JPH01244371A - Method for measuring specific coupling reaction - Google Patents

Method for measuring specific coupling reaction

Info

Publication number
JPH01244371A
JPH01244371A JP7122388A JP7122388A JPH01244371A JP H01244371 A JPH01244371 A JP H01244371A JP 7122388 A JP7122388 A JP 7122388A JP 7122388 A JP7122388 A JP 7122388A JP H01244371 A JPH01244371 A JP H01244371A
Authority
JP
Japan
Prior art keywords
magnetic field
measured
substance
photodetector
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7122388A
Other languages
Japanese (ja)
Inventor
Akihiro Nanba
昭宏 南波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7122388A priority Critical patent/JPH01244371A/en
Publication of JPH01244371A publication Critical patent/JPH01244371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To determine the quantity of a material to be measured in a short time, by applying a one-way magnetic field into reaction liquid which incorporates fine grains comprising magnetic bodies, and releasing the application. CONSTITUTION:Fine grains comprising magnetic bodies wherein material that is coupled with a material to be measured is fixed and a sample is mixed. Said mixed liquid 3 is contained in a container 2. Light is projected to the container 2 from a light source 1. Then, the light is scattered with the composite material comprising the aggregated fine grains. The scattered light is detected with a photodetector 4. When a one-way magnetic field is applied into the liquid 3 from a device 5, the fine grains comprising the magnetic bodies are aligned in the direction of the magnetic field. The intensity of the scattered light becomes the maximum value. When the device 5 is turned OFF, the speed of the dispersion of the aggregated grains becomes slow since the average grain size is large. When the time constant of the detected output of the photodetector 4 is obtained, the concentration of the material to be measured can be determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁界を利用した特異結合反応の測定方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring specific binding reactions using a magnetic field.

〔従来の技術〕[Conventional technology]

磁界を用いて免疫反応により生成される複合物を測定す
る従来の技術として、特開昭62118255号公報が
ある。これは磁性体からなる微粒子を含む反応液に、周
期的に変位する磁界を印加し、磁′性微粒子を磁界に同
期して回転させ、周期的に変位する凝集粒子の散乱光か
ら抗原または抗体を定性または定量分析する方法である
Japanese Patent Application Laid-Open No. 62118255 is a conventional technique for measuring a compound produced by an immune reaction using a magnetic field. This involves applying a periodically displacing magnetic field to a reaction solution containing fine particles made of magnetic material, causing the magnetic fine particles to rotate in synchronization with the magnetic field, and detecting antigens or antibodies from the scattered light of the periodically displacing aggregated particles. It is a method of qualitative or quantitative analysis.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術においては、磁界を周期的に変位させる必要
があった。さらに、必要な反応時間が経過した後にi界
を変位させて測定を行っているので測定時間が長くなる
問題点があった。
In the prior art, it was necessary to periodically displace the magnetic field. Furthermore, since the i-field is displaced and the measurement is performed after the required reaction time has elapsed, there is a problem that the measurement time becomes long.

本発明はこのような問題点に着目してなされたものであ
り、簡単な構成で測定に要する時間を短縮する方法を提
供することを目的とする。
The present invention has been made in view of these problems, and it is an object of the present invention to provide a method that shortens the time required for measurement with a simple configuration.

〔課題を解決する手段および作用〕[Means and actions to solve the problem]

