JPH01245856A - Catalyst for use in catalytic reduction of nitrogen oxide - Google Patents

Catalyst for use in catalytic reduction of nitrogen oxide

Info

Publication number
JPH01245856A
JPH01245856A JP63075800A JP7580088A JPH01245856A JP H01245856 A JPH01245856 A JP H01245856A JP 63075800 A JP63075800 A JP 63075800A JP 7580088 A JP7580088 A JP 7580088A JP H01245856 A JPH01245856 A JP H01245856A
Authority
JP
Japan
Prior art keywords
catalyst
ratio
mordenite
resistance against
flue gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63075800A
Other languages
Japanese (ja)
Inventor
Takeshi Ebina
毅 蝦名
Masahiro Nitta
昌弘 新田
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63075800A priority Critical patent/JPH01245856A/en
Publication of JPH01245856A publication Critical patent/JPH01245856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having resistance against degradation due to catalyst poison in flue gases, by causing mordenite type zeolite having a specific ratio of SiO2/Al2O3 to carry metal such as copper, vanadium etc. CONSTITUTION:In case of a catalyst for removing nitrogen oxide in flue gases, mordenite type zeolite having a SiO2/Al2O3 ratio of 15-25 is caused to carry metal such as copper, vanadium, cobalt, iron. The catalyst so obtained has a resistance against SOx while maintaining a high resistance against arsenic oxide etc., preventing thereby the degradation of its activity. Further, the denitration of flue gases wherein arsenic, selenium, sulfur etc. coexist can be performed stably for a long period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排ガス中の窒素酸化物(以下NOxと記す)
の除去用触媒に関わり、特に排ガス中の触媒毒物質によ
って劣化しにくい窒素酸化物除去用触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of nitrogen oxides (hereinafter referred to as NOx) in exhaust gas.
The present invention relates to catalysts for removing nitrogen oxides, and particularly to catalysts for removing nitrogen oxides that are not easily deteriorated by catalyst poisons in exhaust gas.

〔従来の技術〕[Conventional technology]

発電所、焼結炉、各種化学工場、自動車などから排出さ
れる酸化窒素(NO,)は、光化学スモッグの原因物質
とされるため、その効果的な処理手段が望まれている。
Nitrogen oxide (NO,) emitted from power plants, sintering furnaces, various chemical factories, automobiles, and the like is considered to be a causative agent of photochemical smog, and effective treatment means are desired.

従来から多く提案されている排煙脱硝方法のうち、アン
モニア(NH,)を還元剤とするNOxの接触還元法は
排ガス中に0□が1容量%以上含まれていてもj’J 
H3は選択的にNOxと反応するので、還元剤が少なく
て済むという点で有利な方法とされている。
Among the flue gas denitrification methods that have been proposed in the past, the NOx catalytic reduction method using ammonia (NH, ) as a reducing agent reduces the
Since H3 selectively reacts with NOx, this method is considered advantageous in that it requires less reducing agent.

この方法で用いられる触媒としては、活性アルミナ、シ
リカゲル、アルミナ、ゼオライト、酸化チタンなどの担
体に遷移金属化合物を担持させたものが知られている。
As catalysts used in this method, catalysts in which a transition metal compound is supported on a carrier such as activated alumina, silica gel, alumina, zeolite, or titanium oxide are known.

これらのうち現在実用に供されているものは、特開昭5
0−51966号、特開昭5−2−122293号に代
表される酸化チタンを主成分とし、これにバナジウム(
V)、モリブデン(MO)、タングステン(W)などの
酸化物を添加したものである。これらの触媒は、排ガス
中の硫黄酸化物(SoX)によって劣化しにくい特徴を
有しており優れたものである。しかしながら、燃料中の
鉱物から主に生成する揮発性の金属酸化物やセレン、テ
ルル、タリウム、ヒ素などの酸化物による劣化について
は考慮されていなっか。このため、鉱物質を多く含有す
る石炭や中国産原油が燃料に用いられ、排ガス中の前記
揮発性物質濃度が高くなると上記触媒の活性が大幅に低
下するという問題があった。
Among these, those currently in practical use are
The main component is titanium oxide as typified by No. 0-51966 and JP-A No. 5-2-122293, and vanadium (
V), molybdenum (MO), tungsten (W), and other oxides. These catalysts are excellent in that they are resistant to deterioration due to sulfur oxides (SoX) in exhaust gas. However, no consideration is given to deterioration caused by volatile metal oxides mainly generated from minerals in fuel, and oxides such as selenium, tellurium, thallium, and arsenic. For this reason, when coal or Chinese crude oil containing a large amount of mineral substances is used as fuel, there is a problem in that when the concentration of the volatile substances in the exhaust gas increases, the activity of the catalyst decreases significantly.

