JPH01245144A - Oxygen ion conductive ceramics film electrode - Google Patents

Oxygen ion conductive ceramics film electrode

Info

Publication number
JPH01245144A
JPH01245144A JP63071941A JP7194188A JPH01245144A JP H01245144 A JPH01245144 A JP H01245144A JP 63071941 A JP63071941 A JP 63071941A JP 7194188 A JP7194188 A JP 7194188A JP H01245144 A JPH01245144 A JP H01245144A
Authority
JP
Japan
Prior art keywords
electrode
metal
oxygen ion
measurement
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63071941A
Other languages
Japanese (ja)
Inventor
Junichi Takabayashi
純一 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63071941A priority Critical patent/JPH01245144A/en
Publication of JPH01245144A publication Critical patent/JPH01245144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable measurement with good reproducibility and stability immediately even after the long-term interruption of the measurement by providing a high-temp. holding means to the mixture in a film container. CONSTITUTION:A powder mixture 2 is packed into the pressure resistant container 1 formed of an oxygen ion conductive ceramics film having liquid impermeability. An electrode lead wire 3 consisting of an electron conductor, a resistance heater 5 and a temp. sensor 6 are embedded into the powder mixture 2 and the open end is sealed by a sealant 4. The powder mixture 2 is a mixture composed of the particles of a metal and the oxide of this metal or a mixture composed of two kinds of the oxides of the same metal which are different in metal valency. The electrode is constituted in such a manner and the heater 5 and the sensor 6 are used in combination with a power supply and a power supply controller. The potential responds immediately after the restart of the measurement even after the ambient temp. of the film electrode falls over a long period of time even if the powder mixture 2 is maintained in the prescribed measurement temp. range of a high temp. even during the interruption of the high-temp. measurement.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、化学プラントや火力、原子力および地熱に
よる各発電所や該燃料再処理工場などの、高温の水やそ
の溶液を扱う工業施設等で使用Jるための、高温でのp
Hの測定におもに用いる酸素イオン主導性セラミックス
膜電極に関し、さらに詳しくは、高温での測定を長時間
中断したあとでも再現性や安定性を損うことなく再び測
定に供することの出来る酸素イオン電導性ヒラミックス
膜電極に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Field of Industrial Application) This invention is applicable to high-temperature water and its solutions in chemical plants, thermal power plants, nuclear power plants, geothermal power plants, and fuel reprocessing plants. P at high temperatures for use in industrial facilities etc. that handle
Regarding the oxygen ion conductive ceramic membrane electrode mainly used for measuring H, in more detail, it is an oxygen ion conductive ceramic membrane electrode that can be used again without loss of reproducibility or stability even after long periods of interruption in high temperature measurements. This invention relates to a membrane electrode.

(従来の技術) 従来から水溶液のpH測定にはガラス電極が用いられて
きた。しかしながら、このガラス電極には、高温におい
て使用出来ないという欠点があった。
(Prior Art) Glass electrodes have traditionally been used to measure the pH of aqueous solutions. However, this glass electrode had the drawback that it could not be used at high temperatures.

そこで近年、水溶液における特に高温でのpHの測定に
適しているpHセンサとして酸素イオン電導性セラミッ
クス膜電極(特公昭61−22260号、 L 、 W
、 N 1edrach : J −E lectro
chem。
Therefore, in recent years, oxygen ion conductive ceramic membrane electrodes (Japanese Patent Publication No. 61-22260, L, W) have been developed as pH sensors suitable for measuring pH in aqueous solutions, especially at high temperatures.
, N1edrach: J-E electro
chem.

Soc、127.2122−2130 (1980)及
びり、 W、 N1edrach &W、 H,5to
ddard:I nd、 Eng、Chem 、 pr
od 、 Res、 Dev、 。
Soc, 127.2122-2130 (1980) and W, N1edrach & W, H,5to
ddard:Ind, Eng, Chem, pr
od, Res, Dev, .

22.594−599 (1983)’)が開発された
。この膜電極は、強酸と水との、もしくは強塩基と水と
の溶液における強酸もしくは強塩基の濃度測定に用いる
指示電極(特開昭60−65037号)、酸と水との、
もしくは塩基と水との溶液にお()る酸もしくは塩基の
濃度検出に用いる照合電極の電極本体(特願昭61−2
71766号)又は支持電極(特願昭61−27176
5号及び61−271766号)としても使用すること
ができる。
22.594-599 (1983)') was developed. This membrane electrode is an indicator electrode used for measuring the concentration of a strong acid or a strong base in a solution of a strong acid and water or a strong base and water (Japanese Patent Application Laid-Open No. 60-65037).
Or the electrode body of a reference electrode used for detecting the concentration of acid or base in a solution of base and water (Patent Application No. 61-2)
No. 71766) or supporting electrode (Patent Application No. 1986-27176)
No. 5 and No. 61-271766).

酸系イオン電導性セラミックス膜電極の具体的構成には
、セラミックス膜で構成された容器の内部の構造の違い
により数種類の方式が知られている。各々−長一端があ
るので、使用目的に応じて選択するのが良い。ただ、膜
電極の活性領域の限定が容易であるという点において優
れている方式として、次に述べる2種類が知られている
Several types of specific structures of acid-based ion-conductive ceramic membrane electrodes are known, depending on the internal structure of the container made of the ceramic membrane. Each type has a long end, so it is best to choose one depending on the purpose of use. However, the following two types of methods are known as being superior in that it is easy to limit the active region of the membrane electrode.

第一の方式の酸素イオン電導性セラミックス膜電極は、
下記の(a >から(d )までを具備するものである
The first method of oxygen ion conductive ceramic membrane electrode is
It is equipped with the following (a> to (d)).

(a >流体不透過性かつ耐圧性の隔壁よりなり、この
隔壁の全体、または隔壁の両表面間をつなぐ隔壁の一部
分が酸素イオン電導性セラミック股で構成された容器。
(a) A container consisting of a fluid-impermeable and pressure-resistant partition wall, in which the entire partition wall or a portion of the partition wall connecting both surfaces of the partition wall is composed of an oxygen ion conductive ceramic piece.

(b)前記膜の容器内側表面に接触するとともにこの容
器の外部に延在し、電子電導性物質よりなる電極端子用
導電路。
(b) A conductive path for an electrode terminal, which contacts the inner surface of the container of the membrane and extends outside the container, and is made of an electronically conductive material.

(C)前記容器内部に配置された、金属とその金属の酸
化物との混合物。
(C) A mixture of a metal and an oxide of the metal placed inside the container.

(d )前記膜の容器内側表面及び前記混合物を、前記
容器外の物質及び圧力から遮断するための封止材。
(d) A sealant for insulating the inner surface of the membrane and the mixture from substances and pressure outside the container.

以下、この方式の酸素イオンM導性セラミックス膜電極
を金属+金属酸化物内部極型の酸素イオン電導性セラミ
ックス膜電極と呼ぶ。
Hereinafter, this type of oxygen ion M conductive ceramic membrane electrode will be referred to as a metal+metal oxide internal electrode type oxygen ion conductive ceramic membrane electrode.

第二の方式の酸素イオン電導性セラミックス膜電極は、
前記の(a>、(b)および(d >と、下記の(cl
とを具備するものである。
The second method of oxygen ion conductive ceramic membrane electrode is
The above (a>, (b) and (d>) and the following (cl
It is equipped with the following.

(C1前記容器内部に配置された、同一金属の金属原子
価の異なる2種類の酸化物の混合物。
(C1 A mixture of two types of oxides of the same metal with different metal valences arranged inside the container.

