JPH01243353A - Dc high-voltage generator - Google Patents

Dc high-voltage generator

Info

Publication number
JPH01243353A
JPH01243353A JP63071325A JP7132588A JPH01243353A JP H01243353 A JPH01243353 A JP H01243353A JP 63071325 A JP63071325 A JP 63071325A JP 7132588 A JP7132588 A JP 7132588A JP H01243353 A JPH01243353 A JP H01243353A
Authority
JP
Japan
Prior art keywords
voltage
signal
output
high voltage
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63071325A
Other languages
Japanese (ja)
Inventor
Hachiro Shimayama
島山 八郎
Ryuzo Aihara
相原 龍三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP63071325A priority Critical patent/JPH01243353A/en
Publication of JPH01243353A publication Critical patent/JPH01243353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To stabilize a DC high-voltage signal and obtain an output response at a high speed when the voltage value is changed by feeding the DC high- voltage signal to an error amplifier to compare it with the reference signal and controlling the output signal of an AC low-voltage power source with the output signal of the error amplifier. CONSTITUTION:A signal generated by an AC low-voltage power source 4 is stepped up by a booster transformer 5 and converted into a DC high-voltage signal via a rectifying booster circuit 6, the converted DC high-voltage signal is applied to the first error amplifier 8 to be compared with the first reference signal power source 9, the amplitude of the output signal of the power source 4 is controlled by the error signal from this amplifier 8. This stabilized output signal is applied to a high-voltage control circuit 20, the output signal is compared with the reference voltage of the second comparison voltage source 23, the output of the circuit 20 is controlled, and the output signal is stabilized. Voltage values of the first and second reference signals 9 and 23 are changed in relation to each other, the DC high-voltage signal is stabilized, a high-speed response is obtained when the power source voltage is changed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は荷、重粒子線装置等に使用される直流高電圧発
生装置に関し、特に荷電粒子線の照射された試料から放
出される電子を捕獲する電子増倍管等の電源に用いて好
適な直流高電圧発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a direct current high voltage generator used in a load, heavy particle beam device, etc. The present invention relates to a DC high voltage generator suitable for use as a power source for capturing electron multiplier tubes and the like.

[従来の技術] 従来、電子顕微鏡や集束イオンビーム装置等において、
荷電粒子線の照射された試料または材料から放出される
二次電子や二次イオンを検出して、該検出した信号に基
づいて試料等表面の分析あるいは試料表面の状態を画像
として表示することが行なわれている。第2図に示すよ
うな荷電粒子線装置では材料に荷電粒子線を照射すると
共に、該材料から放出される二次電子または二次イオン
を材料上部に配置されたマイクロチャンネルプレート(
以下MCPと称する)で検出して材料表面の状態を画像
として得るようにしている。
[Conventional technology] Conventionally, in electron microscopes, focused ion beam devices, etc.
It is possible to detect secondary electrons and secondary ions emitted from a sample or material irradiated with a charged particle beam, and to analyze the surface of the sample or display the state of the sample surface as an image based on the detected signals. It is being done. In a charged particle beam device as shown in Fig. 2, a material is irradiated with a charged particle beam, and secondary electrons or secondary ions emitted from the material are transferred to a microchannel plate (
(hereinafter referred to as MCP) to obtain the state of the material surface as an image.

第2図において1は荷電粒子線、2は材料、3はMCP
、4は交流低圧電源、5は昇圧トランス、6は整流昇圧
回路、7は電圧検出抵抗器、8は誤差増幅器、9は基準
信号電源、10はMCP入射面電極、11はMCP出射
面電極、12はアノード電極、13は検出信号増幅器、
14は増幅器電源、15は光信号伝送器である。
In Figure 2, 1 is a charged particle beam, 2 is a material, and 3 is an MCP.
, 4 is an AC low voltage power supply, 5 is a step-up transformer, 6 is a rectifier step-up circuit, 7 is a voltage detection resistor, 8 is an error amplifier, 9 is a reference signal power supply, 10 is an MCP entrance surface electrode, 11 is an MCP exit surface electrode, 12 is an anode electrode, 13 is a detection signal amplifier,
14 is an amplifier power supply, and 15 is an optical signal transmitter.