第1図はこの発明の概念図である。光源1から放射され
る光を容器2に投射する。容器2内には、測定すべき物
質に結合する物質を固定化した磁性体から成る微粒子と
、試料との混合液(反応液)3を収容する。容器2中の
磁性体力)らなる微粒子または測定すべき物質を介して
凝集した微粒子により構成される複合物からの散乱光は
任意の角度に設置された光検出器4で検出される。磁界
発生装置5は一方向の磁界を反応液3に印加する。磁界
が印加されている状態では、凝集、非凝集粒子ともに磁
性体からなる粒子は磁界の方向に整列することを発明者
は確認した。散乱光強度はこの状態に最大値になる。
FIG. 1 is a conceptual diagram of this invention. Light emitted from a light source 1 is projected onto a container 2. The container 2 contains a mixed solution (reaction solution) 3 of a sample and fine particles made of a magnetic material on which a substance that binds to the substance to be measured is immobilized. Scattered light from a composite composed of fine particles (magnetic force) or fine particles aggregated via the substance to be measured in the container 2 is detected by a photodetector 4 installed at an arbitrary angle. The magnetic field generator 5 applies a unidirectional magnetic field to the reaction liquid 3. The inventor has confirmed that when a magnetic field is applied, both aggregated and non-aggregated particles made of a magnetic material align in the direction of the magnetic field. The scattered light intensity reaches its maximum value in this state.

磁界発生装置5をOFFにして磁界の印加を解除すると
、整列していた磁性体からなる微粒子は再び分散する。
When the magnetic field generator 5 is turned off and the application of the magnetic field is removed, the aligned fine particles made of magnetic material are dispersed again.

このとき、凝集した粒子は平均粒径が大きいために分散
の速さが遅くなる。
At this time, since the aggregated particles have a large average particle size, the speed of dispersion becomes slow.

したがって、反応液3への磁界の印加を解除して、光検
出器4の検知出力の時定数を求めることで測定すべき物
質の濃度を決定することができる。また、磁界印加中の
散乱光強度と、磁界の印加を解除した後の散乱光強度の
比から測定すべき物質の濃度を決定することができる。
Therefore, by canceling the application of the magnetic field to the reaction liquid 3 and determining the time constant of the detection output of the photodetector 4, the concentration of the substance to be measured can be determined. Furthermore, the concentration of the substance to be measured can be determined from the ratio of the intensity of scattered light during application of the magnetic field to the intensity of scattered light after the application of the magnetic field is removed.

反応液中の粒子からの散乱光の一部または全部の発生源
である複合物は、磁性体からなる微粒子に固定した物質
と測定すべき物質が結合することによって形成される。
The composite, which is the source of part or all of the scattered light from particles in the reaction solution, is formed by the combination of a substance fixed on fine particles made of a magnetic substance and a substance to be measured.

磁性体からなる微粒子に固定する物質は、リガンド・レ
セプター結合反応や抗原抗体反応に関与する一成分であ
り、たとえば、抗原性を持つ物質と抗体、免疫グロブリ
ンとこの免疫グロブリンに対する異種動物の抗体、細胞
の膜タンパクと抗体、ビオチンとアビジン等結合ペアの
一成分であり、他方の成分が測定すべき物質である。
The substance immobilized on the magnetic particles is a component involved in the ligand-receptor binding reaction and the antigen-antibody reaction, such as antigenic substances and antibodies, immunoglobulins and antibodies of foreign animals against this immunoglobulin, It is one component of a binding pair such as a cell membrane protein and an antibody, or biotin and avidin, and the other component is the substance to be measured.

またこの複合物は、基本的には測定すべき物質に結合す
る物質を固定化した磁性体粒子(怒作粒子と称す)と、
測定すべき物質との結合により構成されるが、他の物質
がこの複合物に結合することにより構成される複合物や
凝集粒子を含む。
In addition, this composite basically consists of magnetic particles (referred to as magnetic particles) on which a substance that binds to the substance to be measured is immobilized,
Although it is composed of a substance to be measured, it also includes composites and aggregated particles that are composed of other substances bound to this composite.