以下、この方式の酸素イオン電導性セラミックス膜電極
を異原子価金12ii酸化物混合体内部極型の酸素イオ
ン電導性セラミックス膜電極と呼ぶ。
Hereinafter, this type of oxygen ion conductive ceramic membrane electrode will be referred to as a heterovalent gold 12ii oxide mixture internal electrode type oxygen ion conductive ceramic membrane electrode.

これら2種類の方式で実現される従来の酸素イオン電導
性セラミックス膜電極の構造の代表例を第4図に示す。
A typical example of the structure of a conventional oxygen ion conductive ceramic membrane electrode realized by these two types of methods is shown in FIG.

同図に示されるように、流体不透過性の酸素イオン導電
性セラミックス膜よりなる耐圧性の容器1の中に、後述
する混合粉2が容器1の内面に接触した状態で収納され
、電子電導体よりなる電極リード線3が混合粉2に埋設
されるとともに容器1の外部まで延良され、封止材4が
容器外の物質及び圧力から、混合粉2を含む容器1内部
を遮断する。ここで、混合粉2は、金属十金属酸化物内
部極型の膜電極では、金属の粒子とこの金属の酸化物の
粒子とよりなる。この場合、前記電極端子用導電路は、
前記酸素イオン電導性セラミックス膜に接触する金属粒
子と、互いに接触する混合粉2中の多数の金属粒子と、
混合粉2中に埋設されることにより金属粒子と接触して
いる電極リード線3とにより形成する。また、異原子価
金属酸化物混合体内部極型の膜電極では、混合粉2は、
同一金属の金属原子価の異なる2種類の酸化物の粒子か
ら少なくともなる。この場合、少なくとも一方の酸化物
が、主要な電荷担体が電子でかつ電導度が大きい酸化物
でないかぎり、前記の2種類の酸化物粒子のほか、白金
の粒子、または金の粒子、または十分な電気伝導度をも
つ炭素の粒子も混合粉2に混合される。この場合、混合
粉2には十分な電気伝導度を有する電子電導性物質であ
る2種類の酸化物のいずれかまたは白金か金か炭素が含
まれており、前記電極端子用導電路は、前記酸素イオン
電導性セラミックス膜に接触する前記電子電導性物質の
粒子と、互いに接触する混合粉2中の多数の前記電子電
導性物質の粒子と、混合粉2中に埋設されることにより
前記電子電導性物質の粒子と接触している電極リード線
3とにより形成する。
As shown in the figure, a mixed powder 2 (described later) is housed in a pressure-resistant container 1 made of a fluid-impermeable oxygen ion conductive ceramic membrane in contact with the inner surface of the container 1, and an electronic An electrode lead wire 3 made of a conductor is embedded in the mixed powder 2 and extended to the outside of the container 1, and a sealing material 4 isolates the inside of the container 1 containing the mixed powder 2 from substances and pressure outside the container. Here, the mixed powder 2 is composed of metal particles and particles of the metal oxide in the case of a metal/metal oxide internal electrode type membrane electrode. In this case, the conductive path for the electrode terminal is
Metal particles in contact with the oxygen ion conductive ceramic membrane, and a large number of metal particles in the mixed powder 2 in contact with each other;
It is formed by an electrode lead wire 3 which is embedded in the mixed powder 2 and is in contact with the metal particles. In addition, in a membrane electrode of a heterovalent metal oxide mixture internal electrode type, the mixed powder 2 is
It consists of at least two types of oxide particles of the same metal with different metal valences. In this case, unless at least one of the oxides is an oxide whose main charge carrier is electrons and which has high conductivity, in addition to the two types of oxide particles mentioned above, platinum particles or gold particles or sufficient Particles of carbon having electrical conductivity are also mixed into the mixed powder 2. In this case, the mixed powder 2 contains one of two types of oxides or platinum, gold, or carbon, which are electronically conductive substances having sufficient electrical conductivity, and the conductive path for the electrode terminal is The particles of the electronically conductive substance in contact with the oxygen ion conductive ceramic membrane and the large number of particles of the electronically conductive substance in the mixed powder 2 that are in contact with each other, and the particles of the electronically conductive substance in the mixed powder 2 are embedded in the mixed powder 2 to improve the electronic conductivity. It is formed by the electrode lead wire 3 in contact with the particles of the sexual substance.

以下、この構成の方式を用いた酸素イオン電導性セラミ
ックス膜電極を異原子価金lff1′H化物混合体内部
極型の酸素イオン電導性セラミックス膜電極と呼ぶ。
Hereinafter, the oxygen ion conductive ceramic membrane electrode using this configuration will be referred to as the oxygen ion conductive ceramic membrane electrode of the heterovalent gold lff1' hydride mixture internal electrode type.

ところで、酸素イオン電導性セラミックス膜電極は、高
温はど電位の精度が良いので、高温での使用に適するこ
とが知られている。しかしながら、金属+金属酸化物内
部極型および異原子価金属酸化物混合体内部極型の従来
の膜電極において、本発明者は、前記Ill電極を高温
(たとえば90℃)でのpH等の測定に使用すると、測
定を長時間(たとえば10日)にわたり中断する場合、
次に測定を再開するときに、再開後しばらくの間、膜電
極の電位は、被検液組成が測定中断中に経時変化をおこ
していない場合であっても、定常電位とは異なった値を
とりやすいことを見出した。この場合、この定常電位へ
の復帰の速さは、中断した時間が長ければ長いほど遅く
なるという傾向が認められる。
Incidentally, it is known that oxygen ion conductive ceramic membrane electrodes are suitable for use at high temperatures because they have good potential accuracy at high temperatures. However, in the conventional membrane electrodes of the metal+metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type, the present inventor used the Ill electrode to measure pH, etc. at high temperatures (for example, 90°C). When the measurement is interrupted for a long time (e.g. 10 days),
When the measurement is restarted next time, the potential of the membrane electrode will be at a value different from the steady-state potential for a while after restarting, even if the sample liquid composition has not changed over time during the interruption of the measurement. I found something easy to do. In this case, there is a tendency that the longer the interruption time, the slower the speed of return to the steady potential.

したがって、高温の水溶液等を扱う工業施設で、p l
−1等の高温での測定のために、金属土金属酸化物内部
極型および異原子価金属酸化物混合体内部極型の従来の
膜電極を使用する場合、たとえば、膜電極の設置場所で
ある被検液用容器やサンプリングラインの点検・保守等
のため、測定を長時間中断する場合は、前記の問題を避
けるため、その都度膜電極を設置場所から取り外し、膜
電極自体はあらかじめ別に設けておいた代替用被測定系
において、本来の測定の中断中も高温測定状態に保って
おかねばならないという煩雑な取扱い及びそのための複
雑な代替用装置を必要とするという問題点を生じる。こ
のとき、取り外し後の再取り付けが容易に元どおりに行
いにくい場合には、取付部分からの被検液漏洩を起しや
すくしてしまうこともある。
Therefore, in industrial facilities that handle high-temperature aqueous solutions, p l
When using conventional membrane electrodes of the metal earth metal oxide internal electrode type and the heterovalent metal oxide internal electrode type for measurements at high temperatures such as −1, e.g. If measurement is to be interrupted for a long time due to inspection or maintenance of a sample liquid container or sampling line, remove the membrane electrode from the installation location each time to avoid the above problem, and install the membrane electrode separately in advance. This poses a problem in that the replacement measurement system that has been placed in storage must be kept in a high-temperature measurement state even during the suspension of the original measurement, which requires complicated handling and requires a complicated replacement device. At this time, if it is difficult to easily reattach after removal, the test liquid may easily leak from the attachment part.

