JPH01246310A - Method and apparatus for treating raw material for smelting reduction - Google Patents

Method and apparatus for treating raw material for smelting reduction

Info

Publication number
JPH01246310A
JPH01246310A JP63072570A JP7257088A JPH01246310A JP H01246310 A JPH01246310 A JP H01246310A JP 63072570 A JP63072570 A JP 63072570A JP 7257088 A JP7257088 A JP 7257088A JP H01246310 A JPH01246310 A JP H01246310A
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace
exhaust gas
circulating fluidized
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63072570A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
悟 鈴木
Tatsuhiko Egashira
江頭 達彦
Masaaki Matsui
松井 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63072570A priority Critical patent/JPH01246310A/en
Publication of JPH01246310A publication Critical patent/JPH01246310A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently pre-reduce powdery ore and to recover carbonic material by charging exhaust gas of a smelting reduction furnace from bottom part and the powdery ore from intermediate part in a circulating fluidized bed furnace forming the concentrated bed of coarse granular coal at bottom part. CONSTITUTION:In a raw material treatment apparatus for smelting reduction composing of a cyclon 12 and out-furnace circulating passage 13 in the circulating fluidized bed furnace body 1, the concentrated bed 8 is formed at the furnace bottom part with the coarse granular coal 4 charged from the intermediate part in the circulating fluidized bed furnace 1. The exhaust gas 2 generated in the smelting reduction furnace is introduced from this furnace bottom part and reformed with the concentrated bed 8 and also coarsed granular coal is made to char 9. By this reformed gas, the powder ore 6 charged from the intermediate part of the furnace and forming the fluidized bed through the circular passage 13, is reduced and is taken out as the pre-reduced ore 15 for smelting reduction on the way of the above circulating passage 13. On the other hand, the above char 9 is recovered from the furnace bottom part as the carbonic material without giving any adverse influence to secondary combustion ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融還元炉で発生した排ガスを改質すると共
に、原料鉱石の予備還元及び粗粒石炭のチャー化を行う
方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for reforming exhaust gas generated in a smelting reduction furnace, preliminary reduction of raw material ore, and charring of coarse coal.

〔従来の技術〕[Conventional technology]

最近、高炉法に代わる製錬技術として溶融還元製錬法が
注目を浴びている。この方法で使用する溶融還元炉は、
使用する原料に制約を受けることなく、より小規模な設
備により鉄系合金溶湯を製造することを目的として開発
されたものである。
Recently, the smelting reduction smelting method has been attracting attention as a smelting technology to replace the blast furnace method. The melting reduction furnace used in this method is
It was developed with the aim of producing molten iron-based alloys using smaller-scale equipment without being restricted by the raw materials used.

この方法においては、溶融還元炉で発生した排ガスがC
o、H,等の還元性成分を含んでいることに着目し、こ
の排ガスを原料鉱石の予備還元に使用することが検討さ
れている。しかし、目標とする還元度を得るためには、
排ガスの酸化度が高すぎる場合がある。特に、溶融還元
炉で二次燃焼させて投入された原料鉱石を加熱する場合
には、溶融還元炉から排出される排ガスの酸化度が高く
なり、還元力の弱いものとなる。
In this method, the exhaust gas generated in the smelting reduction furnace is
Focusing on the fact that this exhaust gas contains reducing components such as O, H, etc., it is being considered to use this exhaust gas for preliminary reduction of raw material ore. However, in order to achieve the target degree of return,
The degree of oxidation of the exhaust gas may be too high. Particularly, when the raw material ore that has been input is heated through secondary combustion in a smelting-reduction furnace, the degree of oxidation of the exhaust gas discharged from the smelting-reduction furnace becomes high and the reducing power becomes weak.

そこで、本出願人は、酸素吹込みにより石炭が流動状態
に維持されている石炭焚流動層炉に一部ガスを吹き込ん
で改質する方法を開発し、特願昭61−71573号(
特開昭(i2−227020号公報)として出願した。
Therefore, the present applicant developed a method for reforming coal by blowing some gas into a coal-fired fluidized bed furnace in which coal is kept in a fluidized state by blowing oxygen into it, and published Japanese Patent Application No. 61-71573 (
It was filed as Japanese Patent Application Laid-open No. Sho (i2-227020).