交流低圧電源4で発生した信号は昇圧トランス5を介し
て昇圧されると共に、整流昇圧回路、例えばコツククロ
フト・ウオルトン回路6を介して直流高電圧信号に変換
される。該直流高電圧信号は電圧検出抵抗器7を介して
検出されて誤差増幅器8に供給される。そして、該誤差
増幅器8において基準信号電源9の電圧と前記検出電圧
を比較して得た出力信号で前記交流低圧電源4の出力信
号の振幅を制御して直流高電圧信号を安定化させている
。このような構成の直流高電圧発生装置によって得られ
た直流高電圧信号はMCP3の入射面電極10、出射面
電極11間に印加される。
A signal generated by the AC low-voltage power supply 4 is boosted via a step-up transformer 5 and converted into a DC high-voltage signal via a rectifier booster circuit, such as a Kotscroft-Walton circuit 6. The DC high voltage signal is detected via a voltage detection resistor 7 and supplied to an error amplifier 8. Then, in the error amplifier 8, the output signal obtained by comparing the voltage of the reference signal power source 9 and the detected voltage is used to control the amplitude of the output signal of the AC low voltage power source 4, thereby stabilizing the DC high voltage signal. . A DC high voltage signal obtained by the DC high voltage generator having such a configuration is applied between the entrance surface electrode 10 and the exit surface electrode 11 of the MCP 3.

尚、二次電子を検出する場合には、MCP3の入射面電
極10に正電圧が印加されるように切換スイッチSをa
側に接続し、二次イオンまたは反射電子を検出する場合
には切換スイッチSをb側に接続し負電圧を印加する。
In addition, when detecting secondary electrons, the changeover switch S is set to a so that a positive voltage is applied to the entrance surface electrode 10 of the MCP3.
When detecting secondary ions or reflected electrons, the changeover switch S is connected to the b side and a negative voltage is applied.

ところで、荷電粒子線1の照射により材料2から放出さ
れる二次電子または二次イオンは材料2上部に配置され
たMCP3へ入射して増倍された上、アノード電極12
に捕獲されて検出信号を出力する。しかし、この信号は
微弱な信号であるため、検出信号増幅器13を介して適
当な強度(振幅)の信号に増幅してから、例えば光信号
伝送器15などを介して映像信号処理回路(図示せず)
に供給して材料の表面の状態を画像として得るようにし
ている。
By the way, secondary electrons or secondary ions emitted from the material 2 by irradiation with the charged particle beam 1 enter the MCP 3 disposed above the material 2 and are multiplied, and then the anode electrode 12
is captured and outputs a detection signal. However, since this signal is a weak signal, it is amplified to a signal of appropriate strength (amplitude) via the detection signal amplifier 13, and then sent to a video signal processing circuit (not shown in the figure) via, for example, an optical signal transmitter 15. figure)
The surface condition of the material is obtained as an image.

[発明が解決しようとする課題] このような構成の装置において、画像の輝度等を調節す
るためには、MCP3に印加する高電圧を変化させてM
CPの増倍利得を変化させるか、検出信号増幅器13の
増幅利得を変化させることによって輝度調節を行なって
いる。しかし、MCP3に印加する高電圧を変化させる
場合は、誤差増幅器8に供給する基準信号電源9の電圧
を可変して、交流低圧電源4の出力信号の振幅を変化さ
せる必要があり、このような直流高電圧発生回路では電
圧値変更時の出力応答が遅く、安定化に時間がかかり、
MCPの増倍利得を高速に変化できないことが問題とさ
れている。
[Problems to be Solved by the Invention] In a device having such a configuration, in order to adjust the brightness of the image, etc., it is necessary to change the high voltage applied to the MCP3.
The brightness is adjusted by changing the multiplication gain of the CP or by changing the amplification gain of the detection signal amplifier 13. However, when changing the high voltage applied to the MCP 3, it is necessary to vary the voltage of the reference signal power supply 9 supplied to the error amplifier 8 and change the amplitude of the output signal of the AC low voltage power supply 4. In DC high voltage generation circuits, the output response when changing the voltage value is slow, and it takes time to stabilize.
The problem is that the multiplication gain of the MCP cannot be changed quickly.