このような劣化に対しては、前記揮発性酸化物質が拡散
しにくいミクロボア内に活性成分を導入できるゼオライ
ト系の触媒を使用することで劣化をある程度軽減可能で
あり、既にいくつかの特許が出願されている(特開昭5
1−11063号、特開昭59−230642号等)。
Such deterioration can be alleviated to some extent by using a zeolite-based catalyst that can introduce active ingredients into micropores where the volatile oxidizing substances are difficult to diffuse, and several patents have already been filed. (Unexamined Japanese Patent Publication No. 5
1-11063, JP-A-59-230642, etc.).

ゼオライト系触媒のうちシリカアルミナ比(以下SiO
,/A/!。
Silica-alumina ratio (hereinafter SiO
,/A/! .

03比と略記)が10以下の低いものは石炭中などに含
まれる酸性物質(特に硫黄酸化物、So、)により、触
媒活性が低下するという問題点があった。これは、酸性
物質がゼオライト中のアルミニウム化合物と反応し、そ
の構造を破壊するためと考えられる。
Those with a low 03 ratio (abbreviated as 03 ratio) of 10 or less have a problem in that the catalytic activity decreases due to acidic substances (particularly sulfur oxides, So, etc.) contained in the coal. This is thought to be because the acidic substance reacts with the aluminum compound in the zeolite and destroys its structure.

〔発明が解決しようとする課題〕 モルデナイト系触媒を使用しても燃焼に伴い生成するS
OXに長時間さらした場合には、触媒活性が徐々に低下
する傾向を示す。これは、Soヶが触媒表面を被覆ある
いは触媒活性金属と反応するためと考えられる。従って
、SOXによる活性低下を防ぐにはSOXと反応しにく
い活性点を持つモルデナイトを捜す必要がある。ところ
が、モルデナイトに関してSiO□/ A l t O
j比の高いものが耐酸性に優れているとの報告は数多く
あるものの、脱硝反応のように気相中でかつ高温条件に
おける耐酸性に関する報告は極めて少い。中でも、脱硝
反応触媒として用いる場合のSiO□/ A f ! 
03比と耐酸性の関係は明かではかった。
[Problem to be solved by the invention] Even when a mordenite catalyst is used, S is generated during combustion.
When exposed to OX for a long time, the catalyst activity tends to gradually decrease. This is considered to be because So coats the surface of the catalyst or reacts with the catalytically active metal. Therefore, in order to prevent a decrease in activity due to SOX, it is necessary to search for mordenite that has active sites that are difficult to react with SOX. However, regarding mordenite, SiO□/Al t O
Although there are many reports that those with a high j ratio have excellent acid resistance, there are very few reports regarding acid resistance in gas phase and high temperature conditions such as in denitrification reactions. Among them, SiO□/A f ! when used as a denitrification reaction catalyst.
The relationship between the 03 ratio and acid resistance was not clear.

このため1、モルデナイトに活性成分を担持しただけの
触媒では脱硝触媒として長期の使用は困難と考えられて
いた。
For this reason, 1. It was thought that it would be difficult to use a catalyst consisting only of active ingredients supported on mordenite for a long period of time as a denitrification catalyst.

本発明の目的は、SOXによる活性低下を防止するため
、揮発性酸化物質(特に酸化ヒ素)に対する高い抵抗力
を維持したまま、SOXに対する抵抗力の強いモルデナ
イト系触媒を開発することにある。
An object of the present invention is to develop a mordenite-based catalyst that has strong resistance to SOX while maintaining high resistance to volatile oxidizing substances (particularly arsenic oxide) in order to prevent activity reduction due to SOX.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題点を解決することを目的とするもの
で、ゼオライトに触媒活性成分を担持し、アンモニアを
用いて窒素酸化物を触媒還元除去する触媒において、S
 i Ox / A l z Os比15〜25のモル
デナイト型ゼオライトに、銅、バナジウム、コバルトお
よび鉄から選ばれる一種以上の金属を担持して成ること
を特徴とする窒素酸化物の接触還元用触媒により上記の
目的は達成される。
The present invention aims to solve the above-mentioned problems, and provides a catalyst in which a catalytically active component is supported on zeolite and nitrogen oxides are catalytically reduced and removed using ammonia.
By a catalyst for catalytic reduction of nitrogen oxides, characterized in that it is formed by supporting one or more metals selected from copper, vanadium, cobalt, and iron on mordenite-type zeolite having an iOx/AlzOs ratio of 15 to 25. The above objectives are achieved.