この方法によるとき、特別な脱炭酸設備を必要とせず、
排ガスの改質が行われる。すなわち、排ガスは、石炭焚
流動層炉内で赤熱された石炭と接触し、CO2+C−2
COの反応に従って還元力の高いものに改質される。次
いで、処理された排ガスは、流動層予備還元炉に送り込
まれ原料鉱石の予備還元に使用される。
This method does not require special decarboxylation equipment,
The exhaust gas is reformed. That is, the exhaust gas comes into contact with the red-hot coal in the coal-fired fluidized bed furnace, and the CO2+C-2
According to the reaction of CO, it is modified into a substance with high reducing power. Next, the treated exhaust gas is sent to a fluidized bed pre-reduction furnace and used for pre-reduction of raw material ore.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前掲の特願昭61−71573号で紹介した
石炭焚流動層炉は、排ガスの改質・加熱を専らの目的と
して開発されたものである。そのため、石炭焚流動層炉
に投入された石炭は、炉内で赤熱チャーとなって排ガス
に含まれているC02をC○に還元した後、灰分として
炉外に排出される。また、改質されたガスは、原料鉱石
を予備還元するため、別途配置した流動層予備還元炉に
導入される。そのため、石炭焚流動層炉を設けた分だけ
設備構成及び配管が複雑となる。
However, the coal-fired fluidized bed furnace introduced in the above-mentioned Japanese Patent Application No. 61-71573 was developed solely for the purpose of reforming and heating exhaust gas. Therefore, coal input into a coal-fired fluidized bed furnace becomes red-hot char in the furnace, reduces CO2 contained in the exhaust gas to C○, and is then discharged as ash outside the furnace. In addition, the reformed gas is introduced into a fluidized bed pre-reduction furnace which is provided separately in order to pre-reduce the raw material ore. Therefore, the installation of the coal-fired fluidized bed furnace complicates the equipment configuration and piping.

他方、溶融還元炉に投入される石炭としては、できるだ
け揮発成分の含有量が少ないものが溶融還元炉における
二次燃焼率の面から好ましい。
On the other hand, it is preferable that the coal to be charged into the smelting reduction furnace has as little volatile component content as possible from the viewpoint of secondary combustion rate in the smelting reduction furnace.

そこで、本発明は、前述の石炭焚流動層炉の炉内で生成
しているチャーに着目し、このチャーを灰分まで酸化さ
せずに取り出し、且つ石炭焚流動層炉で原料鉱石の予備
還元をも行わせることによって、溶融還元炉から排出さ
れる排ガスを効率良く原料鉱石の予備還元に使用すると
共に、二次燃焼率に悪影響を与えない炭材を得ることを
目的とする。
Therefore, the present invention focuses on the char generated in the above-mentioned coal-fired fluidized bed furnace, extracts this char without oxidizing it to ash, and pre-reduces the raw material ore in the coal-fired fluidized bed furnace. The purpose is to efficiently use the exhaust gas discharged from the smelting reduction furnace for preliminary reduction of raw material ore, and to obtain a carbonaceous material that does not adversely affect the secondary combustion rate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の溶融還元用原料処理方法は、その目的を達成す
るために、循環流動層炉の下部に粗粒石炭を装入して濃
密ベッドを形成し、溶融還元炉で発生した排ガスを前記
循環流動層炉の底部から槽内に導入し、前記排ガスによ
って前記粗粒石炭をチャー化すると共に前記排ガスを改
質し、前記循環流動層炉の中間部から装入される粉鉱石
を改質された排ガスによって予備還元し、前記粉鉱石は
炉外循環経路を介して循環させると共に一部を前記炉外
循環経路の途中から予備還元鉱石として取り出すことを
特徴とする。
In order to achieve the objective, the method for processing raw materials for smelting reduction of the present invention charges coarse coal into the lower part of a circulating fluidized bed furnace to form a dense bed, and the exhaust gas generated in the smelting reduction furnace is Introduced into the tank from the bottom of the fluidized bed furnace, the coarse coal is charred by the exhaust gas, and the exhaust gas is reformed, and the fine ore charged from the middle part of the circulating fluidized bed furnace is reformed. The fine ore is circulated through an extra-furnace circulation path, and a portion is taken out from the middle of the extra-furnace circulation path as pre-reduced ore.