そのため、検出信号増幅器13の増幅利得を変化させて
輝度調節を行なうことが採用されているが、このような
場合にはMCP3に印加する高電圧を変化させる場合に
比べて利得の可変範囲が狭く、広範囲にわたる利得調整
が行なえないことが問題とされている。
Therefore, it is adopted to adjust the brightness by changing the amplification gain of the detection signal amplifier 13, but in such a case, the variable range of the gain is narrower than when changing the high voltage applied to the MCP 3. , the inability to perform wide-range gain adjustment is considered a problem.

本発明は、直流高電圧信号を発生する電源の安定化制御
と、該電源の出力直流高電圧信号が入力される高電圧制
御回路の出力電圧の制御を相互に関連して制御すること
により上記問題点を克服した直流高電圧発生装置を提供
することを目的としている。
The present invention provides the above-described method by mutually controlling the stabilization control of a power supply that generates a DC high voltage signal and the control of the output voltage of a high voltage control circuit to which the output DC high voltage signal of the power supply is input. The purpose of this invention is to provide a DC high voltage generator that overcomes these problems.

[課題を解決するための手段] 本発明は、交流低圧電源で発生した信号を昇圧トランス
を介して昇圧すると共に、整流昇圧回路を介して直流高
電圧信号に変換し、該直流高電圧信号を誤差増幅器に供
給して基準信号と比較し該誤差増幅器の出力信号で前記
交流低圧電源の出力信号の振幅を制御して、直流高電圧
信号を安定化するようにした直流高電圧発生装置におい
て、前記直流高電圧信号を半導体制御素子によって構成
される高電圧制御回路に供給し該高電圧制御回路の出力
電圧を第2の誤差増幅器に供給して第2の基準信号と比
較し、該第2の誤差増幅器の出力信号で前記制御回路の
出力信号を安定化すると共に、前記第1の基準信号と第
2の基準信号を相互に関連して変化し得るようにしたこ
とを特徴とする。
[Means for Solving the Problems] The present invention boosts a signal generated by an AC low-voltage power supply via a step-up transformer, converts it into a DC high-voltage signal via a rectifier boost circuit, and converts the DC high-voltage signal into a DC high-voltage signal. A DC high voltage generator that stabilizes the DC high voltage signal by supplying it to an error amplifier and comparing it with a reference signal, and controlling the amplitude of the output signal of the AC low voltage power supply using the output signal of the error amplifier, The DC high voltage signal is supplied to a high voltage control circuit constituted by a semiconductor control element, the output voltage of the high voltage control circuit is supplied to a second error amplifier, and is compared with a second reference signal. The output signal of the control circuit is stabilized by the output signal of the error amplifier, and the first reference signal and the second reference signal can be changed in relation to each other.

[作用] 本発明は、直流高電圧信号を誤差増幅器に供給して基準
信号と比較し、誤差増幅器の出力信号で交流低圧電源の
出力信号の振幅を制御して、前記直流高電圧信号を安定
化すると共に、該直流高電圧信号を半導体制御素子によ
って構成される高電圧制御回路に供給し該高電圧制御回
路の出力電圧を第2の誤差増幅器に供給して第2の基準
信号と比較し、該第2の誤差増幅器の出力信号で前記制
御回路の出力信号を安定化すると共に、前記第1の基準
信号と第2の基準信号を相互に関連して変化するように
している。
[Function] The present invention supplies a DC high voltage signal to an error amplifier, compares it with a reference signal, and controls the amplitude of the output signal of an AC low voltage power supply using the output signal of the error amplifier to stabilize the DC high voltage signal. At the same time, the DC high voltage signal is supplied to a high voltage control circuit constituted by a semiconductor control element, and the output voltage of the high voltage control circuit is supplied to a second error amplifier and compared with a second reference signal. , the output signal of the control circuit is stabilized by the output signal of the second error amplifier, and the first reference signal and the second reference signal are varied in relation to each other.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の一実施例を説明するための装置構成図であ
る。第1図において第2図と同一の構成要素には同一番
号を付しである。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is an apparatus configuration diagram for explaining one embodiment of the present invention. In FIG. 1, the same components as in FIG. 2 are given the same numbers.