(発明が解決しようとする課題) このように、金属千金属酸化物内部極型および異原子価
金属酸化物混合体内部極型の従来の酸素イオン電導性セ
ラミックス膜電極には、高温での測定の長時間中断に際
し、測定再開後しばらくの間正確な測定が困難であった
り、工業施設での測定に使用する場合にはそのようなこ
とを防ぐために煩雑な取扱いやそのための複雑な装置を
必要とする等の問題点がある。
(Problem to be Solved by the Invention) As described above, the conventional oxygen ion conductive ceramic membrane electrodes of the metal 1,000 metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type are difficult to measure at high temperatures. If the measurement is interrupted for a long time, it may be difficult to make accurate measurements for a while after the measurement is restarted, or when used for measurements in industrial facilities, complicated handling and complicated equipment are required to prevent such situations. There are problems such as.

本発明は、前記従来の技術の問題点を解消するためにな
されたものであり、その目的は、高温での測定の長時間
中断後でも直ちに再現性・安定性の良い測定が可能とな
り、したがって測定中断中における、膜電極の取り外し
および高温測定状態の維持という煩雑な取扱いおよびそ
のための?!雑な装置が不要となる、金属土金属酸化物
内部極型および異原子価金属酸化物混合体内部極型の酸
素イオン′rr1導性セラミックス膜電極を提供するこ
とにある。
The present invention has been made in order to solve the problems of the conventional technology, and its purpose is to enable immediate measurement with good reproducibility and stability even after a long interruption of measurement at high temperatures, and thus What about the complicated handling of removing the membrane electrode and maintaining the high temperature measurement state during measurement interruption? ! It is an object of the present invention to provide an oxygen ion 'rr1 conductive ceramic membrane electrode of a metal earth metal oxide internal electrode type and a heterovalent metal oxide mixture internal electrode type, which eliminates the need for complicated equipment.

[発明の構成1 (課題を解決するための手段) 本発明者は、金属+金属酸化物内部極型および異原子価
金属酸化物混合体内部極型の従来の膜電極における、測
定の長時間中断による非定常電位について実験調査を重
ね、前記II!電極の非定常電位は高温での所定温度(
たとえば100℃)での使用途中に膜電極の温度が長時
間にわたり低下(たとえば20℃)した場合に発生する
こと、他の内部構成の酸素イオン電導性セラミックス膜
電極の中には測定の長時間中断によりこのような非定常
電位は特には認められないものがあることを見出したこ
とにより、金屈+金WAM化物内部極型又は異原子価金
属酸化物混合体内部極型の従来の膜電極での前記非定常
電位は膜電極内部の、金属とその金属の酸化物との混合
物、又は、同一金属の金属原子価の異なる2種類のみの
酸化物の混合物の、各温度履歴により生起するものであ
ると考えられることに気付いた。これらのことから本発
明者は、前記目的を達成する次のような構成の発明を完
成するに到った。
[Structure 1 of the Invention (Means for Solving the Problems) The present inventor has proposed a method for long-term measurement using conventional membrane electrodes of the metal+metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type. After repeated experimental investigations into the unsteady potential caused by interruption, the above-mentioned II! The unsteady potential of the electrode is determined at a predetermined temperature (
This may occur if the temperature of the membrane electrode drops (for example, 20°C) for a long period of time during use (e.g., 100°C), and some oxygen ion conductive ceramic membrane electrodes with other internal configurations are We found that there are cases where such unsteady potential is not particularly recognized due to interruption, and we have developed a conventional membrane electrode of gold + gold WAM compound internal electrode type or heterovalent metal oxide mixture internal electrode type. The above-mentioned unsteady potential occurs due to the temperature history of a mixture of a metal and an oxide of that metal, or a mixture of only two types of oxides of the same metal with different metal valences, inside the membrane electrode. I realized that it could be considered. Based on these facts, the present inventor has completed an invention having the following configuration that achieves the above object.

すなわち、金属+金属酸化物内部極型の本発明の酸素イ
オン電導性セラミックス膜電極は、(イ)流体不透過性
かつ耐圧性の隔壁よりなり、この隔壁の全体、または隔
壁の両表面間をつなぐ隔壁の一部分が、酸素イオン電導
性セラミックス膜で構成された容器。
That is, the oxygen ion conductive ceramic membrane electrode of the present invention having a metal+metal oxide internal electrode type is composed of (a) a fluid-impermeable and pressure-resistant partition wall, and the entire partition wall or the space between both surfaces of the partition wall is A container in which a portion of the connecting partition wall is made of an oxygen ion conductive ceramic membrane.

(ロ)前記膜の容器内側表面に接触するとともにこの容
器の外部に延在し、電子電導性物質よりなる電極端子用
導電路。
(b) A conductive path for an electrode terminal that contacts the inner surface of the container of the membrane and extends to the outside of the container, and is made of an electronically conductive material.

(ハ)前記容器内部に配置された、金属とその金属の酸
化物との混合物又は同一金属の原子価の異なる2種類の
酸化物の混合物。
(c) A mixture of a metal and an oxide of the metal, or a mixture of two types of oxides of the same metal with different valences, placed inside the container.

(ニ)前記膜の容器内側表面及び前記混合物を、前記容
器外の物質及び圧力から遮断するための封止材。
(d) A sealant for insulating the inner surface of the membrane and the mixture from substances and pressure outside the container.

上記(イ)から(ニ)までを具備する酸素イオン電導性
セラミックス膜電極において、 前記混合物に対する高温度保持手段をさらに有すること
を特徴とする。
The oxygen ion conductive ceramic membrane electrode comprising the above (a) to (d) is characterized in that it further comprises means for maintaining a high temperature for the mixture.

前記2種類の本発明膜電極において、それぞれの混合物
に対する高温度保持手段は、当該膜電極に容易に設ける
ことができて、被検液組成に応じた当該膜電極の電位に
影響を与えないものならば、いかなるものでも用いるこ
とができるが、抵抗加熱器と電気信号を出力する温度セ
ンサとを有して4ヱるものが、温度制御能力の点から好
適である。
In the two types of membrane electrodes of the present invention, the high temperature holding means for each mixture can be easily provided on the membrane electrode and does not affect the potential of the membrane electrode depending on the composition of the test liquid. If so, any device can be used, but one that has a resistance heater and a temperature sensor that outputs an electric signal is preferable from the viewpoint of temperature control ability.

この場合、これらは抵抗加熱器用電源と温度センサの電
気信号を入力信号とする電源制御器とに組合わせて用い
る。これら電源と電源制御器は、膜電極外部に別に設置
するのが良い。その場合、従来のm電極を工業施設での
測定に使用する場合に生じる、測定中断中におけるg!
m電極取り外しや代替用被測定系での高温測定状態の維
持といった、煩雑な取扱い及びそのための複雑な装置が
必要となるほどの問題は特に生じない。
In this case, these are used in combination with a power supply for the resistance heater and a power supply controller whose input signal is the electrical signal of the temperature sensor. These power sources and power controllers are preferably installed separately outside the membrane electrode. In that case, the g!
Problems such as removing the m-electrode and maintaining the high temperature measurement state in the substitute measurement system, which require complicated handling and complicated equipment, do not occur.

