JPH0124547B2 - - Google Patents

Info

Publication number
JPH0124547B2
JPH0124547B2 JP57043087A JP4308782A JPH0124547B2 JP H0124547 B2 JPH0124547 B2 JP H0124547B2 JP 57043087 A JP57043087 A JP 57043087A JP 4308782 A JP4308782 A JP 4308782A JP H0124547 B2 JPH0124547 B2 JP H0124547B2
Authority
JP
Japan
Prior art keywords
high voltage
abnormality
stage
detector
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57043087A
Other languages
Japanese (ja)
Other versions
JPS58159858A (en
Inventor
Mizuo Yoshikawa
Tatsuo Fuchimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gema Switzerland GmbH
Original Assignee
Gema Switzerland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gema Switzerland GmbH filed Critical Gema Switzerland GmbH
Priority to JP57043087A priority Critical patent/JPS58159858A/en
Publication of JPS58159858A publication Critical patent/JPS58159858A/en
Publication of JPH0124547B2 publication Critical patent/JPH0124547B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塗装機に高電圧ケーブルを介して高電
圧を印加せしめる静電塗装用高電圧装置に関す
る。 従来、第1図に示す静電塗装装置が知らてい
る。図面において、1は商用電源Eを例えば−90
〔kV〕に昇圧する高電圧発生器で、該高電圧発生
器1は昇圧トランス2、倍電圧整流器3等から構
成され、該高電圧発生器1には高電圧ケーブル4
を介して塗装機5が接続されている。高電圧発生
器の整流器3には後述する種々の原因で高電圧ケ
ーブル4内に正常塗装時より電流値の高い電流
(以下、過電流という)が流れたとき作動し、過
電流を一系統で検知することにより昇圧トランス
2の一次側を遮断する安全回路6が接続されてい
る。また、前記高電圧発生器1の出力側には例え
ば100〔MΩ〕の抵抗7が設けられ、前記塗装機5
には塗装機5から火花放電を防止するために160
〔MΩ〕の抵抗8が設けられている。9は塗装機
5に塗料を供給する塗料タンク等の塗料源、10
は被塗物を示し、該被塗物10は高電圧ケーブル
4のシール編組4Aと共にアース11に接続され
ている。 このように構成される静電塗装装置では高電圧
発生器1で発生したマイナスの高電圧が高電圧ケ
ーブル4を介して塗装機5に印加され、塗料源9
から塗装機5に供給される塗料をマイナスの電位
に帯電せしめ、帯電した塗料が静電霧化し、アー
ス電位にある被塗物10に塗着する。 ところで、この静電塗装中、次のような原因で
高電圧ケーブル4内に過電流が流れることがあ
る。第1に塗装機5と被塗物10との間には所定
の抵抗があるが、例えば、塗装中に塗装機5の電
極が被塗物10に接触すると、塗装機5と被塗物
10との間の抵抗が零となる。従つて、高電圧供
給線路抵抗の総和は、高電圧発生器1の出力側の
抵抗7と塗装機5内の抵抗8との和、即ち、(100
+160)〔MΩ〕だけとなり、過電流が流れる。第
2に塗料が金属微粒子、例えば、アルミ微粒子を
含むメタリツク塗料の場合には所謂“ブリツジ現
象”が起き、前述した塗装機5の電極が被塗物1
0に接触するときと同様に過電流が流れるおそれ
がある。 第3に、塗装機5に接続されている高電圧ケー
ブル4は該塗装機5が被塗物10の形状等に沿つ
て頻繁に動くことにより、複雑に屈曲せしめられ
て損傷し、該高電圧ケーブル4の芯線がシールド
編組4Aに接触し、アース11と短絡して過電流
が流れ、高電圧供給線路抵抗の総和は高電圧発生
器1の出力側抵抗7の抵抗値100〔MΩ〕のみとな
る。 ここで、例えば、印加高電圧を−90〔kV〕、−60
〔kV〕、−30〔kV〕とした場合、前述の過電流の計
算値をまとめると表1のようになる。
The present invention relates to a high voltage device for electrostatic coating that applies high voltage to a coating machine via a high voltage cable. Conventionally, an electrostatic coating apparatus shown in FIG. 1 has been known. In the drawing, 1 indicates the commercial power source E, for example -90
A high voltage generator that boosts the voltage to [kV], the high voltage generator 1 is composed of a step-up transformer 2, a voltage doubler rectifier 3, etc., and a high voltage cable 4 is connected to the high voltage generator 1.
A coating machine 5 is connected via. The rectifier 3 of the high voltage generator is activated when a higher current (hereinafter referred to as overcurrent) flows in the high voltage cable 4 than during normal painting due to various causes described later, and the overcurrent is eliminated in one system. A safety circuit 6 is connected which shuts off the primary side of the step-up transformer 2 upon detection. Further, a resistor 7 of, for example, 100 [MΩ] is provided on the output side of the high voltage generator 1, and a resistor 7 of, for example, 100 [MΩ] is provided, and the
160 to prevent spark discharge from the paint sprayer 5.
A resistor 8 of [MΩ] is provided. 9 is a paint source such as a paint tank that supplies paint to the coating machine 5; 10
indicates an object to be coated, and the object to be coated 10 is connected to the ground 11 together with the seal braid 4A of the high voltage cable 4. In the electrostatic coating apparatus configured in this way, a negative high voltage generated by the high voltage generator 1 is applied to the coating machine 5 via the high voltage cable 4, and the paint source 9
The paint supplied to the coating machine 5 is charged to a negative potential, and the charged paint is electrostatically atomized and applied to the object 10 at ground potential. By the way, during this electrostatic coating, an overcurrent may flow in the high voltage cable 4 due to the following reasons. First, there is a predetermined resistance between the coating machine 5 and the object to be coated 10, but for example, if the electrode of the coating machine 5 comes into contact with the object to be coated 10 during painting, the resistance between the coating machine 5 and the object to be coated will be The resistance between the two becomes zero. Therefore, the total high voltage supply line resistance is the sum of the resistance 7 on the output side of the high voltage generator 1 and the resistance 8 inside the paint sprayer 5, that is, (100
+160) [MΩ], and overcurrent flows. Second, when the paint is a metallic paint containing fine metal particles, for example, fine aluminum particles, a so-called "bridging phenomenon" occurs, and the electrode of the coating machine 5 mentioned above is connected to the object 1 to be coated.
There is a risk that an overcurrent will flow in the same way as when contacting zero. Thirdly, the high voltage cable 4 connected to the atomizer 5 is complicatedly bent and damaged due to frequent movement of the atomizer 5 along the shape of the object 10 to be coated. The core wire of the cable 4 comes into contact with the shield braid 4A and shorts to the ground 11, causing an overcurrent to flow, and the total high voltage supply line resistance is only the resistance value of the output side resistor 7 of the high voltage generator 1, 100 [MΩ]. Become. Here, for example, the applied high voltage is -90 [kV], -60 [kV]
[kV], -30 [kV], the above-mentioned calculated values of overcurrent are summarized as shown in Table 1.