〔実施例〕〔Example〕

本発明に使用されるモルデナイトは、市販品または水熱
処理により合成したものを用いることができる。モルデ
ナイトはH型のものに活性成分を担持して使用するのが
望ましいが、アルカリまたはアルカリ土類金属イオンを
含む場合は、0.1〜1モル/lの鉱酸水溶液またはア
ンモニウム塩水溶液を用いて脱アルカリを行った後に使
用する。
The mordenite used in the present invention can be a commercially available product or one synthesized by hydrothermal treatment. It is preferable to use mordenite in the H-type to support the active ingredient, but if it contains alkali or alkaline earth metal ions, use a 0.1 to 1 mol/l mineral acid aqueous solution or ammonium salt aqueous solution. Use after dealkalization.

アルカリ成分が残存すると、活性成分であるCu、VS
CoおよびFeがイオン交換されにくくなり、活性が低
下することがある。
If alkaline components remain, the active components Cu, VS
Co and Fe may become difficult to ion exchange, resulting in a decrease in activity.

珪素源としてシリカゾルまたは水ガラス、アルミニウム
源として鉱酸のアルミニウム塩またはアルミン酸ナトリ
ウムを使用し、水熱処理によってモルデナイトを合成す
る場合は、モルデナイトが安定に生成しかつ生成するモ
ルデナイトの5in2/A1.0.比が20前後となる
条件を選ぶのが望ましい。S i 02 / A l 
z Os比15以下のモルデナイトを脱Aりし、所定の
SiO,/Az。
When mordenite is synthesized by hydrothermal treatment using silica sol or water glass as the silicon source and aluminum salt of a mineral acid or sodium aluminate as the aluminum source, mordenite is stably produced and 5in2/A1.0 of the produced mordenite. .. It is desirable to select conditions under which the ratio is around 20. S i 02 / A l
z Mordenite with an Os ratio of 15 or less is de-arsonized to give a predetermined SiO,/Az.

0゛、比とする方法もあるが、モルデナイト本来の骨格
を崩し、安定性の低いモルデナイトとなるため好ましく
ない。S i Oz /A1203比15〜25前後の
モルデナイトを製造する方法は色々報告されており、(
1)珪酸ナトリウムと塩化アルミニウムを主原料とした
アルミノ珪酸ゲルを用いて184°Cの水熱条件下で合
成するC、 J、 Whittemore。
There is also a method of setting the ratio to 0゛, but this is not preferred because it destroys the original framework of mordenite and results in mordenite with low stability. Various methods have been reported for producing mordenite with a SiOz/A1203 ratio of around 15 to 25.
1) C, J, Whittemore synthesizes under hydrothermal conditions at 184°C using aluminosilicate gel containing sodium silicate and aluminum chloride as main raw materials.