第1図に示す実施例が従来例と異なるのは2、整流昇圧
回路6の出力(直流高電圧信号)を半導体制御素子によ
って構成される高電圧制御回路20に供給し該高電圧制
御回路の出力電圧をMCP3に印加するようにした点と
、該高電圧制御回路20の出力電圧を第2の誤差増幅器
22に供給して第2の基準信号電源23が発生する第2
の基準信号と比較し、該第2の誤差増幅器22の出力信
号で前記制御回路20の出力信号を安定化すると共に、
交流低圧電源4の出力信号を制御するための第1の基準
信号電源9が発生する第1の基準信号と」ニ記第2の基
準信号を相互に関連して変化し得るようにし仁点である
The difference between the embodiment shown in FIG. 1 and the conventional example is 2. The output (DC high voltage signal) of the rectifier booster circuit 6 is supplied to a high voltage control circuit 20 constituted by semiconductor control elements. The output voltage is applied to the MCP 3, and the second reference signal power source 23 is generated by supplying the output voltage of the high voltage control circuit 20 to the second error amplifier 22.
The output signal of the control circuit 20 is stabilized by the output signal of the second error amplifier 22, and
A first reference signal for controlling the output signal of the AC low-voltage power supply 4. be.

上記構成において、コツククロフト・ウオルトン回路6
の出力として得られる直流高電圧信号は、既に第2図を
用いて説明したように、誤差増幅器8によるフィードバ
ック制御により基準信号電源9からの基準信号に応じた
値に安定化される。更に、該直流高電圧信号は半導体制
御素子、例えばパワートランジスタ等によって構成され
る高電圧制御回路20に供給されて、該回路を介して制
御された電圧がMCP3に印加される。また、高電圧制
御回路20の出力電圧は電圧検出抵抗21を介して検出
され、第2の誤差増幅器22に供給される。そして、誤
差増幅′522において第2の基準信号電源23の電圧
値と前記検出電圧を比較して得た出力信号をレベルシフ
ト回路24で増幅した信号で前記高電圧制御回路の出力
信号が制御される。また、第2の基準信号電源23の電
圧値と第1の基準信号電源9の電圧値を相互に関連して
変化させるようにしである。
In the above configuration, the Kotscroft-Walton circuit 6
The DC high voltage signal obtained as the output is stabilized to a value corresponding to the reference signal from the reference signal power source 9 by feedback control by the error amplifier 8, as already explained using FIG. Furthermore, the DC high voltage signal is supplied to a high voltage control circuit 20 constituted by a semiconductor control element, such as a power transistor, and the controlled voltage is applied to the MCP 3 via the circuit. Further, the output voltage of the high voltage control circuit 20 is detected via a voltage detection resistor 21 and supplied to a second error amplifier 22. Then, the output signal of the high voltage control circuit is controlled by a signal obtained by comparing the voltage value of the second reference signal power supply 23 and the detection voltage in the error amplification '522 and amplifying the output signal in the level shift circuit 24. Ru. Further, the voltage value of the second reference signal power source 23 and the voltage value of the first reference signal power source 9 are changed in relation to each other.