ただし、当該膜電極の端子と、f)H等の測定のために
当該膜電極と対をなして用いる電極(たとえば照合電極
)の端子との間における電圧測定経路では、当該酸素イ
オン電導性セラミックス膜が高電気抵抗であることが多
いので、外部ノイズ環境から静電誘導によるノイズを誘
起し、膜電極使用上の支障となりやすい。このため、外
部からノイズを誘起しやすい場所で使用する場合には、
前記電圧測定経路を伯の部分から静電シールドして用い
る。本発明膜電極では、前記電源が交流電源である場合
や、温度センサの電気信号が交流よりなる信号である場
合には、あるいは抵抗加熱器と温度センサにおける各リ
ード線が外部ノイズ環境にまで延在するかぎり、酸素イ
オン電導性セラミックス膜とそれに電気的接続をなす電
極端子用導電路とにノイズを誘起しやすいので、接地が
可能であるほかには他から電気的に絶縁されている導体
よりなる壁または網により隔てることにより、抵抗加熱
器と温度センサとから、前記酸素イオン電導性セラミッ
クス膜と前記電極端子用導電路とを静電シールドするこ
とが望ましい。
However, in the voltage measurement path between the terminal of the membrane electrode and the terminal of an electrode (for example, a reference electrode) used in pair with the membrane electrode for measuring f)H, etc., the oxygen ion conductive ceramic Since membranes often have high electrical resistance, they induce noise due to electrostatic induction from an external noise environment, which tends to interfere with the use of membrane electrodes. Therefore, when using it in a place where noise is likely to be induced from the outside,
The voltage measurement path is used with electrostatic shielding from the squared part. In the membrane electrode of the present invention, when the power source is an AC power source, when the electric signal of the temperature sensor is an AC signal, or when the lead wires of the resistance heater and the temperature sensor extend into an external noise environment, As long as the oxygen ion conductive ceramic membrane is present, noise is likely to be induced in the conductive path for the electrode terminal that is electrically connected to it. It is desirable to electrostatically shield the oxygen ion conductive ceramic film and the electrode terminal conductive path from the resistance heater and temperature sensor by separating them with a wall or a net.

(作用) 膜電極の電位は、膜電極に接する被検液から膜電極の電
極端子までの内部電位の差である。金属+金属酸化物内
部極型および異原子価金属酸化物混合体内部極型の酸素
イオン電導性セラミックス膜電極では、電極端子は電極
端子用導電路が兼ねており、この2種類の膜電極の電位
は、被検液1酸素イオン電導性セラミツクス膜の界面に
おける内部電位差と酸素イオン電導性セラミックス膜1
電子電導性物質(電極端子用導電路)の界面にJ3ける
内部電位差との和に等しい。金属土金属酸化物内部極型
及び異原子価金属酸化物混合体内部極型の酸素イオン電
導性セラミックス膜電極の容器内部の構成は、l!索ク
イオン主導性セラミックス用いた周知の高温用酸素ガス
センサのうち一部のものの内部の参照電極の構成と全く
同じであり(特公昭61−22260号及びJ、HIa
dik編「電解質の物理physics  or  E
lectrolytesJ、  (Academicp
ress刊、1972年)の第20章のJ、HIadi
kの論文[参照電極ReferenceEIectro
desJ参照)、前記の酸素イオン電導性セラミックス
膜1電子電導性物質(電極端子用導電路)の界面におけ
る内部電位差は、膜電極の容器内部の酸素ガス分圧と前
記界面の温度とにより定まる。しかるに、前記容器内部
の各混合物における、金属とその金属の酸化物の組合わ
せや同一金属の金属原子価の異なる2種類の酸化物どう
しの組合わせ、と平衡する前記容器内部の酸素ガス分圧
は当該混合物の温度のみで定まるが、前記混合物と酸化
ガスとの反応は一般に遅く、温度の急変に対し酸素ガス
分圧はただちに平衡値に達しない。高温での測定の中断
により前記混合物の温度が長時間低下すると再び温度が
当初の高温に戻っても前記容器内部の酸素ガス分圧は温
度のみで定まる平衡値にはただちに達せず、しだがって
、従来の膜電極では、被検液I酸素イオン電導性セラミ
ックス膜の界面における内部電位差がだだらに定常値に
達するにもかかわらず、膜電極の電位は、すぐには定常
値に到達しない。
(Function) The potential of the membrane electrode is the difference in internal potential from the test liquid in contact with the membrane electrode to the electrode terminal of the membrane electrode. In the oxygen ion conductive ceramic membrane electrodes of the metal+metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type, the electrode terminal also serves as the conductive path for the electrode terminal. The potential is determined by the internal potential difference at the interface between the test liquid 1 and the oxygen ion conductive ceramic membrane and the oxygen ion conductive ceramic membrane 1.
It is equal to the sum of the internal potential difference at J3 at the interface of the electronically conductive material (electrode terminal conductive path). The internal structure of the container of the oxygen ion conductive ceramic membrane electrode of the metal soil metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type is l! The structure is exactly the same as that of the internal reference electrode of some of the well-known high-temperature oxygen gas sensors using ion-driven ceramics (Japanese Patent Publication No. 61-22260 and J, HIa
dik edition ``Physics of electrolytes or E
lectrolytesJ, (Academicp
J, HIadi in Chapter 20 of (Ress, 1972)
K's paper [Reference ElectrodeReferenceElectro
desJ), the internal potential difference at the interface of the oxygen ion conductive ceramic membrane 1 and the electron conductive material (electrode terminal conductive path) is determined by the oxygen gas partial pressure inside the container of the membrane electrode and the temperature of the interface. However, the oxygen gas partial pressure inside the container is in equilibrium with the combination of a metal and its oxide or the combination of two types of oxides of the same metal with different metal valences in each mixture inside the container. is determined only by the temperature of the mixture, but the reaction between the mixture and the oxidizing gas is generally slow, and the oxygen gas partial pressure does not immediately reach an equilibrium value in response to a sudden change in temperature. If the temperature of the mixture drops for a long time due to interruption of measurement at high temperature, even if the temperature returns to the initial high temperature, the oxygen gas partial pressure inside the container will not immediately reach the equilibrium value determined only by the temperature, and will continue to do so. Therefore, with conventional membrane electrodes, although the internal potential difference at the interface of the test liquid I oxygen ion conductive ceramic membrane gradually reaches a steady value, the potential of the membrane electrode does not reach the steady value immediately. .

ところが本発明のIII電極では、前記混合物に対する
高温度保持手段を有しているので、膜電極の周囲温度が
長時間にわたり所定測定温度範囲より低下していても、
前記混合物自体は高温度である所定測定温度範囲に容易
に保持せしめることが可能である。このようにせしめる
と、1)η記容器内部の酸素ガス分圧は、高温での測定
の中断中であるにもかかわらず所定測定温度範囲内の温
度における平衡値のままであるので、再び高温での膜電
極の電位の測定を開始したとき、酸素イオン電導性セラ
ミックス膜1電子電導性物質(電極端子用等電路)の界
面における内部電位差はただちに定常値をとる。したが
って、本発明Jl電陽では、電位をすぐに定常値に到達
するようにできるのである。
However, since the III electrode of the present invention has a means for maintaining a high temperature for the mixture, even if the ambient temperature of the membrane electrode falls below the predetermined measurement temperature range for a long time,
The mixture itself can be easily maintained at a high temperature within a predetermined measurement temperature range. If this is done, 1) the partial pressure of oxygen gas inside the container η remains at the equilibrium value at the temperature within the predetermined measurement temperature range even though the measurement at high temperature is being interrupted; When the measurement of the potential of the membrane electrode is started, the internal potential difference at the interface between the oxygen ion conductive ceramic membrane 1 and the electron conductive material (equal electric path for the electrode terminal) immediately assumes a steady value. Therefore, in the Jl electric potential of the present invention, the electric potential can quickly reach a steady value.

(実施例) 本発明の一実施例を第1図に示す。これは、本発明にお
いて好適である、高温度保持手段として抵抗加熱器と電
気信号を出力する温度センサとを有し、膜電極外部に当
該膜電極とは別に、抵抗加熱器用電源と前記温度センサ
の電気信号を入力信号とする電源制御器とを設置しこれ
らと組合わせて用いる場合のもので、有している高温度
保持手段のほかは第4図にてすでに示した従来の膜電極
の代表的構造と同じ構造を有する。第1図において、第
4図に示した従来例と共通する部分には同一符号が付さ
れている。
(Example) An example of the present invention is shown in FIG. This has a resistance heater as a high temperature holding means and a temperature sensor that outputs an electric signal, which is suitable in the present invention, and a power supply for the resistance heater and the temperature sensor are provided outside the membrane electrode separately from the membrane electrode. This device is used in combination with a power supply controller that receives an electrical signal as an input signal, and other than the high temperature holding means it has, it is similar to the conventional membrane electrode shown in Figure 4. It has the same structure as the representative structure. In FIG. 1, parts common to the conventional example shown in FIG. 4 are given the same reference numerals.