また、この方法において使用される溶融還元用原料処理
装置は、循環流動層炉本体と、該循環流動層本体に接続
されサイクロンを備えた炉外循環経路と、前記循環流動
層炉本体の底部に開口した排ガス導入口と、前記循環流
動層炉本体の下部に開口した粗粒石炭装入口と、前記循
環流動層炉本体の中間部に開口した粉鉱石装入口と、前
記循環流動層炉本体の底部に設けられたチャー取出し口
と、前記炉外循環経路の途中に設けられた予備還元鉱石
取出し口とを備えている。
Further, the raw material processing device for smelting reduction used in this method includes a circulating fluidized bed furnace body, an external circulation path connected to the circulating fluidized bed body and equipped with a cyclone, and a bottom portion of the circulating fluidized bed furnace body. an open exhaust gas inlet, a coarse coal charging inlet opened in the lower part of the circulating fluidized bed furnace body, a fine ore charging inlet opened in the middle part of the circulating fluidized bed furnace body, and a fine ore charging inlet opened in the middle of the circulating fluidized bed furnace body; It has a char outlet provided at the bottom and a pre-reduced ore outlet provided in the middle of the extra-furnace circulation path.

〔作用〕[Effect]

本発明の溶融還元用原料処理装置を示した第1図を参照
しながら、本発明をその作用と共に具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically explained along with its operation with reference to FIG. 1 showing a raw material processing apparatus for melt reduction according to the present invention.

この溶融還元用原料処理装置においては、循環流動層炉
本体1に、溶融還元炉からの排ガス2を導入する排ガス
導入管3、粗粒石炭4を炉内に送り込む粗粒石炭装入管
5、粉鉱石6を炉内に送り込む粉鉱石装入管7が接続さ
れている。ここで、粗粒石炭装入管5は、装入された粗
粒石炭4が炉内の底部に濃厚ベッド8を形成するように
、循環流動層炉本体lの下部に開口している。そして、
この濃厚ベッド8を排ガス2が通過・上昇するように、
排ガス導入管3は、循環流動層炉本体lの底部に開口し
ている。他方、粉鉱石装入管7は、装入された粉鉱石6
が濃厚ベッド8の上方で排ガスと接触するように、粗粒
石炭装入管5より上方の位置で循環流動層炉本体1に開
口している。
In this smelting reduction raw material processing apparatus, a circulating fluidized bed furnace body 1 includes an exhaust gas introduction pipe 3 for introducing exhaust gas 2 from the smelting reduction furnace, a coarse coal charging pipe 5 for feeding coarse coal 4 into the furnace, A fine ore charging pipe 7 for feeding fine ore 6 into the furnace is connected. Here, the coarse coal charging pipe 5 opens at the lower part of the circulating fluidized bed furnace body 1 so that the charged coarse coal 4 forms a dense bed 8 at the bottom of the furnace. and,
In order for the exhaust gas 2 to pass through and rise through this rich bed 8,
The exhaust gas introduction pipe 3 opens at the bottom of the circulating fluidized bed furnace main body l. On the other hand, the fine ore charging pipe 7 carries the charged fine ore 6.
It opens into the circulating fluidized bed furnace body 1 at a position above the coarse coal charging pipe 5 so that it comes into contact with the exhaust gas above the dense bed 8.

粗粒石炭装入管5から送り込まれる粗粒石炭4としては
、たとえば粒径が5 mc以上のものを使用する。粒径
の大きな粗粒石炭4は、排ガス導入管3から吹き込まれ
た排ガス2により舞い上がることがなく、安定したa厚
ベッド8を循環流動層炉本体1の炉内底部に形成する。
As the coarse coal 4 fed from the coarse coal charging pipe 5, coal having a particle size of 5 mc or more is used, for example. The coarse coal 4 having a large particle size is not blown up by the exhaust gas 2 blown from the exhaust gas introduction pipe 3, and forms a stable a-thick bed 8 at the bottom of the circulating fluidized bed furnace body 1.

