JPH01244610A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPH01244610A
JPH01244610A JP7246488A JP7246488A JPH01244610A JP H01244610 A JPH01244610 A JP H01244610A JP 7246488 A JP7246488 A JP 7246488A JP 7246488 A JP7246488 A JP 7246488A JP H01244610 A JPH01244610 A JP H01244610A
Authority
JP
Japan
Prior art keywords
substrate
molecular
semiconductor
ions
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7246488A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okawa
和宏 大川
Takeshi Karasawa
武 柄沢
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7246488A priority Critical patent/JPH01244610A/en
Publication of JPH01244610A publication Critical patent/JPH01244610A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ZnSe semiconductor crystals effectively doped with an acceptor in the molecular beam epitaxial process, by applying atomic or molecular ions of nitrogen, phosphorus or arsenic or molecular ions containing atoms of one of said elements to the surface of a substrate on which a semiconductor thin film is being formed, while applying electronic beams. CONSTITUTION:Highly pure Zn and Se as raw materials are charged separately in molecular beam sources 13 and 14. A substrate 17 whose surface has been cleaned is mounted on a substrate holder 15. Practically, the substrate is preferably formed of GaAs crystals having crystal lattice constants close to those of ZnAs. A vacuum vessel is evacuated to ultra-high vacuum and then the molecular beam sources are heated so that molecular beams with appropriate intensities can be obtained. The intensities of the Zn and Se molecular beams are set in a ratio of 1:1 for example. A shutter 18 is opened and crystal growth is initiated while a nitrogen ion beam 16a from an ion gun 16 and an electronic beam 20a from an electronic gun 20 are applied continuously to the substrate 17. Ion density on the surface of the substrate is selected such that a desired quantity of nitrogen is given to the substrate in a range of 1/100 and below of the intensity of the molecular beams incident on the substrate surface, or density of the deposited atoms.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は発光ダイオードやレーザーダイオード等の発光
素子に用いられる半導体材料の製造方法に関し、特にp
型伝導を示すセレン化亜鉛半導体又は硫化セレン化亜鉛
半導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing semiconductor materials used in light emitting elements such as light emitting diodes and laser diodes, and in particular to
The present invention relates to a method for producing a zinc selenide semiconductor or a zinc sulfide selenide semiconductor exhibiting type conductivity.

従来の技術 ■−■族化合物半導体であるセレン化亜鉛(Zn5e 
)、硫化セレン化亜鉛(Zn5Sa )は、青色領域に
おける発光ダイオードやレーザーダイオードなどの発光
素子を構成する材料として有望である。しかしこのZn
5e半導体及びZnSSe半導体は一般にp型伝導を示
す結晶を得ることが難しく、そのため高効率のpn接合
発光素子は実現していない。従来、p型のZn8e半導
体を得る試みとして、分子線エビクキ−法による結晶成
長過程においてp型化のための不純物として燐(P)を
添加する方法が知られている(例えば電子技術総合研究
所業報第48巻第5,6号(昭和69年)、1)、39
1−403 )oこれは、真空中でZn、Se及びZn
3P2をそれぞれ加熱蒸発させて、基板上にPを含むZ
n5e結晶の薄膜を形成する方法である。
Conventional technology Zinc selenide (Zn5e), a ■-■ group compound semiconductor
), zinc sulfide selenide (Zn5Sa) is promising as a material constituting light-emitting elements such as light-emitting diodes and laser diodes in the blue region. However, this Zn
In general, it is difficult to obtain a crystal exhibiting p-type conduction for the 5e semiconductor and the ZnSSe semiconductor, and therefore a highly efficient pn junction light emitting device has not been realized. Conventionally, as an attempt to obtain a p-type Zn8e semiconductor, a method is known in which phosphorus (P) is added as an impurity to make the semiconductor p-type during the crystal growth process using the molecular beam Ebiki method (e.g., published by the Electronics Technology Research Institute). Business Report Vol. 48, No. 5, 6 (1988), 1), 39
1-403) o This is a method for processing Zn, Se and Zn in vacuum.
3P2 is heated and evaporated to form Z containing P on the substrate.
This is a method of forming a thin film of n5e crystal.

発明が解決しようとする課題 しかしながら上述のような従来の方法では、Pの蒸気圧
が高いため基板に付着したPが再蒸発してしまい、充分
な量のPを添加することができなかった。このためp型
伝導を示す結晶を得ることは不可能であった。
Problems to be Solved by the Invention However, in the conventional method as described above, the P attached to the substrate re-evaporates due to the high vapor pressure of P, making it impossible to add a sufficient amount of P. For this reason, it has been impossible to obtain a crystal exhibiting p-type conduction.

