリ炭酸塩(モル比にてLi 2 CO3/に2 
CO3−62/38)とLIA、eO2粉末保持材を混
合した電解質板を挟んだ積層体とを用いて4cm角の単
位電池を組立て、この単位電池を発電温度である650
℃に昇温する際、300℃で1時間保持して前記構成部
品の分散板と波状板間及び仕切り板と波状板間をAg薄
膜層で接合した。
Subsequently, a mixed alkali carbonate (at a molar ratio of Li 2 CO3 / 2
A 4 cm square unit battery is assembled using a laminate sandwiching an electrolyte plate containing a mixture of CO3-62/38) and LIA and an eO2 powder holding material, and this unit battery is heated to 650℃, which is the power generation temperature.
When the temperature was raised to 300° C., the temperature was maintained at 300° C. for 1 hour to bond the components between the dispersion plate and the corrugated plate and between the partition plate and the corrugated plate with an Ag thin film layer.

比較例 電池構成部品として分散板、ガス通路用波状板及び仕切
り板を互いに接合せずに重ね合せたものを用いた以外、
実施例と同様な構成の単位電池を組立てた。
Comparative Example Except for using a dispersion plate, a corrugated gas passage plate, and a partition plate stacked one on top of the other without bonding each other as battery components.
A unit battery having a configuration similar to that of the example was assembled.

しかして、本実施例及び比較例の単位電池について約3
000時間の発電を行なった。その結果、実施例の電池
では150mA/mでの初期電圧0.85Vが3000
時間後でも0.83Vを維持し、劣化は0.02Vと僅
かであった。これに対し、比較例の電池では初期電圧0
.80Vが3000時間後では0.64Vまで低下した
Therefore, for the unit batteries of this example and comparative example, approximately 3
000 hours of power generation. As a result, in the battery of the example, the initial voltage of 0.85V at 150mA/m was 3000V.
Even after hours, the voltage remained at 0.83V, and the deterioration was slight at 0.02V. On the other hand, in the battery of the comparative example, the initial voltage was 0.
.. 80V decreased to 0.64V after 3000 hours.

[発明の効果コ 以上詳述した如く、本発明によれば金属部材間での良好
な電気的導通を確保できると共に接触部位が周囲のガス
によって酸化、腐蝕されるのを防止でき、更に温度分布
に伴う金属部材の熱変形を抑え込むことができ、ひいて
は長期間に亙って安定した初期電圧を維持し得る高性能
の溶融炭酸塩型燃料電池を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to ensure good electrical conduction between metal members, prevent contact areas from being oxidized and corroded by surrounding gas, and further improve temperature distribution. Accordingly, it is possible to suppress the thermal deformation of the metal member caused by the thermal deformation of the metal member, and furthermore, it is possible to provide a high-performance molten carbonate fuel cell that can maintain a stable initial voltage for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で使用した電池構成部品を示
す概略図である。 ■・・・ガス分散板(孔あき板)、2・・・仕切り板、
3・・・Ag薄膜層、4・・・ガス通路用波状板。 出願人代理人 弁理士 鈴江武彦 111 図
FIG. 1 is a schematic diagram showing battery components used in an example of the present invention. ■... Gas distribution plate (perforated plate), 2... Partition plate,
3...Ag thin film layer, 4...Corrugated plate for gas passage. Applicant's agent Patent attorney Takehiko Suzue 111 Figure

Claims (1)

【特許請求の範囲】[Claims] 各種の金属部材を組立てて構成された溶融炭酸塩型燃料
電池において、前記金属部材間の電気的接触部位に30
0℃から作動温度の範囲で接合する金属薄膜層を介在し
たことを特徴とする溶融炭酸塩型燃料電池。
In a molten carbonate fuel cell constructed by assembling various metal members, there is a
A molten carbonate fuel cell characterized by interposing a metal thin film layer that is bonded at an operating temperature ranging from 0°C.
JP63073093A 1988-03-29 1988-03-29 Fuel cell of molten carbonate type Pending JPH01246769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073093A JPH01246769A (en) 1988-03-29 1988-03-29 Fuel cell of molten carbonate type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073093A JPH01246769A (en) 1988-03-29 1988-03-29 Fuel cell of molten carbonate type

Publications (1)

Publication Number Publication Date
JPH01246769A true JPH01246769A (en) 1989-10-02

Family

ID=13508376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073093A Pending JPH01246769A (en) 1988-03-29 1988-03-29 Fuel cell of molten carbonate type

Country Status (1)

Country Link
JP (1) JPH01246769A (en)

Similar Documents

Publication Publication Date Title
JP2003501796A (en) Gas separator for fuel cells
JP2006120589A (en) Flat plate lamination type fuel cell
US5334464A (en) Lightweight battery plates
JP2010021038A (en) Solid oxide fuel cell stack
JPH11162478A (en) Separator for fuel cell
US7037617B2 (en) Conductive coatings for PEM fuel cell electrodes
KR100291135B1 (en) Battery electrode plate structure
JP2005276807A (en) Fuel cell separator using titanium nitride coated metal, its manufacturing method, and polymer electrolyte fuel cell having separator
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
US20180309141A1 (en) Metallic member used for fuel cell stack
US5645959A (en) Battery plates with self-passivating iron cores and mixed acid electrolyte
JP4234597B2 (en) Manufacturing method of fuel cell separator
JPH01246769A (en) Fuel cell of molten carbonate type
RU2361328C1 (en) Fuel element
JP5727432B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
JPH09259917A (en) Molten carbonate type fuel battery and manufacture thereof
JPS62262376A (en) Melted carbonate type fuel cell
JP5271067B2 (en) Stacked fuel cell
JPS5998473A (en) Molten carbonate type fuel cell
KR101483489B1 (en) Seperator for fuel cell and method for manufacturing the same
JP7390648B2 (en) Interconnector member and method for manufacturing interconnector member
RU2790543C1 (en) Battery of tubular solid oxide fuel cells and method for its manufacture
JP7324983B2 (en) INTERCONNECTOR MEMBER AND METHOD FOR MANUFACTURING INTERCONNECTOR MEMBER
JP5306661B2 (en) Maintenance method of fuel cell stack
JPH08287930A (en) Conductive bond