他方、粉鉱石装入管7から装入された粉鉱石6は、その
粒度に対応して排ガス2の流量を調整することにより、
炉内で流動状態に維持される。
On the other hand, the fine ore 6 charged from the fine ore charging pipe 7 is processed by adjusting the flow rate of the exhaust gas 2 according to its particle size.
It is maintained in a fluid state in the furnace.

排ガス導入管3から送り込まれた排ガス2が濃厚ベッド
8を通過するとき、排ガス2に含まれているCO7は、
a厚ベッド8の粗粒石炭4と界面反応(CO2+H2C
O)  を起こし、COに還元される。このとき、排ガ
ス2の温度が、溶融還元炉から送り出された状態では1
000℃以上の極めて高温であるため、前述の界面反応
は円滑に進行する。なお、排ガス2の温度が高すぎると
きには、排ガス導入管3の途中に熱回収を行うボイラー
等を設置し、循環流動層炉本体1に導入される排ガス2
の温度を制御することもできる。
When the exhaust gas 2 sent from the exhaust gas introduction pipe 3 passes through the rich bed 8, the CO7 contained in the exhaust gas 2 is
Interfacial reaction with coarse coal 4 in thick bed 8 (CO2+H2C
O) and is reduced to CO. At this time, the temperature of the exhaust gas 2 is 1 when it is sent out from the melting reduction furnace.
Since the temperature is extremely high, 000° C. or higher, the above-mentioned interfacial reaction proceeds smoothly. In addition, when the temperature of the exhaust gas 2 is too high, a boiler or the like for heat recovery is installed in the middle of the exhaust gas introduction pipe 3, and the exhaust gas 2 introduced into the circulating fluidized bed furnace main body 1 is heated.
It is also possible to control the temperature of

また、高温の排ガス2が粗粒石炭4と接触することによ
って、粗粒石炭4に含まれている揮発性成分も分解され
る。
Further, when the high temperature exhaust gas 2 comes into contact with the coarse coal 4, volatile components contained in the coarse coal 4 are also decomposed.

したがって、濃厚ベッド8を通過したガスは、多量のC
O及びH2を含む還元力の大きなものとなっている。他
方、粗粒石炭4は、揮発性成分が除かれたチャー9とな
る。そこで、このチャー9を、循環流動層炉本体lの底
部に設けたチャー取出し口10から連続的又は間歇的に
取り出し、溶融還元炉に投入する。
Therefore, the gas that has passed through the rich bed 8 contains a large amount of C.
It has a large reducing power containing O and H2. On the other hand, coarse coal 4 becomes char 9 from which volatile components have been removed. Therefore, this char 9 is taken out continuously or intermittently from a char outlet 10 provided at the bottom of the circulating fluidized bed furnace main body 1 and introduced into a smelting reduction furnace.

濃厚ベッド8で改質されたガスは、次いで粉鉱石装入管
7から装入された粉鉱石6と接触し、予備還元する。こ
のとき、ガスの温度は、排ガス2の流量や濃厚ベッド6
の厚み等にもよるが、排ガス導入管3を流れる排ガス2
の温度に比較して低くなるが、排ガス2の温度を制御す
ることで、粉鉱石7を予備還元するには充分な温度を保
たせることができる。
The gas reformed in the rich bed 8 then comes into contact with the fine ore 6 charged from the fine ore charging pipe 7 and is pre-reduced. At this time, the temperature of the gas depends on the flow rate of the exhaust gas 2 and the rich bed 6.
Depending on the thickness etc. of the exhaust gas 2 flowing through the exhaust gas introduction pipe 3,
However, by controlling the temperature of the exhaust gas 2, it is possible to maintain a temperature sufficient to pre-reduce the fine ore 7.

