JPH0124616Y2 - - Google Patents

Info

Publication number
JPH0124616Y2
JPH0124616Y2 JP1978062908U JP6290878U JPH0124616Y2 JP H0124616 Y2 JPH0124616 Y2 JP H0124616Y2 JP 1978062908 U JP1978062908 U JP 1978062908U JP 6290878 U JP6290878 U JP 6290878U JP H0124616 Y2 JPH0124616 Y2 JP H0124616Y2
Authority
JP
Japan
Prior art keywords
sample air
light
particles
air introduction
introduction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978062908U
Other languages
Japanese (ja)
Other versions
JPS54164592U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978062908U priority Critical patent/JPH0124616Y2/ja
Publication of JPS54164592U publication Critical patent/JPS54164592U/ja
Application granted granted Critical
Publication of JPH0124616Y2 publication Critical patent/JPH0124616Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は、空気中に浮遊する微粒子および粉塵
の大きさと数を光学的に測定する光散乱微粒子測
定装置の改良に関し、測定精度の向上および測定
対象の拡大を目的とする。
[Detailed description of the invention] This invention relates to the improvement of a light scattering particulate measuring device that optically measures the size and number of particulates and dust floating in the air, with the aim of improving measurement accuracy and expanding the range of measurement targets. do.

光散乱微粒子測定装置は、クリーンルーム等の
清浄度が特別に管理された室内に浮遊する微粒子
の大きさと個数の測定に用いられ、試料空気を装
置内部の光学的センサにポンプ等で吸引し、強力
な光源で空気中に含まれる微粒子を照射して発生
する散乱光をフオトマルチプライヤー等の光電変
換器で受光し、電気パルス信号に変換して微粒子
の光学的な大きさと個数を測定する。即ち散乱光
の強度と実際の微粒子の大きさは既ね対応するの
で、電気パルス信号の波高値と数を測定する事に
より試料空気中の微粒子の大きさと個数がわか
る。
Light scattering particulate measuring equipment is used to measure the size and number of particulates floating in rooms where cleanliness is specially controlled, such as clean rooms. Sample air is sucked into an optical sensor inside the equipment using a pump, etc. The scattered light generated by irradiating fine particles in the air with a light source is received by a photoelectric converter such as a photomultiplier, and converted into an electric pulse signal to measure the optical size and number of the fine particles. That is, since the intensity of the scattered light already corresponds to the actual size of the particles, the size and number of particles in the sample air can be determined by measuring the peak value and number of the electric pulse signal.

この様な光散乱微粒子測定装置は、取扱いが簡
便であるためクリーンルーム等の清浄度測定に数
多く使用されているが、単位時間にサンプリング
する試料空気が非常に少ないためにクリーンルー
ム内の清浄度を正確に測定する事が困難で、かつ
時間を要した。通常の光散乱微粒子測定装置の試
料空気吸引量は300c.c./min程度であり、大容積
を有するクリーンルーム内の浮遊する微粒子の測
定には、微粒子分布の空間的、時間的変動のため
に、少なすぎる吸引量である。試料空気の吸引量
が少ないことは、試料空気を吸引する時に空気力
学的原因により粒径によつて捕集効率が異なると
いう問題を発生させる要因でもある。即ち微粒子
が微小な場合は空気分子と殆んど同一の動きであ
るため容易に試料空気と共に光散乱微粒子測定装
置内部に吸引されるが、微粒子が大きくなるに従
い空気の流れと別の動きをする。これは空気の流
れが少なければ少ない程、また遅ければ遅い程著
るしい。従つて大きな微粒子を光散乱微粒子測定
内部に導入するには、多量に試料空気を吸引する
必要から時間当りの吸引量を大きくしなければな
らなかつた。
This type of light scattering particle measuring device is easy to handle, so it is often used to measure the cleanliness of clean rooms, etc. However, because the amount of sample air sampled per unit time is very small, it is difficult to accurately measure the cleanliness inside the clean room. It was difficult and time consuming to measure. The sample air suction rate of a normal light scattering particulate measurement device is about 300c.c./min. , the amount of suction is too small. The small amount of sample air sucked is also a factor that causes the problem that the collection efficiency varies depending on the particle size due to aerodynamic causes when sample air is sucked. In other words, when the particles are small, they move in almost the same way as air molecules, so they are easily sucked into the light scattering particle measurement device along with the sample air, but as the particles get larger, they move differently from the air flow. . This is more noticeable the smaller the air flow and the slower it is. Therefore, in order to introduce large particles into the light scattering particle measurement device, it is necessary to suck a large amount of sample air, which necessitates increasing the amount of suction per hour.