【表】 そして、次の表2に表1の過電流の計算値例と
対応する高電圧ケーブル4の過電流の測定例を示
す。
[Table] The following Table 2 shows an example of the overcurrent calculation value in Table 1 and a corresponding measurement example of the overcurrent of the high voltage cable 4.

【表】 前記安全回路6は前記表1または表2を参考に
して予め設定された過電流を検知し、高電圧発生
器1の電源E側を遮断するものであるが、安全回
路6による過電流の検知は一系統で行うため、作
業者は塗装機5の形式、塗料の種類等に応じて検
知すべき過電流の設定値を変える必要があつた。
しかしながら、過電流は微弱であるため適切な設
定が困難であるばかりでなく、ややもすると設定
条件を誤り事故を誘発する欠点があつた。 本発明は、このような従来技術の欠点を改良し
たものであつて、その特徴とするところは高電圧
発生器の出力電圧を多段設定する多段電圧設定器
と、高電圧ケーブルに所定の設定値以上の電流が
流れたことを検知することにより検知信号を出力
する多段過電流検知器と、前記多段電圧設定器の
設定電圧に対応して前記多段過電流検知器による
検知信号を多段に異常判別し、異常信号を出力す
る多段異常判別器とからなり、多段電圧設定器に
は塗装機の形式、塗料の種類に応じて適正な電圧
を設定し、当該設定電圧と多段過電流検知器から
の検知信号とを異常判別器に入力し、該異常判別
器では設定電圧に対応して多段に異常を判別して
高電圧発生器の電源を遮断したり、塗装装置全体
の作動を遮断しうるように構成した静電塗装装置
を提供するものである。 以下、本発明について第2図を用いて説明す
る。 図面において、第1図と同一構成要素には同一
符号を付すものとするに、高電圧発生器1のマイ
ナス側に高電圧ケーブル4を介して塗装機5が接
続されている点は従来技術のものと変ることがな
い。然るに本発明は商用電源Eと高電圧発生器1
との間に設けられ該高電圧発生器1の出力電圧を
多段設定する多段電圧設定器21と、高電圧発生
器1のプラス側に接続され、高電圧ケーブル4に
所定の設定値以上の過電流が流れたことを検知す
ることにより検知信号を出力する多段過電流検知
器22と、多段電圧設定器21の設定電圧に対応
して前記多段過電流検知器22の検知信号を論理
的に判断し、多段に異常を判別する多段異常判別
器23とから大略構成される。24は設定スイツ
チ部で、該設定スイツチ部24は例えば−90
〔kV〕、−60〔kV〕、−30〔kV〕に電圧設定する3個
の設定スイツチ24A,24B,24Cからな
り、該各設定スイツチ24A,24B,24Cは
後述す如く多段電圧設定器21、多段異常判別器
23と接続されている。 次に、前記多段電圧設定器21は、前記電圧設
定スイツチ24A,24B,24Cと信号線25
A,25B,25Cを介して接続され、該各スイ
ツチ24A,24B,24Cを閉成することによ
り作動するリレーRA,RB,RCと、例えば100
〔V〕の商用電源Eを一次側とし、200〔V〕程度
まで昇圧する昇圧トランス26と、該昇圧トラン
ス26の二次側に並列に挿入された前記各リレー
RA,RB,RCの接点RA―1,RB―1,RC―
1と、前記電圧設定スイツチ24A,24B,2
4CとリレーRA,RB,RCとの間の挿入された
電圧切換時の過電圧防止用の遅延素子27A,2
7B,27Cとから構成されている。そして、多
段電圧設定器21は電圧設定スイツチ24A,2
4B,24Cのいずれかを選択して閉成すると、
リレーRA,RB,RCによりその接点RA―1,
RB―1,RC―1が閉成して高電圧発生器1のマ
イナス側に例えば−90〔kV〕,−60〔kV〕,−30
〔kV〕の直流高電圧が出力される。 また、多段過電流検知器22は独立して過電流
を検知する4個の検知器22A,22B,22
C,22Dおよび検知器22Aの前段において高
電圧発生器1のプラス側とアース11との間に設
けられた抵抗28から概略構成され、しかも該各
検知器22A,22B,22C,22Dはそれぞ
れ後述する感度設定器29A,29B,29C,
29Dと、正入力端子が高電圧発生器1のプラス
側と接続され、負入力端子が感度設定器29A,
29B,29C,29Dにそれぞれ接続されたコ
ンパレータ30A,30B,30C,30Dと、
該各コンパレータ30A,30B,30C,30
Dの出力側に接続された増幅器31A,31B,
31C,31Dとから構成される。ここで、前述
の感度設定器29A,29B,29C,29Dは
同一抵抗値を有する感度設定用抵抗32A,32
B,32C,32Dに対してコンパレータ30
A,30B,30C,30Dとの接続位置33
A,33B,33C,33Dを異ならしめること
により、検知すべき過電流の値が例えば350
〔μA〕、180〔μA〕、120〔μA〕、60〔μA〕となるよ
うに電流設定されている。 ところで、電圧設定スイツチ24A,24B,
24Cを順次閉成したときに、整流器3のプラス
側から電流iが抵抗28に向けて流れると抵抗2
8のプラス側に電圧VA,VB,VCが発生し、一
方、感度設定器29A,29B,29C,29D
はその感度設定用抵抗32A,32B,32C,
32Dの接続位置33A,33B,33C,33
Dとアース11との間にvA,vB,vC,vDが発生す
る。従つて、各検知器22A,22B,22C,
22Dのコンパレータ30A,30B,30C,
30Dは前記電圧VA,VB,VCとvA,vB,vDとを
比較できるから、該各コンパレータ30A,30
B,30C,30Dは両電圧を比較し、高電圧ケ
ーブル4に感度設定器29A,29B,29C,
29Dによる設定電流以上の電流が流れたときに
検知信号を出力する。 さらに、多段異常判別器23はアンド回路34
A,34B,34C,35A,35Bと、オア回
路36,37と常閉接点RD―1,RE―1をそれ
ぞれ有する異常出力リレーRD,REと、ランプま
たブザー等の警報器38と、該リレーRD,REお
よび警報器38駆動用のドライバ39A,39B
と、電圧切換時の過電圧防止用の遅延素子40
A,40B,40Cとから概略構成される。そし
て、電圧設定スイツチ24A,24B,24Cに
連なる信号線25A,25B,25Cは遅延素子
40A,40B,40Cを介してアンド回路34
A,34B,34C,35A,35Bの入力側と
それぞれ図示のように接続される。一方、増幅器
31Aを介してコンパレータ30Aの出力側に接
続される信号線41Aはオア回路36,37の入
力側と接続され、増幅器31B,31C,31D
を介してコンパレータ30B,30C,30Dの
出力側に接続される信号線41B,41C,41
Dはアンド回路34A,34B,34C,35