〔実施例〕〔Example〕

第2図は本発明の方法を実施する装置の一実施例を示す
図である。光源10としては、コヒーレント光またはイ
ンコヒーレント光を用いることができ、この実施例では
He−Neガスレーザー(波長632.8nm)を使用
する。光源10から放射される光束11をNDフィルタ
12を通過させ光量を調整した後に集光レンズ13によ
り容器14の中央付近に集光させる。集光レンズ13か
らの光束番よ例えばグラントムソンプリズムより成る偏
光板15を通り直線偏光された光として容器14に投射
する。容器14には、表面に特異結合性物質を固定化し
た磁性体からなる球形の微粒子、例えば表面に免疫クロ
プリンを固定した粒径0.1μ慣〜0.05μ論のNi
、Coあるいはそれらの合金より成る強磁性体で自発磁
化のないものを分散させた緩衝液を収容し、その後抗原
または抗体を含むサンプルを添加して抗原抗体反応液1
6を収容する。容器14中の粒子によって散乱した光は
一対のピンホールを有するコリメータ17に入射させ、
偏光板15の偏光面と直交する偏光成分のみを通過させ
るように配置された偏光板18を経て光検出器19に入
射させる。光検出器19はシリコンフォトダイオード、
アバランシェフォトダイオード、光電子増倍管等光信号
を電気信号に変換する素子であればすべて用いることが
できる。容器14を挾んでレーザー光に対して垂直方向
に磁界が発生するようにヘルムホルツコイル20.21
を配置する。光検出器19からの出力信号は電流電圧変
換器22.増幅器23およびローパスフィルタ24を経
てデータ処理装置25に供給する。
FIG. 2 is a diagram showing an embodiment of an apparatus for carrying out the method of the present invention. Coherent light or incoherent light can be used as the light source 10, and in this embodiment, a He-Ne gas laser (wavelength: 632.8 nm) is used. A light beam 11 emitted from a light source 10 passes through an ND filter 12 to adjust the amount of light, and then is focused near the center of a container 14 by a condenser lens 13. The light beam from the condenser lens 13 passes through a polarizing plate 15 made of, for example, a Glan-Thompson prism, and is projected onto a container 14 as linearly polarized light. The container 14 contains spherical fine particles made of a magnetic material with a specific binding substance immobilized on the surface, such as Ni particles having a particle size of 0.1 μm to 0.05 μm and having immunocloprin immobilized on the surface.
, Co, or an alloy thereof, containing a buffer solution in which a ferromagnetic material with no spontaneous magnetization is dispersed, and then a sample containing an antigen or an antibody is added to prepare the antigen-antibody reaction solution 1.
Accommodates 6. The light scattered by the particles in the container 14 is made incident on a collimator 17 having a pair of pinholes,
The light is made incident on a photodetector 19 through a polarizing plate 18 arranged so that only the polarized light component perpendicular to the polarization plane of the polarizing plate 15 passes. The photodetector 19 is a silicon photodiode,
Any element that converts an optical signal into an electrical signal, such as an avalanche photodiode or a photomultiplier tube, can be used. Helmholtz coils 20 and 21 are arranged to sandwich the container 14 and generate a magnetic field perpendicular to the laser beam.
Place. The output signal from photodetector 19 is sent to current-voltage converter 22 . The signal is supplied to a data processing device 25 via an amplifier 23 and a low-pass filter 24.

第3図は粒子による散乱光の直交偏光成分の減衰を示す
グラフである。測定には第2図の装置を使用した。磁性
体微粒子として、平均粒径0.87μmFe’o’含有
率14%(W/W)のポリスチL/7ラテツクスエクス
タボールLMP266 (ローヌプーラン社製)を使用
した。 LMP2660.1wt%懸濁液150μlを
容器14に収容し、0〜10%の塩化ナトリウム液15
μlを添加して塩析による凝集を起こさせた。0%はレ
ファレンスである。塩化ナトリウム溶液を添加してから
5分間へルムホルツコイル20.21に通電し、一方向
の磁界50Gを印加した。磁界の印加を解除した後の光
検出器19の出力信号の変化を測定した。4 +m5e
c″′C磁界を切った。 NaC1の濃度が高く、凝集
の度合が増加するほど出力信号の減少速度は小さい。
FIG. 3 is a graph showing the attenuation of orthogonal polarization components of scattered light by particles. The apparatus shown in Fig. 2 was used for the measurement. Polystyrene L/7 Latex Ecstaball LMP266 (manufactured by Rhone-Poulenc) with an average particle diameter of 0.87 μm and a Fe'o' content of 14% (W/W) was used as the magnetic fine particles. 150 μl of LMP266 0.1 wt% suspension was placed in container 14, and 0-10% sodium chloride solution 15
μl was added to cause aggregation by salting out. 0% is the reference. After adding the sodium chloride solution, the Helmholtz coils 20 and 21 were energized for 5 minutes to apply a unidirectional magnetic field of 50 G. The change in the output signal of the photodetector 19 after the application of the magnetic field was removed was measured. 4 +m5e
c'''C magnetic field was turned off. The higher the concentration of NaCl and the greater the degree of aggregation, the slower the rate of decrease of the output signal.