しかし従来の微粒子測定装置は、試料空気中の
微粒子の全数測定の必要性ありとの前提に立脚し
て、試料空気導入手段としてのノズルから放出さ
れた試料空気の流れの径よりも、集光点に結ぶ光
源像を大きくする必要があるとされ、必然的に細
いノズルが使用されており、そのノズルの直径は
1mm程度であつた。このノズルを通過する試料空
気の速度は吸引量の増加と共に大きくなり、又ノ
ズルを通過する場合微粒子は、空気分子あるいは
微粒子相互の流体力学的な運動によつて壊われた
り凝集したりするために測定装置に吸引される以
前の状態と異なり、粒径個数分布パターンが大き
く変化する可能性があつた。この微粒子形状、分
布パターンの変化はノズルの通過時の試料空気速
度に比例するためノズル通過速度をあまり大きく
する事はできず。従つて光学的条件によつて決定
された細いノズルは通過速度の考慮によつて吸引
できる試料空気量が制限された。また細いノズル
は巨大粒子や粘性を有する微粒子を通過させる事
ができずにノズル内部にひつかかる等の問題を有
していた。
However, conventional particulate measuring devices are based on the premise that it is necessary to measure the total number of particulates in sample air. It was believed that it was necessary to enlarge the light source image focused on a point, so a narrow nozzle was inevitably used, and the diameter of the nozzle was about 1 mm. The velocity of sample air passing through this nozzle increases as the suction volume increases, and when passing through the nozzle, particles are broken or aggregated by the hydrodynamic movement of air molecules or particles. Unlike the state before being sucked into the measuring device, there was a possibility that the particle size distribution pattern would change significantly. Changes in the particle shape and distribution pattern are proportional to the sample air velocity when passing through the nozzle, so the nozzle passing velocity cannot be increased too much. Therefore, the amount of sample air that can be aspirated by a narrow nozzle determined by optical conditions is limited by considerations of passage speed. In addition, the narrow nozzle has problems such as being unable to pass large particles or viscous particles and getting stuck inside the nozzle.

そこで本考案は、光源からの照明光を、微粒子
を含んだ試料空気に集光せしめて、微粒子に散乱
光を発生せしめ、この散乱光を検出するものに於
て、前記試料空気の流れる通路として筒状の試料
空気導入管を設け、しかも前記試料空気に前記光
源からの照明光が集光して微粒子に散乱光が発生
する検出部を、この検出部領域よりも十分大なる
径を有する前記試料空気導入管内の略中央部に設
定したものである。
Therefore, the present invention focuses illumination light from a light source on a sample air containing fine particles, generates scattered light on the fine particles, and detects this scattered light. A cylindrical sample air introduction tube is provided, and a detection section in which the illumination light from the light source is focused on the sample air and scattered light is generated on the particles is provided, and the detection section has a diameter sufficiently larger than the detection section area. It is set approximately in the center of the sample air introduction tube.

従つて、本考案によれば、試料空気が通過する
小さな径のノズルを無くして、大きな断面積を有
する試料空気導入管内の中央部の小さな部分(検
出領域)で微粒子を検出している為、試料空気通
過速度を過大に速めることなく、容易に吸引量を
大とできるものである。それ故、粒径個数分布パ
ターンにも大きな変化を与えることが無い等、サ
ンプリング効率を高めることができる。しかも試
料空気導入管の径を大きくしているので、比較的
巨大粒子の通過を妨げることがなく、その測定が
でき、また塗料のように粘性の高いエアゾル粒子
の測定にも有効となるものである。
Therefore, according to the present invention, the small diameter nozzle through which the sample air passes is eliminated, and particles are detected in a small central part (detection area) of the sample air introduction tube that has a large cross-sectional area. The amount of suction can be easily increased without excessively increasing the sample air passing speed. Therefore, the sampling efficiency can be improved without causing a large change in the particle size distribution pattern. In addition, the diameter of the sample air introduction tube is large, so it is possible to measure relatively large particles without blocking their passage, and it is also effective in measuring highly viscous aerosol particles such as paint. be.