A,35Bと図示のように接続される。また、ア
ンド回路34A,34B,34Cの出力側はオア
回路37の入力側と接続され、アンド回路35
A,35Bの出力側はオア回路36,37の入力
側とそれぞれ接続されている。オア回路36の出
力側にはドライバ39Aを介して異常出力リレー
REが接続され、オア回路37の出力側にはドラ
イバ39Bを介して異常出力リレーRD、警報器
38が接続されている。さらに、異常出力リレー
RDの常閉接点RD―1は電源Eと昇圧トランス
26との間に挿入され、異常出力リレーREの常
閉接点RE―1は外部装置42の遮断用スイツチ
として設けられている。ここで、上記外部装置4
2は例えば塗料源9からの塗料を塗装機5に供給
する塗料ポンプや色替弁等であり、接点RE―1
が開成することによつて塗料ポンプを停止させ、
または色替弁あるいは塗料オンオフ弁を緊急閉弁
して塗料の供給を停止させ、もつて塗装機5の作
動を停止させる。 以上の点から、多段異常判別機23の機能につ
いて述べると、電圧設定スイツチ24Aを閉成し
て−90〔kV〕が設定されているときに、高電圧ケ
ーブル4を流れる電流が検知器22Bの設定電流
180〔μA〕以上で検知器22Aの設定電流350
〔μA〕以下のときには、該検知器22Bからの検
知信号によりアンド回路34Aから異常判別信号
が出力され、オア回路37を介してドライバ39
BによりリレーRDを励磁し、その接点RD―1
を開成して高電圧発生器1の電源Eを遮断し、か
つ警報器38を作動する。また、検知器22Aの
設定電流350〔μA〕以上のときには、該検知器2
2Aからの検知信号によりオア回路36を介して
ドライバ39AによりリレーREを励磁し、その
接点RE―1を開成して外部装置42を停止する
と共に、オア回路37介してリレーRDを励磁し
て電源Eを遮断し、塗装機5全体の作動を停止す
る。 同様に、電圧設定スイツチ24Bを閉成して−
60〔kV〕が設定されているときに、高電圧ケーブ
ル4を流れる電流が検知器22Cの設定電流120
〔μA〕以上で検知器22Bの設定電流180〔μA〕
以下のときには、該検知器22Cからの検知信号
によりアンド回路34Bから異常判別信号が出力
され、リレーRDにより電源Eを遮断する。ま
た、検知器22Bの設定電流180〔μA〕以上のと
きには、該検知器22Bからの検知信号によりア
ンド回路35Bからの異常判別信号が出力され、
オア回路36を介してリレーREにより外部装置
42を停止すると共に、オア回路37を介してリ
レーRDにより電源Eを遮断する。 さらに、電圧設定スイツチ24Cを閉成して−
30〔kV〕が設定されているときに、高電圧ケーブ
ル4を流れる電流が検知器22Dの設定電流60
〔μA〕以上で検知器22Cの設定電流120〔μA〕
以下のときには、該検知器22Dからの検知信号
によりアンド回路34Cから異常判別信号が出力
され、電源Eを遮断する。また、検知器22Cの
設定電流120〔μA〕以上のときには、該検知器2
2Cからの検知信号によりアンド回路35Aから
の異常判別信号が出力され、外部装置42を停止
すると共に電源Eを遮断する。 本発明はこのように構成されるもので、電圧設
定スイツチ24A,24B,24Cと検知器22
B,22C,22Dを対応させ、検知器22Aは
高電圧ケーブル4を流れる電流の上限を設定する
もので、この設定値以上の電流が流れた場合に
は、電圧設定値の如何に拘わらず異常とし、塗装
装置の全停止を行なう。 いま、電圧設定スイツチ24Aを閉成すると、
信号線25A、遅延素子27Aを介してリレー
RAが励磁して接点RA―1を閉成し、高電圧発
生器1のマイナス側に−90〔kV〕の高電圧が生起
され、高電圧ケーブル4を介して塗装機5に印加
されると共に、コンパレータ30A,30B,3
0C,30Dの各正入力端子に電圧VAが入力さ
れ、負入力端子には感度設定器29A,29B,
29C,29Dの設定電流に応じて与えられる電
圧vA,vB,vCDがそれぞれ入力されている。表
1、表2から明らかなように−90〔kV〕の高電圧
時には高電圧ケーブル4には通常60〔μA〕程度が
流れる。 ここで、例えばブリツジ現象が起き、高電圧ケ
ーブル4に300〔μA〕の電流が流れたとすると、
抵抗28にもこれと対応した電流が流れてコンパ
レータ30B,30C,30Dが作動し、増幅器
31B,31C,31Dが作動し、増幅器31
B,31C,31Dからは検知信号が出力され
る。この結果、異常判別器23のアンド回路34
Aには検知信号スイツチ24Aの閉成信号が入力
され、該アンド回路34Aから異常判別信号が出
力される。この出力信号はオア回路37を介して
ドライバ39Bにより異常出力リレーRDを励磁
し、その常閉接点RD―1を開成して電源Eを遮
断すると共に、警報器38を作動させてブリツジ
現象が発生したことを告知する。即ち、アンド回
路34B,34Cは論理積がとれないので異常判
別信号は出力されず、前記アンド回路34Aのみ
がブリツジ現象を判別し、高電圧の遮断のみを行
なう。高電圧を遮断したことでブリツジ現象が消
滅した後に、高電圧を再投入すれば塗装ラインを
停止することなく静電塗装を継続することができ
る。 一方、高電圧ケーブル4の絶縁破壊により芯線
短絡事故が起きて380〔μA〕の電流が流れたとす
ると、コンパレータ30A,30B,30C,3
0Dからはすべて検知信号が出力される。この結
果、コンパレータ30Aからの検知信号によりオ
ア回路37,36を介してリレーRD,REの双方
が励磁され、電源Eを遮断すると共に外部装置4
2を停止し、塗装装置の全停止を行なう。そし
て、この場合には高電圧ケーブル4、塗装機5等
の破損事故とみて塗装ラインを停止し、該ケーブ
ル4を交換する等の修理、点検を行ない、安全を
確認した後静電塗装を再開する。 また電圧設定スイツチ24Bを閉成すれば高電
圧ケーブル4に−60〔kV〕が印加され、検知器2
2Cの設定電流以上でブリツジ現象等の異常検出
を行ない、検知器22Bの設定電流以上で絶縁破
壊等の異常検出を行ない、前述と同様に高電圧の
遮断、塗装装置全体の作動停止を行なわせること
ができる。 このように、本発明によれば絶縁破壊による機
器の破損事故と、ブリツジ現象や電極短絡による
異常レベルとの判別を行なつて、異常レベルの程
度に対応した作動をさせ得ることができるから、
事故を未然に防止しうるばかりでなく、静電塗装
装置の自動安全監視機能も併せ有する。 なお、前述の実施例では多段電圧設定器21の
切替にはリレーRA,RB,RCを使用したが、サ
イリスタ等の電子式スイツチでもよく、一方リレ
ーに代えて直接操作の手動スイツチとしてもよ
い。また、多段電圧設定器21の設定電圧値を−
90〔kV〕、−60〔kV〕、−30〔kV〕とし、感度設定器
29A,29B,29C,29Dの設定電流値を
350〔μA〕、180〔μA〕、120〔μA〕、60〔μA〕とし