Jrの方法(Amrican Mineralogis
t、  57. 1146(1972))、(2)第4
級アンモニウムイオンの一つであるベンジルトリメチル
アンモニウムイオンを使用し、Sin、に対してAl、
O,の割合を極めて少な(して、かつ比較的低い温度で
反応を行うことにより、最高でSiO2/Al2O3比
25.8のモルデナイトを得る方法(特開昭58−88
118)、(3)予めS i Ozと/120.(7)
混合ゲルを作り、その後アルカリ金属水溶液中で水熱処
理することによりS i 02 /Ant Os比26
.5までのモルデナイトを得る方法(特開昭59−73
424号)等を用いることができる。水熱処理品は、細
孔内部の奥深くに存在するアルカリ成分を十分に取り除
いた後使用するのが望ましいため、塩化アンモニウム水
溶液などのアンモニウム塩もしくは硝酸、塩酸などの鉱
酸、または蟻酸、酢酸、プロピオン酸、しゅう酸、マレ
イン酸、クロル酢酸などの有機酸で処理してアルカリま
たはアルカリ土類金属イオンを除去する。しかし、数時
間の脱アルカリ処理を行ったもので活性成分の担持が十
分であれば、触媒活性に大きくは影響しない。
Jr's method (American Mineralogy)
t, 57. 1146 (1972)), (2) No. 4
Using benzyltrimethylammonium ion, which is one of the class ammonium ions, for Sin, Al,
A method of obtaining mordenite with a maximum SiO2/Al2O3 ratio of 25.8 by carrying out the reaction at a relatively low temperature with an extremely small proportion of O (Japanese Patent Laid-Open No. 58-88
118), (3) S i Oz and /120. (7)
By making a mixed gel and then hydrothermally treating it in an aqueous alkali metal solution, the S i 02 /Ant Os ratio was reduced to 26.
.. Method for obtaining mordenite up to 5
No. 424), etc. can be used. It is desirable to use hydrothermally treated products after sufficiently removing the alkaline components present deep inside the pores. Treatment with organic acids such as acid, oxalic acid, maleic acid, chloroacetic acid to remove alkali or alkaline earth metal ions. However, if the active ingredient is sufficiently supported after several hours of dealkalization, the catalyst activity will not be affected significantly.

市販品あるいは水熱合成により得られたSin。Sin obtained from commercial products or by hydrothermal synthesis.

/A2□0.比15〜25のモルデナイトは、活性成分
を担持して使用するが、活性成分としては上記のように
Cu、Fe、VSCo等が用いられる。担持方法として
イオン交換法を用いるとき、イオン交換が起こりにくい
金属イオンあるいは金属オキシイオンの場合は、本発明
者等の発明による未公知の担持方法(含窒素化合物を用
いて金属イオンの加水分解を抑制しかつイオン交換に最
適なpHに調整する金属の担持方法)を用いることで、
活性成分を効率良くイオン交換させることができる。ま
た、担持方法はイオン交換法に限らず、混練法、蒸着法
、含浸法等の手段であっても良い。
/A2□0. Mordenite having a ratio of 15 to 25 is used to support an active ingredient, and as the active ingredient, Cu, Fe, VSCo, etc. are used as mentioned above. When using an ion exchange method as a supporting method, in the case of metal ions or metal oxy ions that are difficult to ion exchange, an unknown supporting method invented by the present inventors (hydrolysis of metal ions using a nitrogen-containing compound) is used. By using a metal support method that suppresses the metal and adjusts it to the optimal pH for ion exchange,
Active ingredients can be efficiently ion-exchanged. Further, the supporting method is not limited to the ion exchange method, but may also be a kneading method, a vapor deposition method, an impregnation method, or the like.

モルデナイトのS i O,z / A l z Ox
比は約20で耐SOX性が最高になり、これに比較して
耐久性が70%の範囲がS i O2/ A l 20
+比15〜25であるが、50%の耐久性でも良い場合
は、S i O! /Alz O+比12〜35の範囲
のもので使用可能である。
Mordenite S i O,z / A l z Ox
The SOX resistance is the highest when the ratio is about 20, and compared to this, the range where the durability is 70% is S i O2 / A l 20
+ ratio of 15 to 25, but if 50% durability is acceptable, S i O! /AlzO+ ratio in the range of 12 to 35 can be used.

活性成分が担持されたゼオライトは、乾燥、必要によっ
ては焼成された後、成形される。焼成温度は、250〜
700″C1好ましくは400〜600″Cの範囲から
選ばれる。700°C以上では、活性の低下が見られる
ので好ましくない。
The zeolite carrying the active ingredient is dried and, if necessary, calcined, and then shaped. Firing temperature is 250~
700″C1, preferably selected from the range of 400 to 600″C. A temperature of 700°C or higher is not preferable because a decrease in activity is observed.

成型物の形状は、粒状、ベレット状、顆粒状、ハニカム
状など任意に選定することができ、各々の形状に適切な
成型機、例えば、押し出し成型機、打錠機、転勤造粒機
などを使用して成型される。
The shape of the molded product can be arbitrarily selected, such as granules, pellets, granules, and honeycomb shapes, and a molding machine suitable for each shape, such as an extrusion molding machine, tablet machine, transfer granulator, etc., can be selected. It is molded using.