本発明はかかる点に鑑みてなされたもので、不純物を有
効に添加することによりp型伝導を示すZn5e半導体
又はZnSSe半導体等を製造する方法を提供すること
を目的としている。
The present invention has been made in view of this point, and an object of the present invention is to provide a method for manufacturing a Zn5e semiconductor, a ZnSSe semiconductor, or the like exhibiting p-type conductivity by effectively adding impurities.

課題を解決するための手段 本発明は上記課題を解決するため、上述の分子線エピタ
キシー法等において、窒素1)または燐CP)または砒
素(ムS)等の原子イオン、これらの分子イオンあるい
はこれらいずれかの原子を含む分子のイオンと電子ビー
ムを半導体薄膜形成中の基板面に照射するものである。
Means for Solving the Problems In order to solve the above problems, the present invention aims to solve the above problems by using atomic ions such as nitrogen 1) or phosphorus CP) or arsenic (S), molecular ions thereof, or This method irradiates the surface of a substrate on which a semiconductor thin film is being formed with ions of molecules containing any of the atoms and an electron beam.

作用 上記の手段により、イオン化した不純物原子または分子
の反応性は高く半導体に添加されるが、さらに同時に電
子ビームを照射することにより半導体表面において電気
的に中性化し、正にイオン化した不純物同士が反発して
再蒸発することを防ぎ、反応性の高いイオン化した不純
物を電子ビームにより効率良く半導体に添加することが
できる。
Effect By the above means, ionized impurity atoms or molecules are added to the semiconductor with high reactivity, but at the same time, by irradiating the semiconductor surface with an electron beam, the semiconductor surface becomes electrically neutralized and the positively ionized impurities interact with each other. By preventing repulsion and re-evaporation, highly reactive ionized impurities can be efficiently added to semiconductors using an electron beam.

実施例 以下、本発明の一実施例について説明する0本実施例で
は不純物として窒素(N)を添加したセレン化亜鉛(Z
nS・)の薄膜結晶を製造する場合をとりあげる。第1
図に示すように製造に用いる装置は基本的には従来の分
子線エピタキシー装置と同様のものである。すなわち、
超高真空排気装置11を備えた真空容器内に複数の分子
線源(蒸発用ルツボ)13.14と基板支持機構16な
どを設けた一種の真空蒸着装置である。本実施例の場合
は、これに加えて窒素イオンのビームを発生することの
できるイオン銃16ならびに電子銃2oを設けている。
Example Below, an example of the present invention will be described. In this example, zinc selenide (Z
Let us consider the case of manufacturing a thin film crystal of nS·). 1st
As shown in the figure, the equipment used for manufacturing is basically the same as a conventional molecular beam epitaxy equipment. That is,
This is a type of vacuum evaporation apparatus in which a plurality of molecular beam sources (evaporation crucibles) 13, 14, a substrate support mechanism 16, etc. are provided in a vacuum container equipped with an ultra-high vacuum evacuation apparatus 11. In this embodiment, in addition to this, an ion gun 16 and an electron gun 2o capable of generating a nitrogen ion beam are provided.

実際の薄膜結晶成長は次のような手順で行なう。Actual thin film crystal growth is performed in the following steps.

まず原料となる高純度のZnとSsをそれぞれ個別の分
子線源13.14に装填する。また表面を清浄にした基
板17を基板ホルダー16に装着する。基板材料として
はZn8・の単結晶が最も望ましいが、良質で大型のZ
n5e単結晶を得ることが難かしいため、実用的にはZ
n8eと結晶格子定数の近い砒化ガリウム(GaAs 
)結晶が好適である。
First, high-purity Zn and Ss as raw materials are loaded into separate molecular beam sources 13 and 14, respectively. Further, the substrate 17 whose surface has been cleaned is mounted on the substrate holder 16. The most desirable substrate material is Zn8 single crystal, but good quality and large Zn.
Since it is difficult to obtain n5e single crystal, Z
Gallium arsenide (GaAs) has a crystal lattice constant close to that of n8e.
) crystals are preferred.

次に真空容器を10 ’ Torr以下程度の超高真空
にまで排気する。その後、各分子線源を加熱し、適切な
分子線強度が得られるようにする。ZnとSsの分子線
強度比は例えば1:1程度とする。
Next, the vacuum container is evacuated to an ultra-high vacuum of about 10' Torr or less. Thereafter, each molecular beam source is heated to obtain an appropriate molecular beam intensity. The molecular beam intensity ratio of Zn and Ss is, for example, about 1:1.