述べたが、これらの設定値は塗装機5の形式、塗
料の種類に応じて他の値でもよい。また異常判別
器23はオア回路36,37、アンド回路34
A,34B,34C,35A,35Bを使用する
ものとして述べたが、ダイオードマトリツクスと
論理素子との組合せによる可変論理判別方式とし
てもよく、一方、マイクロコンピユータを用いた
プログラム制御によつて異常判別器を構成しても
よい。 さらに、本発明の実施例では高電圧の設定に昇
圧トランス26の2次側を切換えるものとして述
べたが、例えば昇圧トランス2の2次側を切換え
る等他の方法で高電圧の設定を行ないうることは
勿論である。 本発明は以上詳細に述べた如くであつて、塗装
機の形式、塗料の種類に応じた設定電圧に対応し
て検知すべき過電流を多段に設定し、高電圧ケー
ブルを流れる過電流を多段的に検知して異常判別
器を作動させることができるから、塗装機の安全
を確実に保持することができる。また、電極短
絡、ブリツジ現象等の異常レベルを判別したとき
には電源のみを遮断し、絶縁破壊事故等の異常レ
ベルを判別したときには電源を遮断すると共に、
塗装機全体の作動を停止させることができるか
ら、事故の形態に応じた対応策を講じることがで
き、しかも軽微な異常であるブリツジ現象等に対
してはその都度塗装ラインを停止させることなく
静電塗装を再開しうる。さらに、事故の程度を自
動的に監視する自動安全監視機能も併せ有する等
幾多の効果を奏する。
[Table] The safety circuit 6 detects an overcurrent set in advance with reference to Table 1 or Table 2 and shuts off the power supply E side of the high voltage generator 1. Since current detection is carried out in one system, it is necessary for the operator to change the set value of the overcurrent to be detected depending on the type of coating machine 5, the type of paint, etc.
However, since the overcurrent is weak, it is not only difficult to set it appropriately, but also has the disadvantage that if the setting conditions are mistaken, an accident may occur. The present invention improves the drawbacks of the prior art, and features a multistage voltage setting device that sets the output voltage of a high voltage generator in multiple stages, and a predetermined setting value for the high voltage cable. a multi-stage overcurrent detector that outputs a detection signal by detecting that a current of the above amount has flowed; and a multi-stage abnormality determination of the detection signal from the multi-stage overcurrent detector corresponding to the set voltage of the multi-stage voltage setting device. It consists of a multi-stage abnormality discriminator that outputs an abnormal signal, and the multi-stage voltage setting device is set to an appropriate voltage according to the type of coating machine and the type of paint, and the set voltage and the multi-stage overcurrent detector are The detection signal is input to an abnormality discriminator, and the abnormality discriminator discriminates abnormalities in multiple stages according to the set voltage, so that the power to the high voltage generator can be cut off, or the operation of the entire coating equipment can be cut off. The present invention provides an electrostatic coating device configured as follows. The present invention will be explained below using FIG. 2. In the drawings, the same components as in FIG. It never changes. However, the present invention uses the commercial power source E and the high voltage generator 1.
A multi-stage voltage setting device 21 is provided between the high-voltage cable 4 to set the output voltage of the high-voltage generator 1 in multiple stages, and a multi-stage voltage setting device 21 is connected to the positive side of the high-voltage generator 1 and is connected to the A multistage overcurrent detector 22 outputs a detection signal by detecting that a current flows, and logically determines the detection signal of the multistage overcurrent detector 22 in accordance with the set voltage of the multistage voltage setting device 21. It is generally composed of a multi-stage abnormality discriminator 23 that discriminates abnormalities in multiple stages. 24 is a setting switch section, and the setting switch section 24 is, for example, -90
It consists of three setting switches 24A, 24B, and 24C that set voltages to [kV], -60 [kV], and -30 [kV], and each setting switch 24A, 24B, and 24C is connected to a multi-stage voltage setting device 21 as described later. , are connected to the multi-stage abnormality discriminator 23. Next, the multi-stage voltage setter 21 connects the voltage setting switches 24A, 24B, 24C and the signal line 25.
For example, 100
A step-up transformer 26 whose primary side is a commercial power supply E of [V] and which steps up the voltage to about 200 [V], and each of the above-mentioned relays inserted in parallel to the secondary side of the step-up transformer 26.
RA, RB, RC contacts RA-1, RB-1, RC-
1, and the voltage setting switches 24A, 24B, 2
Delay element 27A, 2 inserted between 4C and relays RA, RB, RC to prevent overvoltage during voltage switching
It is composed of 7B and 27C. The multi-stage voltage setting device 21 includes voltage setting switches 24A, 2
If you select either 4B or 24C and close it,
The contacts RA-1,
When RB-1 and RC-1 are closed, the negative side of high voltage generator 1 receives, for example, -90 [kV], -60 [kV], -30
[kV] DC high voltage is output. In addition, the multi-stage overcurrent detector 22 includes four detectors 22A, 22B, 22 that independently detect overcurrent.
C, 22D, and a resistor 28 provided between the positive side of the high voltage generator 1 and the ground 11 at the front stage of the detector 22A, and each of the detectors 22A, 22B, 22C, and 22D will be described later. Sensitivity setter 29A, 29B, 29C,
29D, the positive input terminal is connected to the positive side of the high voltage generator 1, and the negative input terminal is connected to the sensitivity setting device 29A,
Comparators 30A, 30B, 30C, 30D connected to 29B, 29C, 29D, respectively,
Each of the comparators 30A, 30B, 30C, 30
Amplifiers 31A, 31B, connected to the output side of D
It is composed of 31C and 31D. Here, the sensitivity setting devices 29A, 29B, 29C, and 29D described above are connected to sensitivity setting resistors 32A, 32 having the same resistance value.
Comparator 30 for B, 32C, 32D
Connection position 33 with A, 30B, 30C, 30D
By making A, 33B, 33C, and 33D different, the overcurrent value to be detected can be set to 350, for example.
The current is set to [μA], 180 [μA], 120 [μA], and 60 [μA]. By the way, the voltage setting switches 24A, 24B,
24C are sequentially closed, if current i flows from the positive side of rectifier 3 toward resistor 28, resistor 2
Voltages V A , V B , V C are generated on the positive side of 8, while sensitivity setters 29A, 29B, 29C, 29D