上記のようにして成型した成型物は続いて加熱処理する
。加熱処理はi o o ’c程度またはそれ以下の温
度に加熱することによる乾燥処理だけでも成型物の強度
の向上が認められるが、さらに高温で加熱するのが効果
的である。
The molded product molded as described above is then heat-treated. Although the strength of the molded product can be improved by simply drying the molded product by heating it to a temperature of about io'c or lower, heating at an even higher temperature is effective.

すなわち、加熱処理は、通常、不活性ガスまたは空気雰
囲気下、800″C未満、好ましくは300℃から70
0℃の範囲で適宜選択される。焼成時間も、触媒の物性
および強度に影響を与えるが、通常は1時間ないし10
時間で好適に行うことができる。
That is, the heat treatment is usually carried out under an inert gas or air atmosphere at temperatures below 800"C, preferably from 300"C to 70"C.
It is appropriately selected within the range of 0°C. Calcination time also affects the physical properties and strength of the catalyst, but is usually 1 hour to 10 hours.
This can be done in a timely manner.

このような方法で製造された触媒を使用して、排ガス中
のNOxを還元するには、本触媒に排ガスとアンモアガ
スの混合ガスを好ましくは300℃以上の温度で通じれ
ばよい。
In order to reduce NOx in exhaust gas using a catalyst manufactured by such a method, a mixed gas of exhaust gas and ammour gas may be passed through the catalyst at a temperature of preferably 300° C. or higher.

本発明の触媒を使用して、アンモニアの存在下にNo、
を還元分解した場合、高いNOX分解率が得られるばか
りでなく、排ガス中のSOXによって劣化しにくく長時
間高い活性を維持できる。
Using the catalyst of the present invention, No.
When it is reductively decomposed, not only a high NOX decomposition rate can be obtained, but also it is not easily deteriorated by SOX in the exhaust gas and can maintain high activity for a long time.

−mに、モルデナイトの耐酸性とS l 02/A l
 t03比の関係は、SiO□/Al2O,比が増加す
るほど耐酸性に優れるとされている。しかし、本発明の
使用目的である脱硝触媒に用いる場合は、S i O,
、//M!、 O,比20で耐So、性が極大を示す。
-m, acid resistance of mordenite and S l 02/A l
The relationship between the t03 ratio is SiO□/Al2O, and it is said that the higher the ratio, the better the acid resistance. However, when used as a denitrification catalyst, which is the purpose of the present invention, S i O,
,//M! , O, the So resistance shows maximum at a ratio of 20.

これは、以下のような理由によるものと考えられる。This is considered to be due to the following reasons.

脱硝触媒は、250〜500°Cの高温と排ガス中の5
O1Xにさらされながら使用されるため、耐熱性と耐酸
性が要求される。SOXによるゼオライト格子中のアル
ミニウムに対する攻撃は、5iOz /Ant 03比
の高いものほど受けにくいと考えられる。しかし、この
ような過酷な条件では、SiO□/Al、O,比が高く
なったとしても全く攻撃を受けなくなるわけではなく、
徐々に脱A2による失活が進行する。パイロットプラン
トによる実験結果では、S i Oz / A I!、
z 03比が30以上と極端に高くなった場合は劣化が
進みやすい。一方、S i 02 / A lz O*
比が10以下の場合は耐酸性、耐熱性が低下し、急激に
脱Alが起こるためやはり活性が低下する。
The denitrification catalyst is capable of reacting to high temperatures of 250 to 500°C and
Since it is used while being exposed to O1X, heat resistance and acid resistance are required. It is believed that the higher the 5iOz/Ant 03 ratio, the less susceptible the aluminum in the zeolite lattice is to attack by SOX. However, under such harsh conditions, even if the SiO□/Al,O, ratio becomes high, it does not mean that it will not be attacked at all.
Inactivation due to de-A2 gradually progresses. Experimental results from a pilot plant show that S i Oz / A I! ,
When the z 03 ratio becomes extremely high, such as 30 or more, deterioration tends to progress. On the other hand, S i 02 / A lz O*
If the ratio is less than 10, the acid resistance and heat resistance will decrease, and since Al removal will occur rapidly, the activity will also decrease.