(この間、基板17はシャッタ18により分子線から遮
蔽しておく。)次に基板17を約600℃に加熱して表
面を更に清浄化する。その後、基板17を結晶成長に適
切な温度まで下げる。この場合には例えば326℃とす
る。この後シャッタ18を開き、結晶成長を開始すると
ともにイオン銃16よす窒素のイオンビーム161Lを
、電子銃20より電子ビーム20&を連続的に基板17
に向は照射する。イオンの基板面における密度は、基板
面に入射する分子線強度すなわち蒸着原子の密度の1/
100以下の範囲で所望の窒素添加量を与えるように選
ぶとよい。イオン密度が1 /100を越えると添加量
が過剰となり、結晶性の劣化が生じる場合がある。
(During this time, the substrate 17 is shielded from the molecular beam by the shutter 18.) Next, the substrate 17 is heated to about 600° C. to further clean the surface. Thereafter, the temperature of the substrate 17 is lowered to a temperature suitable for crystal growth. In this case, the temperature is, for example, 326°C. After that, the shutter 18 is opened to start crystal growth, and the ion gun 16 and the nitrogen ion beam 161L and the electron gun 20 continuously send the electron beam 20& to the substrate 17.
The direction is irradiated. The density of ions on the substrate surface is 1/1 of the molecular beam intensity incident on the substrate surface, that is, the density of evaporated atoms.
It is preferable to select the desired nitrogen addition amount within the range of 100 or less. If the ion density exceeds 1/100, the amount added will be excessive and crystallinity may deteriorate.

以上の方法では、電子ビーム照射により、イオン化した
不純物原子又は分子を電気的に中性化できるため、不純
物同志の反発を防ぎ、反応性の高い不純物を効率よく半
導体に添加することができる。なお、電子ビームの基板
面における密度は、イオンの照射量以上にするとよい。
In the above method, since ionized impurity atoms or molecules can be electrically neutralized by electron beam irradiation, it is possible to prevent repulsion between impurities and efficiently add highly reactive impurities to a semiconductor. Note that the density of the electron beam on the substrate surface is preferably greater than the ion irradiation amount.

電子ビームの照射量がイオンの照射量より少ないと、基
板表面でイオンの正電荷が過剰となり、次に飛来するイ
オンを電気的に反発し再蒸発させてしまうからである。
This is because if the electron beam irradiation amount is less than the ion irradiation amount, the positive charge of the ions will be excessive on the substrate surface, and the next incoming ion will be electrically repelled and re-evaporated.

なお本実施例で用いる窒素イオンは、窒素原子イオン(
N+)、窒素分子イオン(12+)の何れであってもよ
い。またアンモニア(NHs )のような窒素原子を含
む分子のイオンやこれらの混合イオンであってもよい。
Note that the nitrogen ions used in this example are nitrogen atom ions (
N+) or nitrogen molecular ion (12+). It may also be an ion of a molecule containing a nitrogen atom, such as ammonia (NHs), or a mixture of these ions.

また入射ビームの全てがイオンである必要はなく、中性
粒子を含んでいても差しつかえない。
Furthermore, not all of the incident beam needs to be ions; it is also possible for the incident beam to contain neutral particles.

以上に述べた実施例は窒素添加のZn5eを作製するも
のであるが、本発明の方法は添加する不純物として窒素
の他、燐及び砒素についても同様に適用でき、その場合
のイオンとしては単体イオンの他、ホスフィン(PFi
s ) 、アルシン(ムgH3) すどの分子イオンが
用いられる。また、本発明の方法は、GILムS基板と
Zn8eの格子不整を小さくするためにZn5eにイオ
ウ(S)を加えた硫化セレン化亜鉛(ZnSSe )半
導体に窒素、燐及び砒素をイオン化Φドーピングする場
合等においても同様に適用できる。
Although the above-mentioned example is for producing nitrogen-doped Zn5e, the method of the present invention can be similarly applied to phosphorus and arsenic in addition to nitrogen as the impurity to be added, and in that case, the ions are simple ions. In addition, phosphine (PFi)
s ), arsine (mgH3) and the like molecular ions are used. In addition, the method of the present invention involves doping nitrogen, phosphorus, and arsenic by ionizing a zinc sulfide selenide (ZnSSe) semiconductor in which sulfur (S) is added to Zn5e in order to reduce the lattice mismatch between the GIL S substrate and Zn8e. The same applies to other cases.