第4図は塩化ナトリウム濃度と出力信号の時定数の関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the sodium chloride concentration and the time constant of the output signal.

第3図の測定データを基に、各濃度について、磁界の解
除時期の値から1/eに減少する時間である時定数を求
めた。
Based on the measurement data shown in FIG. 3, for each concentration, a time constant, which is the time taken to decrease to 1/e from the value at the time of magnetic field release, was determined.

第5図のは塩化ナトリウム濃度と出力信号電流の比との
関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the sodium chloride concentration and the ratio of output signal current.

第3図の測定データを基に、各濃度について・磁界の解
除時(4m5ec)の出力信号電流値!。と、一定時間
経過後10m5ecでの出力電流値!、との比R−(R
−11/I。)を求めた。
Based on the measurement data in Figure 3, the output signal current value for each concentration and when the magnetic field is released (4m5ec)! . And the output current value at 10m5ec after a certain period of time! , the ratio R-(R
-11/I. ) was sought.

第4図および第5図から、塩化ナトリウム濃度と出力信
号電流の時定数および出力信号電流の比との間には明ら
かに相関がある。したがって、出力信号電流の時定数ま
たは出力信号電流の比を求めれば出力信号電流の時定数
または出力信号電流の比から塩化ナトリウムの濃度を決
定できる。
From FIGS. 4 and 5, there is clearly a correlation between the sodium chloride concentration, the time constant of the output signal current, and the ratio of the output signal current. Therefore, by determining the time constant of the output signal current or the ratio of the output signal currents, the concentration of sodium chloride can be determined from the time constant of the output signal currents or the ratio of the output signal currents.

この実施例では塩化ナトリウムの濃度に依存してコロイ
ド粒子は塩析を起し、塩化ナトリウムが濃い程コロイド
粒子の凝集塊は大きく成長することから塩化ナトリウム
を使用して実験を行い、塩化ナトリウム濃度と出力信号
電流の時定数および出力信号電流との比の相関を明らか
にした。したがって、添加量に応じて磁性粒子の凝集が
形成される反応に適用することができる。
In this example, colloidal particles undergo salting out depending on the concentration of sodium chloride, and the higher the concentration of sodium chloride, the larger the aggregates of colloidal particles grow, so the experiment was conducted using sodium chloride. The correlation between the time constant of the output signal current and the ratio between the output signal current and the output signal current was clarified. Therefore, it can be applied to reactions in which aggregates of magnetic particles are formed depending on the amount added.

上述した実施例では容器14の前後に偏光vi15゜1
8を配置して反応液への入射偏光の直交成分のみを光検
出器が受光するようにしたから反応液中に浮遊している
非凝集粒子の一回散乱光および透過光をカットしている
から正確に濃度の測定を行うことができる。
In the embodiment described above, polarized light vi15°1 is provided before and after the container 14.
8 is arranged so that the photodetector receives only the orthogonal component of the polarized light incident on the reaction solution, thereby cutting out the single scattered light and transmitted light of non-agglomerated particles floating in the reaction solution. The concentration can be measured accurately from

上述した実施例では、惑作粒子懸液にサンプルを添加し
た直後から磁界を印加しているから、磁性粒子を磁界方
向に整列させることで反応を促進できる。
In the above embodiment, since the magnetic field is applied immediately after adding the sample to the magnetic particle suspension, the reaction can be promoted by aligning the magnetic particles in the direction of the magnetic field.