改質ガスで予備還元された粉鉱石6は、ガスと共に循環
流動層炉本体lから導出管11を経由してサイクロン1
2に送られる。粉鉱石6は、サイクロン12で固気分離
された後、炉外循環経路13を経て循環流動層炉本体l
に循環される。この炉外循環経路13の途中に予備還元
鉱取出し管14が開口しており、この予備還元鉱取出し
管14を介し予備還元鉱15が連続的又は間歇的に取り
出される。他方、サイクロン12で粉鉱石6から分離し
たガスは、排ガス16としてサイクロン12に設けた排
気管17から系外に放出される。
The fine ore 6 which has been pre-reduced with the reformed gas is passed along with the gas from the circulating fluidized bed furnace body 1 to the cyclone 1 via the outlet pipe 11.
Sent to 2. After solid-gas separation in the cyclone 12, the fine ore 6 passes through the external circulation path 13 to the circulating fluidized bed furnace main body l.
is circulated. A pre-reduced ore removal pipe 14 is opened in the middle of this extra-furnace circulation path 13, and the pre-reduced ore 15 is taken out continuously or intermittently through this pre-reduced ore removal pipe 14. On the other hand, the gas separated from the fine ore 6 by the cyclone 12 is discharged as exhaust gas 16 from an exhaust pipe 17 provided in the cyclone 12 to the outside of the system.

このように、一つの循環流動層炉によって、排ガス2の
改質、粉鉱石6の予備還元及び粗粒石炭4のチャー化が
行われる。そして、改質された排ガス2は、濃厚ベッド
8を通過した直後に粉鉱石6と接触するため、粉鉱石6
は極めて高い還元率まで予備還元される。また、排ガス
2の改質に使用された粗粒石炭4は、揮発性成分が除去
されたチャーとなっているため、これを溶融還元炉に炭
材として装入するとき、炉内の二次燃焼に悪影響を与え
ることがなく、効率良く溶銑生成反応の熱源及び還元剤
として使用される。更には、二次燃焼のために溶融還元
炉に吹き込まれる酸素の消費量を低減することもできる
In this way, one circulating fluidized bed furnace performs reforming of exhaust gas 2, preliminary reduction of fine ore 6, and charring of coarse coal 4. Since the reformed exhaust gas 2 comes into contact with the fine ore 6 immediately after passing through the rich bed 8, the fine ore 6
is preliminarily reduced to an extremely high return rate. In addition, since the coarse coal 4 used for reforming the exhaust gas 2 is char from which volatile components have been removed, when it is charged into the melting reduction furnace as a carbon material, the secondary It has no adverse effect on combustion and is efficiently used as a heat source and reducing agent for hot metal production reactions. Furthermore, it is also possible to reduce the consumption amount of oxygen blown into the smelting reduction furnace for secondary combustion.

〔実施例〕〔Example〕

高さが6mで容積0.05m’の循環流動層炉本体lに
、揮発性成分含有量34%の粗粒石炭4及び粉鉱石6を
それぞれ1.Okg/分及び1.8kg/分の割合で装
入した。また、循環流動層炉本体lの底部からは、温度
1100℃の排ガス2を1.05 N m”7分の流量
で吹き込んだ。なお、(CO2+H20)/(Co□十
CO+H20+H2) で表される排ガス2の酸化度は
、0.45であった。
Coarse coal 4 and fine ore 6 with a volatile component content of 34% were each placed in a circulating fluidized bed furnace main body l having a height of 6 m and a volume of 0.05 m'. It was charged at a rate of 1.8 kg/min and 1.8 kg/min. In addition, exhaust gas 2 at a temperature of 1100°C was blown into the bottom of the circulating fluidized bed reactor main body l at a flow rate of 1.05 N m'' for 7 minutes. The degree of oxidation of exhaust gas 2 was 0.45.