以下本考案の一実施例を図面に従つて説明す
る。第1図、第2図において、1は照明光を照射
する光源で、2は照明レンズで筒状の収納体に装
着され光源1から発射された照明光を集光する。
3は検出部で照明レンズ2によつて集光された照
明光によつて形成され検出部3を流れる微粒子は
照明光に照射されて散乱光を発生する。4は照明
光トラツプで照明光が検出部3で集光された後の
光を吸収してSN比を向上させる。5は試料空気
Aが流れる円筒状の試料空気導入管で、その略中
心線上に検出部3が配設されるように光源1、照
明レンズ2を配設する。検出部3の大きさ(容
積)は、照明光、受光部の光学的条件で決定され
るもので、例えば3mm程度の大きさが選ばれる。
これに対し試料空気導入管5の直径は数倍以上例
えば30mm程度と十分大きくする。6はガラスのご
とき透明板でなる光通路用の窓で、照明光および
散乱光を通すため試料空気導入管5に、その中心
線と、窓6のそれぞれの中心線とが略合致し、互
に直交する位置に設けられている。すなわち、検
出部は試料空気導入管内の略中央部に設定される
ことになる。試料空気導入管5はガラス管のごと
く全体を透明体で構成してもよい。7は試料空気
を吸引導入するためのフアンである。9は受光レ
ンズで、筒状の収納体に装着されその長軸は、照
明レンズ2の長軸と直交し、検出部3で発生した
散乱光を集光する。10は中央部に小孔を穿設し
たスリツトで、散乱光が集光する点に小孔を合致
させて収納体に装着されている。8は受光素子で
スリツト10を介して検出部3で発生した散乱光
を受光して電気パルス信号に変換する。この場合
スリツト10は試料空気導入管5を流れる試料空
気A中の検出部3の流れのみを検出するための照
明光および散乱光の光学系を制限するためのもの
で、試料空気Aの検出部3の流れ以外の散乱光学
系は、スリツト10にさえぎられて受光素子8に
到達しない。11は受光素子8と反対側に発生し
た散乱光を吸収するための散乱光トラツプであ
る。
An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, 1 is a light source that irradiates illumination light, and 2 is an illumination lens that is attached to a cylindrical housing and condenses the illumination light emitted from the light source 1.
Reference numeral 3 denotes a detection section which is formed by the illumination light focused by the illumination lens 2, and the particles flowing through the detection section 3 are irradiated with the illumination light to generate scattered light. Reference numeral 4 denotes an illumination light trap that absorbs the light after the illumination light is collected by the detection unit 3 and improves the signal-to-noise ratio. Reference numeral 5 denotes a cylindrical sample air introduction tube through which the sample air A flows, and a light source 1 and an illumination lens 2 are disposed so that the detection section 3 is disposed approximately on the center line of the tube. The size (volume) of the detection section 3 is determined by the illumination light and the optical conditions of the light receiving section, and is selected to be about 3 mm, for example.
On the other hand, the diameter of the sample air introduction tube 5 is made sufficiently large, for example, about 30 mm, by several times or more. Reference numeral 6 denotes a window for an optical passage made of a transparent plate such as glass, and the center line of the window 6 substantially coincides with the center line of each of the windows 6 and is mutually connected to the sample air introduction tube 5 in order to pass illumination light and scattered light. It is located perpendicular to the That is, the detection section is set approximately at the center of the sample air introduction tube. The sample air introduction tube 5 may be entirely made of a transparent material such as a glass tube. 7 is a fan for sucking and introducing sample air. Reference numeral 9 denotes a light-receiving lens, which is attached to the cylindrical housing, and whose long axis is orthogonal to the long axis of the illumination lens 2, and which focuses the scattered light generated by the detection section 3. Reference numeral 10 denotes a slit having a small hole in the center thereof, and is attached to the storage body with the small hole aligned with the point where the scattered light is focused. Reference numeral 8 denotes a light receiving element which receives the scattered light generated by the detecting section 3 through the slit 10 and converts it into an electric pulse signal. In this case, the slit 10 is for restricting the optical system of illumination light and scattered light for detecting only the flow of sample air A into the detection section 3 flowing through the sample air introduction tube 5, The scattering optical system other than the flow 3 is blocked by the slit 10 and does not reach the light receiving element 8. 11 is a scattered light trap for absorbing scattered light generated on the side opposite to the light receiving element 8.

上記構成において、フアン7によつて試料空気
Aを試料空気導入管5に吸引導入する。次に光源
1より発生した照明光は照明レンズ2を介して検
出部3で集光し、検出部3を通過する試料空気中
の微粒子に照射し、照射された微粒子は散乱光を
発生する。発生した散乱光は、受光レンズ9、ス
リツト10を介して受光素子8で受光され、電気
パルス信号に変換される。この電気パルス信号に
より単位体積中の微粒子の光学的大きさおよび個
数を測定する。
In the above configuration, the sample air A is suctioned into the sample air introduction tube 5 by the fan 7. Next, the illumination light generated from the light source 1 passes through the illumination lens 2 and is condensed by the detection section 3, and irradiates the particles in the sample air passing through the detection section 3. The irradiated particles generate scattered light. The generated scattered light is received by the light receiving element 8 via the light receiving lens 9 and the slit 10, and is converted into an electric pulse signal. The optical size and number of microparticles in a unit volume are measured using this electric pulse signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の平断面図、第2図は第1図
における−断面図である。 1:光源、2:照明レンズ、3:検出部、4:
照明トラツプ、5:試料空気導入管、6:窓、
7:フアン、8:受光素子、9:受光レンズ、1
0:スリツト、11:散乱光トラツプ。
FIG. 1 is a plan sectional view of this invention, and FIG. 2 is a cross-sectional view taken from FIG. 1. 1: Light source, 2: Illumination lens, 3: Detection unit, 4:
Lighting trap, 5: sample air introduction tube, 6: window,
7: Fan, 8: Light receiving element, 9: Light receiving lens, 1
0: slit, 11: scattered light trap.