上述した実施例によれば、測定時間は磁界の印加を解除
する前後の短い時間で実施できる。
According to the embodiment described above, the measurement can be carried out in a short period of time before and after the application of the magnetic field is removed.

第5図で出力信号電流の比を求めるのに要した出力信号
の測定時間は6IllSeCである。
In FIG. 5, the output signal measurement time required to determine the output signal current ratio is 6IllSeC.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁界を印加し印加を解除するという簡
単な操作で測定すべき物質の量を短時間で決定すること
ができる。
According to the present invention, the amount of a substance to be measured can be determined in a short time by a simple operation of applying a magnetic field and releasing the application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念図、第2図は本発明の方法を実施
する装置の一実施例を示す図、第3図は粒子による散乱
光の直交偏光成分の減衰を示すグラフ、第4図は塩化ナ
トリウム濃度と出力信号電流の時定数との関係を示すグ
ラフ、第5図は塩化ナトリウム濃度と出力信号電流の比
との関係を示す図である。 1 、10−  光源    2.14−・・容器3.
16・・・−・反応液   4.11−・・光検出器5
 ・−−−−−−−・−磁界発生装置12・−−−−−
−−−・NOフィルタ15、18 −・−〜・−・偏光
板 20.21  ・−・−・−へルムホルッコイル22・
−・・電流電圧変換器 23−・−・増幅器 24・−・ローパスフィルタ 25・−・データ処理装置
FIG. 1 is a conceptual diagram of the present invention, FIG. 2 is a diagram showing an example of an apparatus for carrying out the method of the present invention, FIG. 3 is a graph showing attenuation of orthogonal polarization components of light scattered by particles, and FIG. The figure is a graph showing the relationship between the sodium chloride concentration and the time constant of the output signal current, and FIG. 5 is a graph showing the relationship between the sodium chloride concentration and the ratio of the output signal current. 1, 10- light source 2.14-... container 3.
16...--Reaction liquid 4.11-... Photodetector 5
-------- Magnetic field generator 12 -------
---・NO filters 15, 18 ------Polarizing plate 20.21 ---- Helmholck coil 22.
--- Current-voltage converter 23 --- Amplifier 24 --- Low-pass filter 25 --- Data processing device

Claims (1)

【特許請求の範囲】 1、測定すべき物質と、測定すべき物質に結合する物質
を固定化した磁性体から成る微粒子との反応により生成
される複合物を含む反応液中に光源からの光を投射し、
反応液中の粒子からの散乱光を光検出器で検知する方法
において、反応液中に一方向に磁界を印加した後に、こ
の磁界の印加を解除し、光検出器の検知出力の時点数を
求め、時点数に基いて測定すべき物質の量を決定するこ
とを特徴とする特異結合反応の測定方法。 2、測定すべき物質と、測定すべき物質に結合する物質
を固定化した磁性体から成る微粒子との反応により生成
される複合物を含む反応液中に光源からの光を投射し、
反応液中の粒子からの散乱光を光検出器で検知する方法
において、反応液中に一方向に磁界を印加し、この間に
前記光検出器で磁界印加中の散乱光強度を検出し、磁界
の印加を解除し、前記光検出器で磁界解除後の散乱光強
度を検出し、次に磁界印加中の散乱光強度と磁界解除後
の散乱光強度の比を求め、この散乱光強度の比に基いて
測定すべき物質の量を決定することを特徴とする特異結
合反応の測定方法。
[Claims] 1. Light from a light source is applied to a reaction solution containing a compound produced by a reaction between a substance to be measured and fine particles made of a magnetic material on which a substance that binds to the substance to be measured is immobilized. project the
In the method of detecting scattered light from particles in a reaction solution with a photodetector, a magnetic field is applied in one direction into the reaction solution, and then the application of this magnetic field is released, and the number of points in the detection output of the photodetector is measured. A method for measuring a specific binding reaction, characterized in that the amount of a substance to be measured is determined based on the number of time points. 2. Projecting light from a light source into a reaction solution containing a compound produced by a reaction between a substance to be measured and fine particles made of a magnetic material on which a substance that binds to the substance to be measured is immobilized;
In a method of detecting scattered light from particles in a reaction solution using a photodetector, a magnetic field is applied in one direction into the reaction solution, and during this time the intensity of the scattered light while the magnetic field is being applied is detected by the photodetector, and the intensity of the scattered light is detected by the photodetector. The application of the magnetic field is canceled, the scattered light intensity after the magnetic field is removed is detected by the photodetector, and the ratio of the scattered light intensity during the application of the magnetic field to the scattered light intensity after the magnetic field is removed is determined, and the ratio of this scattered light intensity is calculated. A method for measuring a specific binding reaction, characterized in that the amount of a substance to be measured is determined based on.
JP7122388A 1988-03-25 1988-03-25 Method for measuring specific coupling reaction Pending JPH01244371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7122388A JPH01244371A (en) 1988-03-25 1988-03-25 Method for measuring specific coupling reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7122388A JPH01244371A (en) 1988-03-25 1988-03-25 Method for measuring specific coupling reaction