発明の効果 以上述べてきたように、本発明によれば、アクセプタ不
純物を有効に添加したZn5e半導体結晶を得ることが
でき、従来困難であったp型伝導が実現される。その結
果、高効率のpn接合発光素子が実現でき、実用的にき
わめて有用である。
Effects of the Invention As described above, according to the present invention, a Zn5e semiconductor crystal to which acceptor impurities are effectively added can be obtained, and p-type conduction, which has been difficult to achieve in the past, can be achieved. As a result, a highly efficient pn junction light emitting device can be realized, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例で用いた装置の概略図である。 11・・・・・・超高真空排気装置、12・・・・・・
真空容器、13.14・・・・・・分子線源、15・・
・・・・基板ホルダ、16・・・・・・イオン銃、17
・・・・・・基板、18・・・・・・シャッタ、19・
・・・・・Zn5a薄膜結晶、20・・・・・・電子銃
The figure is a schematic diagram of an apparatus used in an embodiment of the present invention. 11...Ultra-high vacuum exhaust equipment, 12...
Vacuum container, 13.14... Molecular beam source, 15...
...Substrate holder, 16...Ion gun, 17
... Board, 18 ... Shutter, 19.
...Zn5a thin film crystal, 20 ...electron gun.

Claims (3)

【特許請求の範囲】[Claims] (1)原料の一部または全てが正に帯電したイオンを照
射しつつ真空中で基板上に半導体を蒸着している状態に
おいて、電子ビームを前記基板上に照射することを特徴
とする半導体の製造方法。
(1) A method of manufacturing a semiconductor characterized by irradiating an electron beam onto the substrate while depositing the semiconductor on the substrate in vacuum while irradiating ions in which some or all of the raw materials are positively charged. Production method.
(2)イオンとして窒素または燐または砒素の原子状イ
オンまたは分子状イオンを用い、前記イオンを照射する
ことにより窒素または燐または砒素をアクセプタ不純物
として取り込んだセレン化亜鉛半導体または硫化セレン
化半導体を製造する特許請求の範囲第1項記載の半導体
の製造方法。
(2) Using atomic or molecular ions of nitrogen, phosphorus, or arsenic as ions, and producing a zinc selenide semiconductor or sulfide selenide semiconductor incorporating nitrogen, phosphorus, or arsenic as an acceptor impurity by irradiating the ions with the ions. A method for manufacturing a semiconductor according to claim 1.
(3)基板上に照射されるイオン密度を基板上に入射す
る蒸着原子密度の1/100以下とした特許請求の範囲
第1項又は第2項記載の半導体の製造方法。
(3) A method for manufacturing a semiconductor according to claim 1 or 2, in which the density of ions irradiated onto the substrate is 1/100 or less of the density of evaporated atoms incident on the substrate.
JP7246488A 1988-03-25 1988-03-25 Manufacture of semiconductor Pending JPH01244610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7246488A JPH01244610A (en) 1988-03-25 1988-03-25 Manufacture of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7246488A JPH01244610A (en) 1988-03-25 1988-03-25 Manufacture of semiconductor

Publications (1)

Publication Number Publication Date
JPH01244610A true JPH01244610A (en) 1989-09-29

Family

ID=13490053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7246488A Pending JPH01244610A (en) 1988-03-25 1988-03-25 Manufacture of semiconductor

Country Status (1)

Country Link
JP (1) JPH01244610A (en)

Similar Documents

Publication Publication Date Title
Lopez-Otero Hot wall epitaxy
JP3098773B2 (en) Preparation and doping method of highly insulating single crystal gallium nitride thin film
US5316615A (en) Surfactant-enhanced epitaxy
US3839084A (en) Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds
US5474622A (en) Solar cell having chalcopyrite semiconductor film
US4735910A (en) In-situ doping of MBE grown II-VI compounds on a homo- or hetero-substrate
US4554030A (en) Method of manufacturing a semiconductor device by means of a molecular beam technique
Freller et al. Three-temperature method as an origin of molecular beam epitaxy
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
JPH01244610A (en) Manufacture of semiconductor
JPS62119193A (en) Production of semiconductor
JP2676967B2 (en) Heterojunction device and manufacturing method thereof
US5628834A (en) Surfactant-enhanced epitaxy
JPS6270290A (en) Production of semiconductor
JPS6270289A (en) Production of semiconductor
US5132247A (en) Quantum effective device and process for its production
US5134091A (en) Quantum effective device and process for its production
JPH06104600B2 (en) Semiconductor manufacturing method
JPH0334534A (en) Manufacture of phosphorus-doped ii-vi compound semiconductor
JPH07517B2 (en) Semiconductor crystal thin film manufacturing equipment
JPS63227027A (en) Manufacture of semiconductor device
JPS63211728A (en) Manufacture of semiconductor
JPS62229823A (en) Method of growing added compound semiconductor crystal
JP2793939B2 (en) Method for growing compound semiconductor crystal
Jones et al. MOCVD growth and characterisation of ZnSe/ZnS electroluminescent mis structures