しかし、この中間のS iO2/Alz O,比が20
程度では、活性点であるAl2の数が多く、また耐酸性
、耐熱性が適度に強いため、脱硝反応条件では最も耐酸
性に優れるものと考えられる。ま゛た、S i O2/
 A l z Oz比が20付近では活性点同士が比較
的接近しているため、1つのAI!、が脱離して、活性
成分を遊離したとしても、その近傍のA!がすぐに交代
して活性点となり得ることも失活し難い理由と考えられ
る。
However, this intermediate SiO2/AlzO ratio is 20
In terms of degree, it has a large number of active sites, Al2, and has moderately strong acid resistance and heat resistance, so it is considered to have the best acid resistance under denitrification reaction conditions. Wait, S i O2/
When the A l z Oz ratio is around 20, the active points are relatively close to each other, so one AI! , desorbs and liberates the active ingredient, the nearby A! It is thought that the reason why it is difficult to deactivate is that it can quickly take over and become an active site.

次に本発明を具体的実施例により説明する。Next, the present invention will be explained using specific examples.

耐SOX性測定試験は次の要領で行なった。The SOX resistance measurement test was conducted in the following manner.

実施例及び比較例では、鉱物質含有率の高い石炭の燃焼
排ガスを想定した模擬ガスにより加速試験を行った。S
O,Iとしては三酸化硫黄(SO+)゛と二酸化硫黄(
SOz)とを蒸気にしてガス中に添加した。ガス組成は
、酸素、3容量%、炭酸ガス12容量%、水分12容量
%、NOx 200ppm1アンモニア240ppm 
、 S02500PPIII、SO3100ppm−残
部は窒素である。この試験は、成形・焼成し、10〜2
0メツシユにふるい分けた触媒1 mlに上記混合ガス
を空間速度120゜o o o h−’で流通させて実
施した。反応温度は400°Cである。
In the Examples and Comparative Examples, accelerated tests were conducted using a simulated gas simulating combustion exhaust gas from coal with a high mineral content. S
O and I are sulfur trioxide (SO+) and sulfur dioxide (
SOz) was vaporized and added to the gas. The gas composition is: oxygen, 3% by volume, carbon dioxide, 12% by volume, moisture, 12% by volume, NOx: 200ppm, ammonia: 240ppm.
, S02500PPIII, SO3 100ppm - the balance is nitrogen. This test was performed by molding and firing, and
The experiment was carried out by passing the above mixed gas through 1 ml of the catalyst sieved to 0 mesh at a space velocity of 120° o o o h-'. The reaction temperature is 400°C.

脱硝触媒性能は、上記加速試験の実施中に連続的に測定
した。なお、NOX含有量は、化学発光式NOXメータ
で測定し、NOxの分解率(脱硝率)はNO8の濃度を
アンモニア添加前および後に測定した下記式によって算
出した。
The denitrification catalyst performance was continuously measured during the implementation of the above accelerated test. Note that the NOX content was measured with a chemiluminescent NOX meter, and the NOx decomposition rate (denitrification rate) was calculated using the following formula by measuring the NO8 concentration before and after the addition of ammonia.

また、脱硝反応速度定数比(劣化後の速度定数にと初期
速度k。の比)は、劣化後の脱硝率をη、初期脱硝率を
η。とした場合、下記のように定義して劣化試験の比較
計算に用いた。
In addition, the denitrification reaction rate constant ratio (ratio of the rate constant after deterioration to the initial rate k) is defined as η for the denitrification rate after deterioration and η for the initial denitrification rate. In this case, it was defined as below and used in the comparative calculation of the deterioration test.

k/ko=1. (100/(100−77))/j2
゜(100/(100−η。))(2) BET比表面積測定: 比表面積、細孔分布は、焼成・成型し、lO〜20メツ
シュにふるい分けた触媒約0.3gを採り、QIJAN
TACHROMf!社AUTOSORB−1型ガス吸着
試験装置を用いて測定した。
k/ko=1. (100/(100-77))/j2
゜(100/(100-η.))(2) BET specific surface area measurement: The specific surface area and pore distribution were determined by taking approximately 0.3 g of the catalyst, which had been calcined and molded and sieved to 10 to 20 mesh, and using QIJAN.
TACHROMf! The measurement was carried out using a gas adsorption test device of the AUTOSORB-1 type.

比表面積は、相対圧力CP/Po)が0.025から0
.3におけるB、E、T、多点法により算出した。
The specific surface area is relative pressure CP/Po) from 0.025 to 0.
.. B, E, and T in 3 were calculated by the multi-point method.

S −i 0□//120を比測定;理学電機社の蛍光
X線分析装置を使用して測定した。
Ratio measurement of S-i 0□//120; Measured using a fluorescent X-ray analyzer manufactured by Rigaku Denki Co., Ltd.