are the sensitivity setting resistors 32A, 32B, 32C,
32D connection position 33A, 33B, 33C, 33
v A , v B , v C , and v D are generated between D and earth 11. Therefore, each detector 22A, 22B, 22C,
22D comparators 30A, 30B, 30C,
30D can compare the voltages V A , V B , V C and v A , v B , v D , so each comparator 30 A, 30
B, 30C, 30D compare both voltages, and connect the high voltage cable 4 with sensitivity setters 29A, 29B, 29C,
A detection signal is output when a current exceeding the set current by 29D flows. Furthermore, the multi-stage abnormality discriminator 23 has an AND circuit 34
A, 34B, 34C, 35A, 35B, an abnormal output relay RD, RE having OR circuits 36, 37 and normally closed contacts RD-1, RE-1, respectively, an alarm 38 such as a lamp or a buzzer, and the relay. Drivers 39A and 39B for driving RD, RE and alarm 38
and a delay element 40 for overvoltage prevention during voltage switching.
It is roughly composed of A, 40B, and 40C. The signal lines 25A, 25B, 25C connected to the voltage setting switches 24A, 24B, 24C are connected to the AND circuit 34 via delay elements 40A, 40B, 40C.
It is connected to the input sides of A, 34B, 34C, 35A, and 35B, respectively, as shown. On the other hand, the signal line 41A connected to the output side of the comparator 30A via the amplifier 31A is connected to the input side of OR circuits 36 and 37, and the signal line 41A is connected to the output side of the comparator 30A via the amplifier 31A.
Signal lines 41B, 41C, 41 connected to the output sides of comparators 30B, 30C, 30D via
D is AND circuit 34A, 34B, 34C, 35
A and 35B are connected as shown. Further, the output sides of the AND circuits 34A, 34B, and 34C are connected to the input side of the OR circuit 37, and the AND circuit 35
The output sides of A and 35B are connected to the input sides of OR circuits 36 and 37, respectively. An abnormal output relay is connected to the output side of the OR circuit 36 via the driver 39A.
RE is connected, and an abnormal output relay RD and an alarm 38 are connected to the output side of the OR circuit 37 via a driver 39B. In addition, the abnormal output relay
The normally closed contact RD-1 of the RD is inserted between the power supply E and the step-up transformer 26, and the normally closed contact RE-1 of the abnormal output relay RE is provided as a switch for cutting off the external device 42. Here, the external device 4
2 is, for example, a paint pump or color change valve that supplies paint from the paint source 9 to the coating machine 5, and the contact RE-1
stops the paint pump by opening the
Alternatively, the color change valve or the paint on/off valve is closed in an emergency to stop the supply of paint, thereby stopping the operation of the coating machine 5. From the above points, to describe the function of the multi-stage abnormality discriminator 23, when the voltage setting switch 24A is closed and -90 [kV] is set, the current flowing through the high voltage cable 4 is detected by the detector 22B. Setting current
Detector 22A setting current 350 at 180 [μA] or more
[μA] or less, an abnormality determination signal is output from the AND circuit 34A based on the detection signal from the detector 22B, and the signal is output from the driver 39 via the OR circuit 37.
B excites relay RD, and its contact RD-1
is opened, the power supply E of the high voltage generator 1 is cut off, and the alarm 38 is activated. In addition, when the set current of the detector 22A is 350 [μA] or more, the detector 2
The detection signal from 2A excites the relay RE by the driver 39A via the OR circuit 36, opens the contact RE-1 to stop the external device 42, and excites the relay RD via the OR circuit 37 to turn on the power. E is shut off, and the operation of the entire coating machine 5 is stopped. Similarly, close the voltage setting switch 24B and -
When 60 [kV] is set, the current flowing through the high voltage cable 4 is the set current 120 of the detector 22C.
[μA] or more, the set current of the detector 22B is 180 [μA]
In the following cases, an abnormality determination signal is output from the AND circuit 34B based on the detection signal from the detector 22C, and the power supply E is cut off by the relay RD. Further, when the set current of the detector 22B is 180 [μA] or more, an abnormality determination signal is output from the AND circuit 35B based on the detection signal from the detector 22B.
The external device 42 is stopped by the relay RE via the OR circuit 36, and the power supply E is cut off by the relay RD via the OR circuit 37. Furthermore, close the voltage setting switch 24C and -
30 [kV], the current flowing through the high voltage cable 4 is set to 60 [kV] of the detector 22D.
[μA] or more, the set current of the detector 22C is 120 [μA]
In the following cases, an abnormality determination signal is output from the AND circuit 34C based on the detection signal from the detector 22D, and the power supply E is cut off. In addition, when the set current of the detector 22C is 120 [μA] or more, the detector 22C
Based on the detection signal from 2C, an abnormality determination signal is output from the AND circuit 35A, and the external device 42 is stopped and the power supply E is cut off. The present invention is configured as described above, and includes voltage setting switches 24A, 24B, 24C and a detector 22.
B, 22C, and 22D correspond to each other, and the detector 22A sets the upper limit of the current flowing through the high voltage cable 4. If a current exceeding this set value flows, an abnormality is detected regardless of the voltage setting value. Then, completely stop the coating equipment. Now, when the voltage setting switch 24A is closed,
Relay via signal line 25A and delay element 27A
RA is excited and closes the contact RA-1, and a high voltage of -90 [kV] is generated on the negative side of the high voltage generator 1, which is applied to the paint sprayer 5 via the high voltage cable 4. , comparators 30A, 30B, 3