この条件のとき、循環流動層炉本体lの底部には、高さ
0.6mの濃厚ベッド8が形成された。この濃厚ベッド
8を通過したガスは、温度が900℃であり、酸化度は
0.15に低下していた。また、チャー取出し口10か
ら取り出されたチャー9は、揮発性成分含有量が1,2
%と低いものになっていた。
Under these conditions, a dense bed 8 with a height of 0.6 m was formed at the bottom of the circulating fluidized bed furnace body 1. The temperature of the gas that passed through the dense bed 8 was 900° C., and the degree of oxidation had decreased to 0.15. Further, the char 9 taken out from the char outlet 10 has a volatile component content of 1 to 2.
% was low.

また、改質ガスによって予備還元された粉鉱石6は、還
元率60%で、金属鉄M、Fe含有量が40%の極めて
高い還元状態にあった。他方、排気管17から排出され
る排ガス16の酸化度は0.35となり、Co、  H
2等が効率良く予備還元に消費されてぃることか判った
Further, the fine ore 6 preliminarily reduced by the reformed gas had a reduction rate of 60% and was in an extremely highly reduced state with metallic iron M and Fe contents of 40%. On the other hand, the degree of oxidation of the exhaust gas 16 discharged from the exhaust pipe 17 is 0.35, and Co, H
It was found that the second prize was efficiently consumed for preliminary return.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、一つの循環
流動層炉で排ガスの改質、原料鉱石の予備還元及び石炭
のチャー化を行っているので、設備構成が簡単になると
共に、原料鉱石の還′元率を向上させることができる。
As explained above, in the present invention, a single circulating fluidized bed furnace performs the reforming of exhaust gas, the preliminary reduction of raw material ore, and the charring of coal. can improve the reduction rate.

また、石炭を排ガスの改質に使用しているため、脱炭酸
設備を別途必要とせず、製造コストを節減することがで
きる。更には、改質に使用された石炭は、揮発性成分が
少ないチャーとして溶融還元炉に投入されることから、
溶融還元炉で発生した排ガスを二次燃焼させるときの酸
素消費量が炭材に含有されている揮発性成分の酸化に消
費されることが抑えられる。このようにして、本発明に
よるとき、溶融還元を効率良く行うことが可能となる。
Furthermore, since coal is used to reform exhaust gas, there is no need for separate decarboxylation equipment, and manufacturing costs can be reduced. Furthermore, since the coal used for reforming is fed into the smelting reduction furnace as a char with few volatile components,
Oxygen consumption during secondary combustion of exhaust gas generated in the smelting reduction furnace is suppressed from being consumed in oxidizing volatile components contained in the carbonaceous material. In this way, according to the present invention, it becomes possible to efficiently perform melting reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原料処理装置を示す概略図である。 1;循環流動層炉本体 2;排ガス 3;排ガス導入管   4:粗粒石炭 5:粗粒石炭装入管  6:粉鉱石 7:粉鉱石装入管   8:濃厚ベッド9:チャ−10
:チャー取出し口 11+導出管      12:サイクロン13:炉外
循環経路   14:予備還元鉱取出し管15:予備還
元鉱    I6:排ガス17:排気管
FIG. 1 is a schematic diagram showing a raw material processing apparatus of the present invention. 1; Circulating fluidized bed furnace body 2; Exhaust gas 3; Exhaust gas introduction pipe 4: Coarse coal 5: Coarse coal charging pipe 6: Fine ore 7: Fine ore charging pipe 8: Dense bed 9: Char 10
: Char outlet 11 + outlet pipe 12: Cyclone 13: Circulation path outside the furnace 14: Preliminary reduced ore removal pipe 15: Preliminary reduced ore I6: Exhaust gas 17: Exhaust pipe

Claims (1)