実施例1 本発明者らが製造したS io 2 / A l□0.
比17.1のH型モルデナイトに酢酸銅を銅金属として
モルデナイトの3れ%になるように混練して担持したも
のを乾燥後、プレス成型機で10φ×3Lの円筒状に成
形した後、500℃で2時間、空気雰囲気下で焼成した
。これを粉砕して、10〜20メツシユにふるい分けた
ものを触媒とした。
Example 1 Sio2/A1□0. produced by the present inventors.
Copper acetate was kneaded and supported on H-type mordenite with a ratio of 17.1 to a ratio of 3% of the mordenite, and after drying, it was formed into a cylindrical shape of 10φ x 3L with a press molding machine, and then C. for 2 hours under an air atmosphere. This was crushed and sifted into 10 to 20 meshes to be used as a catalyst.

この触媒を用いて耐SO8加速試験を行った結果、k/
ko比が0.6まで劣化するのに要した時間は、380
時間であった。
As a result of an accelerated SO8 resistance test using this catalyst, k/
The time required for the ko ratio to deteriorate to 0.6 was 380
It was time.

実施例2〜7 実施例1のモルデナイトに代えて、本発明者等の製造し
たモルデナイトあるいは市販品のモルデナイトからS 
i O2/Al120ff比15.2.18゜2.19
,5.20.1.23.2および24.8の■1型モル
デナイトを選び出して触媒を製造し、実施例′lと同様
の方法で耐SOX加速試験を行った。その結果、k/に
、比が0.6まで劣化するのに要した時間はそれぞれ2
6B、322.375.342.276および266時
間であった。
Examples 2 to 7 In place of the mordenite in Example 1, S from mordenite produced by the present inventors or commercially available mordenite was used.
i O2/Al120ff ratio 15.2.18°2.19
, 5.20.1.23.2 and 24.8 type 1 mordenites were selected to prepare catalysts, and accelerated SOX resistance tests were conducted in the same manner as in Example 'l. As a result, the time required for the ratio to deteriorate to 0.6 for k/ is 2
6B, 322.375.342.276 and 266 hours.

実施例8〜10 活性成分として、実施例1の銅にに代えて、■(硫酸バ
ナジウムを使用)、Co (酢酸コバルトを使用)およ
びFe(硫酸第一鉄を使用)担持して触媒を製造し、実
施例1と同様の方法で耐SO8加速試験を行った。その
結果、k/に、比が0゜6まで劣化するのに要した時間
はそれぞれ281.295および356時間であった。
Examples 8 to 10 Catalysts were produced by supporting ■ (using vanadium sulfate), Co (using cobalt acetate), and Fe (using ferrous sulfate) in place of copper in Example 1 as active ingredients. Then, an accelerated SO8 resistance test was conducted in the same manner as in Example 1. As a result, the time required for the ratio to deteriorate to 0°6 was 281.295 and 356 hours, respectively.

比較例1〜6 実施例Iのモルデナイトに代えて、本発明者等の製造し
たモルデナイトあるいは市販品のモルデナイトからSi
O□//1203比10.5.12゜1.27.0.3
4.8.36.8および40.6のH型モルデナイトを
選び出して触媒を製造し、実施例1と同様の方法で耐S
OX加速試験を行った。その結果、k / k O比が
0.6まで劣化するのに要した時間はそれぞれ56.1
90.198.191.184および14.1時間であ
った。
Comparative Examples 1 to 6 In place of the mordenite in Example I, silicon was used from mordenite manufactured by the present inventors or commercially available mordenite.
O□//1203 ratio 10.5.12゜1.27.0.3
4.8. H-type mordenites of 36.8 and 40.6 were selected to produce catalysts, and S-resistant was tested in the same manner as in Example 1.
An OX acceleration test was conducted. As a result, the time required for the k/kO ratio to deteriorate to 0.6 was 56.1, respectively.
90.198.191.184 and 14.1 hours.

以上の結果をまとめて第1表に示す。The above results are summarized in Table 1.