Voltage V A is input to each positive input terminal of 0C, 30D, and sensitivity setter 29A, 29B,
Voltages v A , v B , v C , and D given according to the set currents of 29C and 29D are respectively input. As is clear from Tables 1 and 2, at a high voltage of -90 [kV], approximately 60 [μA] normally flows through the high voltage cable 4. For example, if a bridge phenomenon occurs and a current of 300 [μA] flows through the high voltage cable 4,
A corresponding current also flows through the resistor 28, activating the comparators 30B, 30C, and 30D, and activating the amplifiers 31B, 31C, and 31D.
Detection signals are output from B, 31C, and 31D. As a result, the AND circuit 34 of the abnormality discriminator 23
The closing signal of the detection signal switch 24A is input to A, and an abnormality determination signal is output from the AND circuit 34A. This output signal excites the abnormal output relay RD by the driver 39B via the OR circuit 37, opens its normally closed contact RD-1, cuts off the power supply E, and activates the alarm 38 to prevent the occurrence of a bridge phenomenon. Announce what you have done. That is, since the AND circuits 34B and 34C cannot perform a logical product, no abnormality determination signal is output, and only the AND circuit 34A determines the bridge phenomenon and only cuts off the high voltage. After the bridging phenomenon disappears by cutting off the high voltage, if the high voltage is turned on again, electrostatic painting can be continued without stopping the painting line. On the other hand, if a core wire short-circuit accident occurs due to dielectric breakdown of the high voltage cable 4 and a current of 380 [μA] flows, the comparators 30A, 30B, 30C, 3
All detection signals are output from 0D. As a result, both relays RD and RE are excited via the OR circuits 37 and 36 by the detection signal from the comparator 30A, and the power supply E is cut off and the external device 4
2 and completely stop the coating equipment. In this case, it is assumed that the high voltage cable 4, coating machine 5, etc. has been damaged and the coating line is stopped, the cable 4 is replaced and other repairs and inspections are carried out, and after confirming safety, electrostatic coating is resumed. do. Also, when the voltage setting switch 24B is closed, -60 [kV] is applied to the high voltage cable 4, and the detector 2
Abnormalities such as bridging are detected when the current exceeds the set current of 2C, and abnormalities such as dielectric breakdown are detected when the current exceeds the set current of the detector 22B, and the high voltage is cut off and the entire coating equipment is stopped in the same way as described above. be able to. As described above, according to the present invention, it is possible to distinguish between equipment damage accidents due to insulation breakdown and abnormal levels due to bridging phenomena or electrode short circuits, and to perform operations corresponding to the extent of the abnormal levels.
Not only can it prevent accidents, but it also has an automatic safety monitoring function for electrostatic coating equipment. In the above-described embodiment, relays RA, RB, and RC were used to switch the multi-stage voltage setting device 21, but an electronic switch such as a thyristor may be used, or a directly operated manual switch may be used in place of the relay. In addition, the set voltage value of the multi-stage voltage setter 21 is -
90 [kV], -60 [kV], -30 [kV], and set current values of sensitivity setting devices 29A, 29B, 29C, 29D.
Although 350 [μA], 180 [μA], 120 [μA], and 60 [μA] have been described, these set values may be other values depending on the type of coating machine 5 and the type of paint. Also, the abnormality discriminator 23 includes OR circuits 36, 37 and an AND circuit 34.
A, 34B, 34C, 35A, and 35B are used in the above description, but a variable logic discrimination method using a combination of a diode matrix and a logic element may also be used.On the other hand, abnormality discrimination can be performed by program control using a microcomputer. You may also configure a container. Further, in the embodiment of the present invention, the high voltage is set by switching the secondary side of the step-up transformer 26, but the high voltage may be set by other methods, such as by switching the secondary side of the step-up transformer 2. Of course. As described in detail above, the present invention sets the overcurrent to be detected in multiple stages corresponding to the set voltage depending on the type of coating machine and the type of paint, and detects the overcurrent flowing through the high voltage cable in multiple stages. Since it is possible to detect the abnormality and activate the abnormality discriminator, it is possible to reliably maintain the safety of the paint sprayer. In addition, when an abnormal level such as an electrode short circuit or bridging phenomenon is determined, only the power supply is cut off, and when an abnormal level such as an insulation breakdown accident is determined, the power supply is cut off.
Since the operation of the entire coating machine can be stopped, countermeasures can be taken depending on the type of accident, and even minor abnormalities such as bridging can be handled without stopping the painting line each time. Electric painting can be resumed. Furthermore, it has numerous effects, including an automatic safety monitoring function that automatically monitors the extent of accidents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術による静電塗装装置の系統
図、第2図は本発明に係る静電塗装装置の電気回
路図である。 1…高電圧発生器、4…高電圧ケーブル、5…
塗装機、21…多段電圧設定器、22…多段過電
流検知器、23…異常判別器。
FIG. 1 is a system diagram of an electrostatic coating apparatus according to the prior art, and FIG. 2 is an electric circuit diagram of an electrostatic coating apparatus according to the present invention. 1...High voltage generator, 4...High voltage cable, 5...
Painting machine, 21... Multi-stage voltage setting device, 22... Multi-stage overcurrent detector, 23... Abnormality discriminator.