流体不透過性の酸素イオン電導性セラミックス膜よりな
る耐圧性の容器1の中には、後述する混合粉2が容器1
内部の閉止端側に詰め込まれている。電子電導体よりな
る電極リード線3が混合粉2に埋設されるとともに容器
1の外部まで延在する。混合粉2中には、ざらに混合粉
2を加熱するための抵抗加熱器5、及びこの混合粉2の
温度を測定し電気信号を出力する温度センサ6が埋設さ
れている。この抵抗加熱器5は、発熱抵抗体5a及び発
熱抵抗体用リード線5b並びにこれらを被覆する耐熱性
電気絶縁チューブ5C・シールド用導体5d−電気絶縁
m5eから構成されている。
A mixed powder 2 to be described later is contained in a pressure-resistant container 1 made of a fluid-impermeable oxygen ion conductive ceramic membrane.
It is packed inside the closed end side. An electrode lead wire 3 made of an electronic conductor is embedded in the mixed powder 2 and extends to the outside of the container 1. A resistance heater 5 for roughly heating the mixed powder 2 and a temperature sensor 6 for measuring the temperature of the mixed powder 2 and outputting an electric signal are embedded in the mixed powder 2. The resistance heater 5 is composed of a heating resistor 5a, a lead wire 5b for the heating resistor, a heat-resistant electrically insulating tube 5C covering these, a shielding conductor 5d, and an electrically insulating member m5e.

また、温度センサ6は、電気絶縁被覆(図示せず)され
た温度測定素子6a及び電気絶縁被覆(図示せず)され
た温度測定素子用リード線6b並びにこれらを被覆する
静電シールド用導体6C−電気絶縁膜6dから構成され
ている。抵抗加熱器5と温度センサ6との各リード線部
分も、電極リードFA3と同様容器1の外部まで延在す
る。前記混合粉2を含む容器1内部は、外部の物質及び
圧力から遮断するために、容器1の開口端で封止材4に
より封止されている。なお、金属千金属酸化物内部極型
及び異原子価金属酸化物混合体内部極型の従来の膜電極
と同様、本発明膜電極においても、前記の封止は酸素を
極力除去したAr、He、N2等の不活性ガス中で施す
ことが望ましく、また混合粉2の上方空間には、混合粉
2の固定を確実にするため容器1内物質に対し不活性で
耐熱性を有するグラスウール等の物質を充填してもよい
The temperature sensor 6 also includes a temperature measuring element 6a covered with an electrical insulation coating (not shown), a lead wire 6b for the temperature measurement element covered with an electrical insulation coating (not shown), and an electrostatic shielding conductor 6C covering these. - It is composed of an electrical insulating film 6d. The lead wire portions of the resistance heater 5 and the temperature sensor 6 also extend to the outside of the container 1, similar to the electrode lead FA3. The inside of the container 1 containing the mixed powder 2 is sealed with a sealing material 4 at the open end of the container 1 in order to isolate it from external substances and pressure. Note that, similar to the conventional membrane electrodes of the metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type, in the membrane electrode of the present invention, the above-mentioned sealing is performed using Ar, He, which removes oxygen as much as possible. It is preferable to conduct the application in an inert gas such as , N2, etc. Also, in order to securely fix the mixed powder 2, a material such as glass wool, which is inert to the substances in the container 1 and heat resistant, is placed in the space above the mixed powder 2. It may also be filled with a substance.

ここで、混合粉2は、第1図に示した従来の暎電極に用
いるものと同様、金属土金属酸化物内部極型の膜電極で
は、金属の粒子とこの金属の酸化物の粒子とよりなる。
Here, the mixed powder 2 is similar to that used in the conventional electrode shown in FIG. Become.

また同様に、異原子価金属酸化物混合体内部V7A型の
膜電極では、同一金属の金属酸化物の異なる2種類の酸
化物の粒子から少なくともなり、少なくとも一方の酸化
物が、主要な電荷担体が電子でかつ電導度が大きい酸化
物でないかぎり、前記2種類の酸化物の粒子のほか、少
なくとも表面が白金、または金、または白金と金との合
金、または十分な電気伝導度をもつ炭素よりなる粒子も
混合されてなる。また、電極リード線3に用いる電子電
導体は、少なくとも表面が白金、または金、または白金
と金との合金よりなるものが望ましく、金属+金属酸化
物内部極型の膜電極では、少なくとも表面が混合粉2中
に用いられている金属粒子と同じ金属よりなるものでも
良い。
Similarly, a V7A type membrane electrode inside a heterovalent metal oxide mixture is composed of particles of at least two different types of metal oxides of the same metal, and at least one of the oxides is the main charge carrier. In addition to particles of the two types of oxides mentioned above, at least the surface is made of platinum, gold, an alloy of platinum and gold, or carbon with sufficient electrical conductivity, unless it is an oxide with electrons and high electrical conductivity. The particles are also mixed together. Further, the electronic conductor used for the electrode lead wire 3 is preferably one whose at least the surface is made of platinum, gold, or an alloy of platinum and gold. The particles may be made of the same metal as the metal particles used in the mixed powder 2.

なお、発熱抵抗体5aには、ニッケルークロムや鉄−ク
ロム等の線や帯、または炭化ケイ素等の非金属発熱体な
ど、種々のものを用いることができる。また、温度測定
素子6aには、熱雷対、測温抵抗体、サーミスタ測温体
等を用いることができる。さらに、当該膜電極と組合わ
せて用いる、抵抗加熱器5の電源が直流電源で、温度セ
ンサ6の電気信号が直流信号であり、且つ抵抗加熱器5
及び温度センサ6のリード線部分が静電誘導によるノイ
ズを、抵抗加熱器5及び温度センサ6を介して酸素イオ
ン電導性セラミックス膜よりなる容器1とそれに接する
混合粉2中の電子電導性物質と電極リード線3とに誘起
せしめにくい環境に配設されるなら、電気絶縁膜5e、
6d及び静電シールド用導体5d 、6cを省略するこ
ともできる。
Note that various materials can be used for the heating resistor 5a, such as a wire or band made of nickel-chromium or iron-chromium, or a nonmetallic heating element such as silicon carbide. Further, a thermoelectric pair, a resistance temperature detector, a thermistor temperature detector, or the like can be used as the temperature measuring element 6a. Furthermore, the power source of the resistance heater 5 used in combination with the membrane electrode is a DC power source, the electric signal of the temperature sensor 6 is a DC signal, and the resistance heater 5
The lead wire portion of the temperature sensor 6 transmits noise caused by electrostatic induction to the container 1 made of an oxygen ion conductive ceramic film and the electronically conductive substance in the mixed powder 2 in contact with it via the resistance heater 5 and the temperature sensor 6. If the electrical insulating film 5e is arranged in an environment where it is difficult to induce the electrode lead wire 3,
6d and the electrostatic shielding conductors 5d and 6c can also be omitted.