以下余白 第1表 〔発明の効果〕 本発明によれば、排ガス中の5O1I、特にSOlによ
る劣化の少ないモルデナイト系脱硝触媒が得られる。モ
ルデナイト系脱硝触媒は、従来の遷移金属元素担持チタ
ン系触媒では短時間の使用で触媒活性の劣化が避けられ
なかったヒ素、セレン化合物等の揮発性触媒毒に対して
極めて高い耐毒性を示すため、本発明になる触媒を使用
することによりヒ素、セレン、硫黄が多量に共存する排
ガスの脱硝が長時間に渡り安定した触媒活性を維持した
状態で可能となる。
Below is Table 1 in the margin [Effects of the Invention] According to the present invention, a mordenite-based denitrification catalyst that is less likely to be degraded by 5O1I, especially SOI, in exhaust gas can be obtained. Mordenite-based denitrification catalysts exhibit extremely high toxicity resistance to volatile catalyst poisons such as arsenic and selenium compounds, where conventional titanium-based catalysts supporting transition metal elements inevitably deteriorate in catalytic activity after short-term use. By using the catalyst of the present invention, it becomes possible to denitrate exhaust gas containing large amounts of arsenic, selenium, and sulfur while maintaining stable catalytic activity over a long period of time.

代理人 弁理士 川 北 武 長Agent: Patent Attorney Kawakita Takecho

Claims (1)

【特許請求の範囲】[Claims] (1)ゼオライトに触媒活性成分を担持し、アンモニア
を用いて窒素酸化物を接触還元する触媒において、Si
O_2/Al_2O_3比15〜25のモルデナイト型
ゼオライトに、銅、バナジウム、コバルトおよび鉄から
選ばれる1種以上の金属を担持して成ることを特徴とす
る窒素酸化物の接触還元用触媒。
(1) In a catalyst that carries a catalytically active component on zeolite and catalytically reduces nitrogen oxides using ammonia,
A catalyst for the catalytic reduction of nitrogen oxides, comprising a mordenite-type zeolite having an O_2/Al_2O_3 ratio of 15 to 25 and supporting one or more metals selected from copper, vanadium, cobalt, and iron.
JP63075800A 1988-03-29 1988-03-29 Catalyst for use in catalytic reduction of nitrogen oxide Pending JPH01245856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075800A JPH01245856A (en) 1988-03-29 1988-03-29 Catalyst for use in catalytic reduction of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63075800A JPH01245856A (en) 1988-03-29 1988-03-29 Catalyst for use in catalytic reduction of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH01245856A true JPH01245856A (en) 1989-10-02

Family

ID=13586637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075800A Pending JPH01245856A (en) 1988-03-29 1988-03-29 Catalyst for use in catalytic reduction of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH01245856A (en)

Similar Documents

Publication Publication Date Title
KR101286006B1 (en) β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
US5254322A (en) Method for reducing automotive NOx emissions in lean burn internal combustion engine exhaust using a transition metal-containing zeolite catalyst which is in-situ crystallized
EP2746223A1 (en) TYPE IRON SILICATE COMPOSITION AND METHOD FOR REDUCING NITROGEN OXIDES& xA
EP2518017A1 (en) Novel metallosilicate, production method thereof, nitrogen oxide purification catalyst, production method thereof, and nitrogen oxide purification method making use thereof
KR101473007B1 (en) Nitrogen oxide-reducing catalyst and method for reducing nitrogen oxide
CZ20002483A3 (en) Catalyst based on ferrierite/iron for catalytic reduction of dinitrogen oxide content in gas, process for preparing such catalyst and use thereof for purification of industrial gases
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2008104914A (en) Nitrogen oxide purification catalyst and method
US5059569A (en) Process and catalyst for selective reduction of nitrogen oxides
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JPH01245856A (en) Catalyst for use in catalytic reduction of nitrogen oxide
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JP3298914B2 (en) Catalyst for reducing nitrogen oxides and method for catalytic reduction and decomposition of nitrogen oxides
JPS63126560A (en) Catalyst for catalytic reduction of nox
JPH07251077A (en) Production of catalyst for purifying nox-containing discharge gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides
JPS63123449A (en) Catalyst for removing nitrogen oxide in exhaust gas
JP2892395B2 (en) Nitrogen oxide decomposition catalyst
JP3286996B2 (en) Exhaust gas purification catalyst
JPH08243399A (en) Catalyst for purification of nox-containing exhaust gas and its production
JPH09164335A (en) Exhaust gas-purifying catalyst
JPH0871423A (en) Exhaust gas purification catalyst, method for removing nox and production of zeolite
JPH07241466A (en) Catalyst for purification of waste gas and its production
JPH07275657A (en) Ammonia decomposition method