Claims (1)

【特許請求の範囲】 1 高電圧ケーブルを介して塗装機に供給するた
めの高電圧を発生する高電圧発生器と、該高電圧
発生器の出力電圧を多段設定する多段電圧設定器
と、前記高電圧ケーブルに所定の設定値以上の電
流が流れたことを検知することにより検知信号を
出力する多段過電流検知器と、前記多段電圧設定
器の設定電圧に対応して前記多段過電流検知器に
よる検知信号を多段に異常判別し、異常判別信号
を出力する多段異常判別器とから構成してなる静
電塗装装置。 2 前記多段異常判別器により電極短絡ブリツジ
現象等の異常レベルを判別したときは高電圧発生
器の電源を遮断するようにした特許請求の範囲1
項記載の静電塗装装置。 3 前記多段異常判別器により高電圧ケーブルの
絶縁破壊等の異常レベルを判別したときには高電
圧発生器の電源を遮断すると共に塗装装置全体の
作動を停止させるようにした特許請求の範囲1項
記載の静電塗装装置。
[Scope of Claims] 1. A high voltage generator that generates a high voltage to be supplied to a coating machine via a high voltage cable, a multistage voltage setting device that sets the output voltage of the high voltage generator in multiple stages; a multistage overcurrent detector that outputs a detection signal by detecting that a current exceeding a predetermined set value flows through a high voltage cable; and a multistage overcurrent detector that outputs a detection signal in response to a set voltage of the multistage voltage setting device. An electrostatic coating device comprising a multi-stage abnormality discriminator that performs multi-stage abnormality determination on the detection signal obtained by the method and outputs an abnormality determination signal. 2. Claim 1, wherein when the multi-stage abnormality discriminator determines an abnormality level such as an electrode short-circuit bridge phenomenon, the power source of the high voltage generator is cut off.
The electrostatic coating device described in Section 1. 3. The apparatus according to claim 1, wherein when the multi-stage abnormality discriminator determines an abnormality level such as dielectric breakdown of the high voltage cable, the power to the high voltage generator is cut off and the operation of the entire coating apparatus is stopped. Electrostatic painting equipment.
JP57043087A 1982-03-18 1982-03-18 Electrostatic painting device Granted JPS58159858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043087A JPS58159858A (en) 1982-03-18 1982-03-18 Electrostatic painting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043087A JPS58159858A (en) 1982-03-18 1982-03-18 Electrostatic painting device