したがって、抵抗加熱器5及び温度センサ6は、適宜の
抵抗加熱器用電源と、温度センサ6の電気信号を入力信
号とする電源制御器と併用することにより、膜電極の他
の部分から電気絶縁された状態で、外部から静電誘導に
よるノイズを、容器1と混合粉2中の電子電導性物質と
電極リード線3とに誘起せしめることなく、混合粉2を
所定の高温度に保持することができる高温度保持手段と
して礪能する。
Therefore, the resistance heater 5 and the temperature sensor 6 can be electrically isolated from other parts of the membrane electrode by using a suitable resistance heater power supply and a power supply controller that takes the electrical signal of the temperature sensor 6 as an input signal. In this state, it is possible to maintain the mixed powder 2 at a predetermined high temperature without inducing noise due to electrostatic induction from the outside into the electronically conductive material in the container 1 and the mixed powder 2 and the electrode lead wire 3. It functions as a high temperature maintenance means.

本発明は、前記実施例に限定されるものではなく、高温
度保持手段には、当該膜電極に容易に設けることができ
て、被検液組成に応じた当該m電極の電位に影響を与え
ないものならば、他のエネルギー源による加熱手段や他
の信号伝達方式による測温手段からの信号を入力信号と
するエネルギー源制御器をも当該pj!電極に設けたも
のでも良い。
The present invention is not limited to the above-mentioned embodiments, and the high-temperature holding means can be easily provided on the membrane electrode and can influence the potential of the m-electrode depending on the composition of the sample liquid. If not, the pj! It may also be provided on the electrode.

さらに、膜電極の設置場所への取り付け・取り外しにも
支障がなく膜電極の他の部分と一体で取扱えるならば、
高温度保持手段は、当該膜電極の容器の外部に付設する
ものであっても良い。
Furthermore, if there is no problem in attaching and removing the membrane electrode to the installation location and it can be handled as one with other parts of the membrane electrode,
The high temperature holding means may be attached to the outside of the container of the membrane electrode.

また、膜電極中の高温度保持手段を除いた部分は、高温
度保持手段の設置が容易でありさえすれば、金属土金属
酸化物内部極型及び異原子価金属酸化物混合体内部極型
の従来の膜電極のうち、第4図以外の構造のものでも良
い。膜電極の容器も、流体不透過性かつ耐圧性の隔壁よ
りなる構造でありさえすれば、隔壁の全体を酸素イオン
電導性セラミックス膜で構成する必要はない。酸素イオ
ン電導性セラミックス膜で隔壁の両表面間をつなぐこと
ができ、前記膜の膜厚方向電気抵抗が膜電極の電位測定
に用いられる電位差計の入力抵抗よりも十分小さいかぎ
り、隔壁の一部を構成しさえすれば良い、さらに、前記
容器の形状寸法も、高温度保持手段の設置が容易であれ
ば、使用目的に応じ任、息適当なものとすることができ
る。
In addition, the part of the membrane electrode other than the high-temperature holding means may be of the metal earth metal oxide internal electrode type or the heterovalent metal oxide mixture internal electrode type, as long as the high-temperature holding means can be easily installed. Among the conventional membrane electrodes shown in FIG. 4, those having structures other than those shown in FIG. 4 may be used. As long as the container of the membrane electrode has a structure consisting of a fluid-impermeable and pressure-resistant partition wall, the partition wall does not need to be entirely composed of an oxygen ion conductive ceramic membrane. As long as an oxygen ion conductive ceramic membrane can connect both surfaces of the partition wall, and the electrical resistance of the membrane in the thickness direction is sufficiently smaller than the input resistance of the potentiometer used to measure the potential of the membrane electrode, a part of the partition wall Furthermore, the shape and dimensions of the container can be made appropriate depending on the purpose of use, as long as the high temperature maintaining means can be easily installed.

次に、金属+金属酸化物内部極型及び異原子価金属酸化
物混合体内部極型の膜電極における、高温測定中断によ
る低温長時間保持後での高温測定再開部の電位の再現性
・安定性に及ぼす、高温度保持手段具備の効果を実験デ
ータに基づいて説明する。
Next, we will discuss the reproducibility and stability of the potential at the point where high-temperature measurement resumes after a long period of low temperature holding due to interruption of high-temperature measurement in membrane electrodes of metal + metal oxide internal electrode type and heterovalent metal oxide mixture internal electrode type. The effect of having a high temperature holding means on the performance will be explained based on experimental data.

金属+金属酸化物内部極型及び異原子価金属酸化物混合
体内部極型の各膜電極について、それぞれ本発明実施例
として第1図に示す構造のものを、また従来の膜電極に
よる比較例として第4図に示す構造のものを、次に述べ
る構成にて制作した。
Regarding each of the metal+metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type membrane electrode, the structure shown in FIG. 1 was used as an example of the present invention, and a comparative example using a conventional membrane electrode was used. The structure shown in Fig. 4 was manufactured using the configuration described below.

すなわち、容器1は、各膜電極とも長さ220mm、内
径25mm、外径28IllIIIのタンマン管形状の
4.5ffi o l/Y203安定化ジルコニア管で
ある。実施例の膜電極において、抵抗加熱器5には、市
販のシリコーンゴム被覆ヒーティングケーブルをリード
線部分とともに、市販同軸ケーブルから取出した鋼線編
組シールドの中に貫通させ、ざらにこれをPTFEil
肉チューブの中に貫通させたものを用い、また温度セン
サ7には、金属シースのリード線に接する部分も含めて
リード線(絶縁被覆剤)にあらかじめアルミフオイール
を巻きつけた市販の金属シース入白金測温抵抗体を片端
封じPTFEチューブ内に挿入したものを用いた。混合
粉2には、金属+金属酸化物内部極型膜電極に対しては
、重量比4:1の各300メツシユのA(] +A(]
 20の混合粉末を、また異原子価金属酸化物混合体内
部極型膜電極に対しては、重量比1:1:1の各300
メツシユのFe3O4+α−Fe 203 +Ptの混
合粉末を用い、おのおの容器1の深さ150ralまで
充填した。電極リード線3は、長さ2001m+1.直
径11ImのPt線1本を用い、混合粉2中に深さ10
0mmまで差し込まれている。各膜電極とも、封止材4
は、市販の耐熱型エポキシ樹脂接着剤にて形成し、封止
はアルゴンガス置換グローブボックス内で行った。
That is, the container 1 is a 4.5 ffio l/Y203 stabilized zirconia tube in the shape of a Tammann tube with each membrane electrode having a length of 220 mm, an inner diameter of 25 mm, and an outer diameter of 28 IllIII. In the membrane electrode of the example, in the resistance heater 5, a commercially available silicone rubber coated heating cable is passed through a steel wire braided shield taken out from a commercially available coaxial cable together with the lead wire portion, and this is roughly coated with PTFEil.
The temperature sensor 7 is made of a commercially available metal sheath with aluminum foil wrapped around the lead wire (insulating coating) in advance, including the part that contacts the lead wire of the metal sheath. A platinum-filled resistance thermometer was used with one end sealed and inserted into a PTFE tube. Mixed powder 2 contains 300 meshes each of A(] + A(] in a weight ratio of 4:1 for the metal + metal oxide inner electrode type membrane electrode).
20 mixed powders, and for the heterovalent metal oxide mixture internal electrode type membrane electrode, 300 powders each in a weight ratio of 1:1:1.
A mixed powder of mesh Fe3O4 + α-Fe 203 +Pt was used to fill each container 1 to a depth of 150 ral. The electrode lead wire 3 has a length of 2001 m+1. Using one Pt wire with a diameter of 11 Im, it was placed in the mixed powder 2 at a depth of 10
It is inserted to 0mm. For each membrane electrode, sealing material 4
was formed using a commercially available heat-resistant epoxy resin adhesive, and sealing was performed in an argon gas purged glove box.