Publications (1)

Publication Number Publication Date
JPH01244371A true JPH01244371A (en) 1989-09-28

Family

ID=13454464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7122388A Pending JPH01244371A (en) 1988-03-25 1988-03-25 Method for measuring specific coupling reaction

Country Status (1)

Country Link
JP (1) JPH01244371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011049044A1 (en) * 2009-10-19 2013-03-14 国立大学法人東京工業大学 Biosensor using magnetic fine particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011049044A1 (en) * 2009-10-19 2013-03-14 国立大学法人東京工業大学 Biosensor using magnetic fine particles

Similar Documents

Publication Publication Date Title
US4725140A (en) Method of measuring specific binding reaction with the aid of polarized light beam and magnetic field
US7691648B2 (en) Target substance detecting element, target substance detection apparatus and target substance detection method
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
WO1988002118A1 (en) Laser magnetic immunoassay method and apparatus therefor
Owaku et al. Protein A Langmuir-Blodgett film for antibody immobilization and its use in optical immunosensing
US20030180806A1 (en) Method of assay by immunoreaction and reagent for use in the immunoreaction assay
WO1994020855A1 (en) Assay flow apparatus and method
EP0339623A1 (en) Laser magnetic immunoassay method and apparatus therefor
JPH01244371A (en) Method for measuring specific coupling reaction
JP2938918B2 (en) Magnetic fine particle size measurement method
JP2599175B2 (en) Laser magnetic immunoassay method and measuring apparatus, superparamagnetic label used for laser magnetic immunoassay, and method for producing the same
JP2675895B2 (en) Sample processing method, sample measuring method, and sample measuring device
JP2938936B2 (en) Method for measuring antigen or antibody concentration
JPH0588787B2 (en)
JPH07111429B2 (en) Laser magnetic immunoassay
US9019496B2 (en) Method for estimating the amount of entities deposited on microparticles in suspension in a solution, associated device and use of said device
JP4512492B2 (en) Immune reaction measurement method and immune reaction measurement reagent used therefor
JPH02107968A (en) Immunoassay using magnetic particle
JP2006343214A (en) Immunoreaction measuring method, and reagent for immunoreaction measurement used therefor
JP2020193868A (en) Detection method and detection device
JPS63210773A (en) Method for accelerating specific bond reaction
JP7274595B2 (en) immunochromatography
WO2021153127A1 (en) Immunological test method
JP7320845B2 (en) Target substance detection method and target substance detection kit
JP2764618B2 (en) Particle size measurement method of magnetic powder