Publications (2)

Publication Number Publication Date
JPS58159858A JPS58159858A (en) 1983-09-22
JPH0124547B2 true JPH0124547B2 (en) 1989-05-12

Family

ID=12654053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043087A Granted JPS58159858A (en) 1982-03-18 1982-03-18 Electrostatic painting device

Country Status (1)

Country Link
JP (1) JPS58159858A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314346B2 (en) * 2008-07-18 2013-10-16 アネスト岩田株式会社 Control method to avoid overcurrent abnormalities in electrostatic coating
JP5249678B2 (en) * 2008-08-27 2013-07-31 アネスト岩田株式会社 High voltage supply controller for electrostatic coating
JP6444820B2 (en) * 2015-07-01 2018-12-26 ランズバーグ・インダストリー株式会社 Electrostatic coating device and electrostatic coating machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937611U (en) * 1972-07-11 1974-04-03
JPS4937610U (en) * 1972-07-11 1974-04-03

Also Published As

Publication number Publication date
JPS58159858A (en) 1983-09-22

Similar Documents

Publication Publication Date Title
AU653219B2 (en) Series reactor for high-pressure-gas discharge lamps in motor vehicles
US7561396B2 (en) Apparatus for monitoring open state of the secondary terminals of a current transformer
US6807036B2 (en) Digital fault interrupter with self-testing capabilities
US10686311B2 (en) Arc fault circuit interrupter with surge suppression
US7103486B2 (en) Device for monitoring a neutral and earth break and electrical switchgear apparatus comprising such a device
EP1265076A1 (en) Safety device for monitoring a DC bus insulation
JPH05336759A (en) Inverter
KR20070029690A (en) Arc discharge detection device
US11372047B2 (en) Method for detecting an insulation fault in a motor arrangement, method for detecting a motor phase interruption in a motor arrangement, and drive circuit for driving an electronically commutated motor
US20170261541A1 (en) Ground fault detector and method for detecting ground faults
EP1610453B1 (en) Inverter device
US6381109B1 (en) Method of controlling safety tripping means in a high voltage generator, and high voltage generator using the method
JPH0124547B2 (en)
US4160282A (en) Overcurrent protection apparatus
JPH09140051A (en) Power supply equipment
US20220057443A1 (en) Circuit assembly for fault detection in an ungrounded high-voltage system
JPS58271A (en) Electrostatic painting method
US4532568A (en) Three-phase leakage protection by electronic control
AU761774B2 (en) A protective relay-based monitoring system of DC power within an electric power substation
JPH0154102B2 (en)
JP3041449U (en) Power switch
JPS5910355A (en) Treating device for abnormality of electrical dust precipitator
JPS6330191Y2 (en)
JPH0332019B2 (en)
JPH086348Y2 (en) Re-strike detection device