次に、容量2交の多口フラスコ2個を用意し、一方の多
口フラスコには金属土金属酸化物内部極型の、他方の条
目フラスコには異原子価金属酸化物混合体内部極型の、
それぞれ実施例と比較例の膜電極を各1本ずつ、パイト
ン製0リングを用いて取り付けた。おのおのの多口フラ
スコには、さらに、市販高温用飽和カロメル電極1本と
後記するシールドケースの外までリニド線をシールドし
た金属シース入白金測温抵抗体1本と還流冷却器とを設
置し、JISK8474に規定されるシュウ酸塩pH標
準緩衝液を被検液として満たした。
Next, prepare two multi-neck flasks with double capacity, one multi-neck flask has a metal soil metal oxide internal electrode type, and the other multi-neck flask has a heterovalent metal oxide mixture internal electrode type. of,
One membrane electrode of each example and comparative example was attached using an O-ring manufactured by Piton. Each multi-necked flask was further equipped with one commercially available high-temperature saturated calomel electrode, one platinum resistance thermometer in a metal sheath with a lined wire shielded to the outside of the shield case (described later), and a reflux condenser. An oxalate pH standard buffer defined by JIS K8474 was filled as a test solution.

前記の各多口フラスコは、アルミフオイールでリード線
ごとシールドした別々のマントルヒータ内に入れ、さら
に各マントルヒータごと同一のシールドケース内に設置
した。各実施例の膜電極に具備された抵抗加熱器5及び
温度センサ6の各り一ド線部分を、銅線編組シールドに
よる静電シールド用導体5dとアルミフオイールによる
静電シールド用導体6Cとで前記シールドケース外まで
シールドされた状態にて、シールドケース外に設置した
スライダック及び温度調節計に接続し、これらにより実
施例の膜電極中の混合粉2の温度を制御できるようにし
た。前記被検液の温度は、マントルヒータと、多口フラ
スコに設置され被検液に浸漬されている白金測温抵抗体
と、シールドケース外に設置した前記とは別の、スライ
ダック及び温度調節計とにより、制御できるようにした
。各膜電極の電位は、同じ条目フラスコに設置されてい
る前記飽和カロメル電極に照合することにより、シール
ドケース内に設置した、電池電源方式、入力抵抗10′
4Ωの自作エレクトロメータを用いて測定できるように
した。
Each of the multi-necked flasks was placed in separate mantle heaters whose lead wires were shielded with aluminum foil, and each mantle heater was placed in the same shield case. The single wire portion of each of the resistance heater 5 and temperature sensor 6 provided in the membrane electrode of each example is connected to an electrostatic shielding conductor 5d made of a copper wire braided shield and an electrostatic shielding conductor 6C made of an aluminum foil. In a state where the outside of the shield case was shielded, it was connected to a slider and a temperature controller installed outside the shield case, so that the temperature of the mixed powder 2 in the membrane electrode of the example could be controlled by these. The temperature of the test liquid is determined by a mantle heater, a platinum resistance thermometer installed in a multi-necked flask and immersed in the test liquid, and a separate slider and temperature controller installed outside the shield case. This made it possible to control it. The potential of each membrane electrode is determined by comparing it with the saturated calomel electrode installed in the flask with the same diameter.
I made it possible to measure using a 4Ω home-made electrometer.

以上の装置を用いて、次の実験を行った。まず各被検液
の温度を80℃に制御し、全膜電極とも定常電位(許容
変動幅±0.5mVとする)に達するまで連続浸漬を行
なった。全膜電極の定常電位到達確認後、電位測定を中
断し、直ちに全膜電極とち各多口フラスコから取り出し
、室温の空気中に各リード線により懸垂させることによ
り所定時間保持した。この間、実施例の各g!膜電極中
混合粉2の温度を80℃に制御した。所定時間の保持終
了後直ちに、被検液の温度が80℃に保持されている元
の各条目フラスコに各膜電極を再設置するとともに、電
位測定を再開した。このような実験を、初めに所定時間
を1時間として行い、次に所定時間を30日間として行
った。測定再開後の、実施例及び比較例の膜電極の電位
の、おのおの至温保持前定常電位からの変化量の経時変
化を、金属→金属酸化物内部極型膜電極については第2
図に、異原子価金属酸化物内部極型については第3図に
示す。これらの図から、金属十金属酸化物内部極型膜電
極、異原子価金属酸化物混合体内部極型膜電極とも、従
来の膜電極では、測定再開後、元の電位への電位復帰の
速さが、室温保持時間とともに遅くなる傾向が認められ
るのに対し、高温度保持手段を具備した実施例の膜電極
では、測定中断中の室温での保持時間には特に影響は受
けず、電位は直ちに応答し、再現性、安定性共に良好で
あることがわかった。
The following experiment was conducted using the above apparatus. First, the temperature of each test liquid was controlled at 80° C., and continuous immersion was performed until all membrane electrodes reached a steady potential (permissible fluctuation range ±0.5 mV). After confirming that the steady potential of all the membrane electrodes had been reached, the potential measurement was interrupted, and all the membrane electrodes were immediately taken out from each multi-necked flask and held in air at room temperature for a predetermined period of time by suspending them by respective lead wires. During this time, each g! The temperature of the mixed powder 2 in the membrane electrode was controlled at 80°C. Immediately after the completion of holding for a predetermined period of time, each membrane electrode was reinstalled in the original flask with each row in which the temperature of the test liquid was maintained at 80° C., and potential measurement was restarted. Such an experiment was first conducted for a predetermined time of 1 hour, and then for a predetermined time of 30 days. After restarting the measurement, the amount of change over time in the potential of the membrane electrodes of Examples and Comparative Examples from the steady potential before holding at the highest temperature is shown in the second column for the metal→metal oxide internal electrode type membrane electrode.
In the figure, the internal electrode type of different valent metal oxide is shown in FIG. From these figures, it can be seen that with conventional membrane electrodes, both the metal-ten-metal oxide internal electrode type membrane electrode and the heterovalent metal oxide mixture internal electrode type membrane electrode, the potential returns to the original potential quickly after resuming measurement. However, in the membrane electrode of the example equipped with a high temperature holding means, the potential is not particularly affected by the holding time at room temperature during measurement interruption. It was found that it responded immediately and had good reproducibility and stability.

なお、この発明の膜′i¥X極は、測定中断にかかわる
本発明目的の達成以外に、測定時における被検液の高温
度保持機能もしくは補助的な加熱機能も有しており、被
検液等の熱的条件によってはこの機能を適宜活用するこ
とも可能である。
In addition to achieving the object of the present invention related to interruption of measurement, the membrane 'i\X electrode of the present invention also has a function of maintaining a high temperature of the test liquid during measurement or an auxiliary heating function. Depending on the thermal conditions of the liquid, etc., it is possible to utilize this function as appropriate.

[発明の効果] 金属十金属酸化物内部極型および異原子価金属酸化物混
合体内部極型のこの発明の酸素イオン電導性セラミック
ス膜電極では、高温での測定が中断され膜電極の周囲温
度が長時間にわたり所定測定温度範囲より低下しても、
従来の膜電極のように、周囲温度の低下の時間とともに
測定再開直後正確な測定が困難となったり、回復も遅く
なっていくということはなく、周囲温度低下の時間にか
かわらず測定再開後、電位は直ちに応答し、再現性、安
定性ともに良好である。
[Effects of the Invention] In the oxygen ion conductive ceramic membrane electrodes of the present invention, which are of the metal ten metal oxide internal electrode type and the heterovalent metal oxide mixture internal electrode type, measurement at high temperatures is interrupted and the ambient temperature of the membrane electrode is reduced. Even if the temperature drops below the specified measurement temperature range for a long time,
Unlike conventional membrane electrodes, it does not become difficult to make accurate measurements immediately after resuming measurement as the ambient temperature drops, nor does recovery become slow. The potential responds immediately and has good reproducibility and stability.