Claims (1)

【実用新案登録請求の範囲】 (1) 光源1からの照明光を、微粒子を含んだ試料
空気Aに集光せしめて、微粒子に散乱光を発生
せしめ、この散乱光を検出するものに於て、 前記試料空気Aの流れる通路として筒状の試
料空気導入管5を設け しかも前記試料空気Aに前記光源1からの照
明光が集光して微粒子に散乱光が発生する検出
部3を、この検出部3領域よりも十分大なる径
を有する前記試料空気導入管5内の略中央部に
設定してなる光散乱微粒子測定装置。 (2) 前記試料空気導入管5が、ガラスのごとき透
明体でなる実用新案登録請求の範囲第1項記載
の光散乱微粒子測定装置。
[Claims for Utility Model Registration] (1) In a device that focuses illumination light from a light source 1 on sample air A containing fine particles to generate scattered light on the fine particles, and detects this scattered light. , a cylindrical sample air introduction pipe 5 is provided as a passage through which the sample air A flows, and a detection unit 3 in which the illumination light from the light source 1 is focused on the sample air A and scattering light is generated on the particles is connected to the detector 3. A light scattering particulate measuring device that is set approximately at the center of the sample air introduction tube 5 having a diameter sufficiently larger than the detection section 3 area. (2) The light scattering particle measuring device according to claim 1, wherein the sample air introduction tube 5 is made of a transparent material such as glass.
JP1978062908U 1978-05-11 1978-05-11 Expired JPH0124616Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978062908U JPH0124616Y2 (en) 1978-05-11 1978-05-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978062908U JPH0124616Y2 (en) 1978-05-11 1978-05-11

Publications (2)

Publication Number Publication Date
JPS54164592U JPS54164592U (en) 1979-11-17
JPH0124616Y2 true JPH0124616Y2 (en) 1989-07-25

Family

ID=28965599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978062908U Expired JPH0124616Y2 (en) 1978-05-11 1978-05-11

Country Status (1)

Country Link
JP (1) JPH0124616Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639848A (en) * 1986-06-30 1988-01-16 Shimizu Constr Co Ltd Corpuscle detecting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124264A (en) * 1974-08-23 1976-02-27 Takenaka Komuten Co ODEIKEIRYO SOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124264A (en) * 1974-08-23 1976-02-27 Takenaka Komuten Co ODEIKEIRYO SOCHI

Also Published As

Publication number Publication date
JPS54164592U (en) 1979-11-17

Similar Documents

Publication Publication Date Title
US6639671B1 (en) Wide-range particle counter
KR101063966B1 (en) Realtime apparatus for measuring dust
US4113386A (en) Photometer
CN204330540U (en) A kind of particle quality concentration detector with self-purifying system
US11768148B2 (en) Miniaturized optical particle detector
US3786261A (en) Optical scanning device
JP2012509486A (en) Method and system for analyzing solid particles in a medium
CN103454194A (en) PM2.5 (Particulate Matter 2.5) detection device and manufacturing method thereof
CN109632589A (en) A kind of Atmospheric particulates detection device and method
CN102323193A (en) Measurement method for air particle distribution through laser light scattering method, and apparatus thereof
CN209878547U (en) Atmospheric particulate detection device
JPH0124616Y2 (en)
US3535531A (en) High-volume airborne-particle light scattering detector system having rectangularly shaped elongated scanning zone
CN206114476U (en) Measure sensor of fine particles concentration
JP3113720B2 (en) Pollen detector
AU742800B2 (en) Improved device for measuring the concentration of airborne fibers
CN109632588A (en) A kind of oil liquid Particulate Pollution detection device and method
CN108120659A (en) A kind of particle concentration detecting system and method having from zero calibration
JPH0196532A (en) Fine particle detector by light scattering system
JPH10318908A (en) Pollen monitor
CN207472723U (en) A kind of particle concentration detecting system having from zero calibration
Suda Instrumentation for the size determination of submicron particulates systems by sideway light scattering method
JPH0365636A (en) Air pollution level detecting apparatus
JPH03108635A (en) Monitoring alarm for particulates in the air
JPH0743299A (en) Micropowder particle monitor