ところで、該高電圧制御回路20の最大出力電圧値がI
KVのとき、コツククロフト・ウオルトン回路6の出力
電圧はIKVプラスアルファ、例えば1.IKV程度と
なっている。(第1基準電圧電源及び第2基準電圧電源
とも出力は最大となっている。)このような状態から第
2の基準電圧電源23の電圧値を変化させて高電圧制御
回路20の出力信号をIKVから数十Vの広い範囲で制
御する場合、前記第2の基準信号電源23の電圧値と第
1の基準信号電源9の電圧値を相互に関連して変化させ
ないと、コツククロフト・ウオルトン回路6の出力電圧
は1.IKVのままなので、高電圧制御回路20の出力
信号を小さくするにつれて該回路おける電力消費が大き
くなる。そのため、該高電圧制御回路20のパワートラ
ンジスタ等が破損する場合がある。そこで、第2の基準
信号電源23の電圧値と第1の基準信号電源9の電圧値
を相互に関連して変化させるようにして、例えば高電圧
制御回路の出力信号を200V程度に制御した場合、コ
ツククロフト・ウオルトン回路6の出力電圧が200V
プラスアルフア、例えば、220 V程度となるように
第1の誤差増幅器8に供給される基準信号電源9の電圧
値を変化させる。
By the way, the maximum output voltage value of the high voltage control circuit 20 is I
KV, the output voltage of the Kotscroft-Walton circuit 6 is IKV plus alpha, for example 1. It is about IKV. (The output of both the first reference voltage power supply and the second reference voltage power supply is maximum.) From this state, the voltage value of the second reference voltage power supply 23 is changed to control the output signal of the high voltage control circuit 20. When controlling in a wide range from IKV to several tens of volts, unless the voltage value of the second reference signal power source 23 and the voltage value of the first reference signal power source 9 are changed in relation to each other, the Cottcroft-Walton circuit 6 The output voltage is 1. Since the voltage remains at IKV, the power consumption in the high voltage control circuit 20 increases as the output signal of the high voltage control circuit 20 is decreased. Therefore, the power transistor and the like of the high voltage control circuit 20 may be damaged. Therefore, if the voltage value of the second reference signal power supply 23 and the voltage value of the first reference signal power supply 9 are changed in relation to each other, for example, the output signal of the high voltage control circuit is controlled to about 200V. , the output voltage of Kotscroft-Walton circuit 6 is 200V.
The voltage value of the reference signal power supply 9 supplied to the first error amplifier 8 is changed so that it becomes plus alpha, for example, about 220V.

尚、高電圧制御回路20の出力電圧を数ボルト乃至数十
ボルトの狭い範囲で変化させる場合には、第1の誤差増
幅器8に供給される基堂信号電i!7.9の電圧値は必
ずしも変える必要はなく、出力電圧変化幅毎に段階的に
変化させるようにしても良い。
In addition, when changing the output voltage of the high voltage control circuit 20 within a narrow range of several volts to several tens of volts, the basic signal voltage i! supplied to the first error amplifier 8 is changed. The voltage value of 7.9 does not necessarily need to be changed, and may be changed stepwise for each output voltage change width.