これは、119 i極の電位の再現性、安定性に太きな
影響を与え、かつ、膜電極の容器内部の混合物との反応
により平衡性が定まる容器内部の酸素ガスの分圧におい
て、温度に依存した平衡分圧への到達が温度の急変に対
して遅いにもかかわらず、本発明では膜電極自身に高温
度保持手段を備えているので、高温測定の中断中も、前
記混合物の温度を高温の所定測定温度範囲に容易に保持
せしめることができるためである。
This has a great influence on the reproducibility and stability of the potential of the 119 i-electrode, and at the partial pressure of oxygen gas inside the container whose equilibrium is determined by the reaction of the membrane electrode with the mixture inside the container, the temperature Despite the fact that reaching the equilibrium partial pressure depending on This is because the temperature can be easily maintained within a high temperature predetermined measurement temperature range.

したがって、高温の水溶液等を扱う工業施設で、rlH
又は酸・塩基濃度等の測定のために使用する場合、測定
の長時間中断中にお(プる、膜電極の取り外しおよび高
温測定状態の維持という煩雑な取扱いおよびそのための
複雑な装置が不要となる。
Therefore, in industrial facilities that handle high-temperature aqueous solutions, rlH
Or, when used to measure acid/base concentration, etc., it eliminates the need for complicated handling such as pulsing, removing membrane electrodes, and maintaining high temperature measurement conditions during long interruptions in measurement. Become.

このため、取り外し後の再取り付けが容易に元どおりに
行いにくいため取り外しにより取付部分からの被検液漏
洩を起こしやすい場合であっても、支障なく使用できる
Therefore, even if it is difficult to easily reinstall the device after removal and the test liquid is likely to leak from the attachment portion due to removal, it can be used without any problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の断面図、第2図は金属+
金属酸化物内部極型膜電極での実施例及び比較例に係る
膜電極の電位の経時変化を表わすグラフ図、第3図は異
原子価金属酸化物混合体内部極型膜電極での実施例及び
比較例に係る膜M極電位の経時変化を表わすグラフ図、
第4図は従来例の断面図である。 1・・・容器 2・・・混合粉 3・・・リード線 4・・・封止材 5・・・抵抗加熱器 6・・・温度レンサ
Figure 1 is a cross-sectional view of one embodiment of this invention, and Figure 2 is a metal +
A graph showing changes over time in the potential of membrane electrodes according to Examples and Comparative Examples with metal oxide internal electrode type membrane electrodes. Figure 3 is an example of a heterovalent metal oxide mixture internal electrode type membrane electrode. and a graph showing the change over time in the membrane M electrode potential according to the comparative example,
FIG. 4 is a sectional view of a conventional example. 1... Container 2... Mixed powder 3... Lead wire 4... Sealing material 5... Resistance heater 6... Temperature sensor

Claims (1)

【特許請求の範囲】 流体不透過性かつ耐圧性の隔壁よりなり、この隔壁の全
体、または隔壁の両表面間をつなぐ隔壁の一部分が、酸
素イオン電導性セラミックス膜で構成された容器と、 前記膜の容器内側表面に接触するとともにこの容器の外
部に延在し、電子電導性物質よりなる電極端子用電導路
と、 前記容器内部に配置された、金属とその金属の酸化物と
の混合物又は同一金属の金属原子価の異なる2種類の酸
化物の混合物と、 前記膜の容器内側表面及び前記混合物を、前記容器外の
物質及び圧力から遮断するための封止材と を具備する酸素イオン電導性セラミックス膜電極におい
て、 前記混合物に対する高温度保持手段をさらに有すること
を特徴とする酸素イオン電導性セラミックス膜電極。 (2)前記高温度保持手段は、抵抗加熱器と電気信号を
出力する温度センサとを有してなることを特徴とする請
求項1記載の酸素イオン電導性セラミックス膜電極。 (3)前記酸素イオン電導性セラミックス膜と前記電極
端子用導電路とが、前記抵抗加熱器と前記温度センサと
から静電シールドされてなることを特徴とする請求項2
記載の酸素イオン電導性セラミックス膜電極。
[Scope of Claims] A container comprising a fluid-impermeable and pressure-resistant partition wall, the entire partition wall or a portion of the partition wall connecting both surfaces of the partition wall being formed of an oxygen ion conductive ceramic membrane; a conductive path for an electrode terminal that is in contact with the inner surface of the membrane container and extends outside the container, and is made of an electronically conductive material; and a mixture of a metal and an oxide of the metal, or An oxygen ion conductor comprising: a mixture of two types of oxides of the same metal having different metal valences; and a sealing material for insulating the inner surface of the container of the membrane and the mixture from substances and pressure outside the container. What is claimed is: 1. An oxygen ion conductive ceramic membrane electrode, further comprising means for maintaining the mixture at a high temperature. (2) The oxygen ion conductive ceramic membrane electrode according to claim 1, wherein the high temperature holding means includes a resistance heater and a temperature sensor that outputs an electric signal. (3) The oxygen ion conductive ceramic film and the electrode terminal conductive path are electrostatically shielded from the resistance heater and the temperature sensor.
The oxygen ion conductive ceramic membrane electrode described above.
JP63071941A 1988-03-28 1988-03-28 Oxygen ion conductive ceramics film electrode Pending JPH01245144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071941A JPH01245144A (en) 1988-03-28 1988-03-28 Oxygen ion conductive ceramics film electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071941A JPH01245144A (en) 1988-03-28 1988-03-28 Oxygen ion conductive ceramics film electrode

Publications (1)

Publication Number Publication Date
JPH01245144A true JPH01245144A (en) 1989-09-29

Family

ID=13475036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071941A Pending JPH01245144A (en) 1988-03-28 1988-03-28 Oxygen ion conductive ceramics film electrode

Country Status (1)

Country Link
JP (1) JPH01245144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445960U (en) * 1990-08-22 1992-04-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445960U (en) * 1990-08-22 1992-04-20

Similar Documents

Publication Publication Date Title
US3546086A (en) Device for oxygen measurement
US3915830A (en) Solid electrolyte electrochemical cell with self contained reference
US3347767A (en) Device for monitoring oxygen content of gases
US4264424A (en) Hydrogen ion sensor having a membrane sheath of an oxygen ion conducting ceramic
GB2031156A (en) Solid electrolyte sensors for determining the oxygen content of gases
JPH0664004B2 (en) Apparatus and method for measuring oxygen content of gas
US4045319A (en) Electrochemical gage for measuring partial pressures of oxygen
US4313810A (en) Oxygen concentration sensing apparatus
JPH01245144A (en) Oxygen ion conductive ceramics film electrode
WO1996032637A1 (en) Continuous oxygen content monitor
JPH0131586B2 (en)
US20120006097A1 (en) Method and apparatus for monitoring gas concentration
US4238308A (en) Device for monitoring a component in a fluid mixture
US4220517A (en) Oxygen concentration sensing apparatus
JPS6158779B2 (en)
JP3913990B2 (en) Hydrogen gas leak detection sensor
JPS58100746A (en) Detector of oxygen concentration
JPH06273374A (en) Sensor probe for measuring solubility of oxygen in molten metal and measuring method
JP2008151709A (en) Oxygen sensor
US10962502B2 (en) Hydrogen detector for gas and fluid media
KR840001154Y1 (en) Hydrogen ion sensor having a membrance sheath of an oxygen ion conducting ceramic
SU609065A1 (en) Device for continuous monitoring of gas phase oxidation potential
JPS6111642Y2 (en)
GB1604446A (en) Device and method for monitoring a component in a fluid mixture
JPH01206255A (en) Method and apparatus for analyzing concentration of oxygen