【特許請求の範囲】 1、循環流動層炉の下部に粗粒石炭を装入して濃厚ベッ
ドを形成し、溶融還元炉で発生した排ガスを前記循環流
動層炉の底部から槽内に導入し、前記排ガスによって前
記粗粒石炭をチャー化すると共に前記排ガスを改質し、
前記循環流動層炉の中間部から装入される粉鉱石を改質
された排ガスによって予備還元し、前記粉鉱石は炉外循
環経路を介して循環させると共に一部を前記炉外循環経
路の途中から予備還元鉱石として取り出すことを特徴と
する溶融還元用原料処理方法。 2、循環流動層炉本体と、該循環流動層本体に接続され
サイクロンを備えた炉外循環経路と、前記循環流動層炉
本体の底部に開口した排ガス導入口と、前記循環流動層
炉本体の下部に開口した粗粒石炭装入口と、前記循環流
動層炉本体の中間部に開口した粉鉱石装入口と、前記循
環流動層炉本体の底部に設けられたチャー取出し口と、
前記炉外循環経路の途中に設けられた予備還元鉱石取出
し口とを備えていることを特徴とする溶融還元用原料処
理装置。
[Claims] 1. Coarse coal is charged into the lower part of a circulating fluidized bed furnace to form a dense bed, and exhaust gas generated in the smelting reduction furnace is introduced into the tank from the bottom of the circulating fluidized bed furnace. , charring the coarse coal with the exhaust gas and reforming the exhaust gas;
The fine ore charged from the middle part of the circulating fluidized bed furnace is preliminarily reduced by the reformed exhaust gas, and the fine ore is circulated through the extra-furnace circulation path, and a part of the ore is passed through the outside circulation path. A method for processing raw materials for smelting and reduction, characterized in that the ore is extracted as a pre-reduced ore from. 2. A circulating fluidized bed furnace body, an external circulation path connected to the circulating fluidized bed furnace body and equipped with a cyclone, an exhaust gas inlet opening at the bottom of the circulating fluidized bed furnace body, and a circulating fluidized bed furnace body. A coarse coal charging inlet opened at the bottom, a fine ore charging inlet opened at the middle part of the circulating fluidized bed furnace body, and a char outlet provided at the bottom of the circulating fluidized bed furnace body;
A raw material processing apparatus for smelting and reduction, comprising a preliminary reduced ore outlet provided in the middle of the extra-furnace circulation path.
JP63072570A 1988-03-26 1988-03-26 Method and apparatus for treating raw material for smelting reduction Pending JPH01246310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072570A JPH01246310A (en) 1988-03-26 1988-03-26 Method and apparatus for treating raw material for smelting reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072570A JPH01246310A (en) 1988-03-26 1988-03-26 Method and apparatus for treating raw material for smelting reduction

Publications (1)

Publication Number Publication Date
JPH01246310A true JPH01246310A (en) 1989-10-02

Family

ID=13493163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072570A Pending JPH01246310A (en) 1988-03-26 1988-03-26 Method and apparatus for treating raw material for smelting reduction

Country Status (1)

Country Link
JP (1) JPH01246310A (en)

Similar Documents

Publication Publication Date Title
KR0178445B1 (en) Method for producing molter pig iron
US3936296A (en) Integrated fluidized reduction and melting of iron ores
US5674308A (en) Spouted bed circulating fluidized bed direct reduction system and method
MX2009000735A (en) Method and apparatus for reducing metalliferous material to a reduction product.
EP2576845B1 (en) Process and plant for producing hot metal
JPH0348245B2 (en)
CA2583359A1 (en) Process and plant for producing titania slag from ilmenite
US20100269636A1 (en) Direct reduction apparatus and process
US2973260A (en) Method for the treatment of iron ores
US4094665A (en) Method for simultaneous combined production of electrical energy and crude iron
US4216011A (en) Method and apparatus for the secondary gaseous reduction of metal ores
EP1756322B1 (en) A direct reduction process
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
US3135598A (en) Rapid direct reduction method of iron oxide
JPH04505945A (en) Preheating and prereduction of metal oxides
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
EP1756324B1 (en) Direct reduction process using a single fluidised bed
JPH01246310A (en) Method and apparatus for treating raw material for smelting reduction
JPS6156255A (en) Recorvery and refining of metal from non-ferrous metal ore or refined ore
US1841602A (en) Treatment of iron ores and the like
KR20020045617A (en) Method for direct reduction of materials containing iron oxide
WO1995035392A2 (en) Method for reducing particulate iron ore to molten iron with hydrogen
AU2005248041B2 (en) A direct reduction apparatus and process
JPS62228882A (en) Iron ore spare reducing device
JPS6311611A (en) Prereduction device for iron ore