[発明の効果] 以上の説明から明らかなように、本発明によれば、直流
高電圧信号を誤差増幅器に供給して基塾信号と比較し、
誤差増幅器の出力信号で交流低圧電源の出力信号の振幅
を制御して、前記直流高電圧信号を安定化すると共に、
該直流高電圧信号を半導体制御素子によって構成される
高電圧制御回路に供給し該高電圧制御回路の出力電圧を
第2の誤差増幅器に供給して第2の基準信号と比較し、
該第2の誤差増幅器の出力信号で前記制御回路の出力信
号を安定化するようにしたことにより、交流低圧電源の
出力のみを制御して整流昇圧回路の出力(直流高電圧信
号)を安定化させていた従来に比べ、電圧値変更時の出
力応答の速い高安定化された直流高電圧発生装置が実現
できる。また、前記第1の基準信号と第2の基僧信号を
相互に関連して変化させることにより、高電圧制御回路
の出力電圧を広い範囲で可変した場合でも、該回路にお
ける電力消費を小さくすることができるので、半導体制
御素子等を破損することもない。
[Effects of the Invention] As is clear from the above description, according to the present invention, a DC high voltage signal is supplied to an error amplifier and compared with a basic school signal,
controlling the amplitude of the output signal of the AC low voltage power supply with the output signal of the error amplifier to stabilize the DC high voltage signal;
supplying the DC high voltage signal to a high voltage control circuit constituted by a semiconductor control element; supplying the output voltage of the high voltage control circuit to a second error amplifier and comparing it with a second reference signal;
By stabilizing the output signal of the control circuit with the output signal of the second error amplifier, the output of the rectifier booster circuit (DC high voltage signal) is stabilized by controlling only the output of the AC low voltage power supply. It is possible to realize a highly stabilized DC high voltage generator with a faster output response when changing the voltage value than in the past. Furthermore, by changing the first reference signal and the second basic signal in relation to each other, even when the output voltage of the high voltage control circuit is varied over a wide range, power consumption in the circuit can be reduced. Therefore, the semiconductor control elements etc. are not damaged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための装置構成図
、第2図は従来例を説明するための図である。 1:荷電粒子線     2:材料 3:MCP        4:交流低圧電源5:昇圧
トランス    6:整流昇圧回路7:電圧検出抵抗器
   8:第1誤差増幅器9:第1基準信号電源 10:MCP入射面電極 11:MCP出射面電極 12ニアノード電極   13:検出信号増幅器14:
増幅器電源    15:光信号伝送器20:高電圧制
御回路  21:電圧検出抵抗器22:第2誤差増幅器 23:第2基準信号電源
FIG. 1 is an apparatus configuration diagram for explaining an embodiment of the present invention, and FIG. 2 is a diagram for explaining a conventional example. 1: Charged particle beam 2: Material 3: MCP 4: AC low voltage power supply 5: Step-up transformer 6: Rectifier step-up circuit 7: Voltage detection resistor 8: First error amplifier 9: First reference signal power supply 10: MCP entrance surface electrode 11: MCP exit surface electrode 12 near node electrode 13: Detection signal amplifier 14:
Amplifier power supply 15: Optical signal transmitter 20: High voltage control circuit 21: Voltage detection resistor 22: Second error amplifier 23: Second reference signal power supply

Claims (1)

【特許請求の範囲】[Claims] 交流低圧電源で発生した信号を昇圧トランスを介して昇
圧すると共に、整流昇圧回路を介して直流高電圧信号に
変換し、該直流高電圧信号を誤差増幅器に供給して基準
信号と比較し該誤差増幅器の出力信号で前記交流低圧電
源の出力信号の振幅を制御して、直流高電圧信号を安定
化するようにした直流高電圧発生装置において、前記直
流高電圧信号を半導体制御素子によって構成される高電
圧制御回路に供給し該高電圧制御回路の出力電圧を第2
の誤差増幅器に供給して第2の基準信号と比較し、該第
2の誤差増幅器の出力信号で前記制御回路の出力信号を
安定化すると共に、前記第1の基準信号と第2の基準信
号を相互に関連して変化し得るようにしたことを特徴と
する直流高電圧発生装置。
The signal generated by the AC low-voltage power supply is boosted through a step-up transformer, converted to a DC high-voltage signal through a rectifier booster circuit, and the DC high-voltage signal is supplied to an error amplifier to compare it with a reference signal and calculate the error. In a DC high voltage generator that stabilizes a DC high voltage signal by controlling the amplitude of the output signal of the AC low voltage power supply using an output signal of an amplifier, the DC high voltage signal is configured by a semiconductor control element. The output voltage of the high voltage control circuit is supplied to a second voltage control circuit.
The output signal of the control circuit is stabilized by the output signal of the second error amplifier, and the output signal of the control circuit is stabilized by the output signal of the second error amplifier. A DC high voltage generator characterized in that the DC high voltage generator can vary in relation to each other.
JP63071325A 1988-03-25 1988-03-25 Dc high-voltage generator Pending JPH01243353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071325A JPH01243353A (en) 1988-03-25 1988-03-25 Dc high-voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071325A JPH01243353A (en) 1988-03-25 1988-03-25 Dc high-voltage generator

Publications (1)

Publication Number Publication Date
JPH01243353A true JPH01243353A (en) 1989-09-28

Family

ID=13457292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071325A Pending JPH01243353A (en) 1988-03-25 1988-03-25 Dc high-voltage generator

Country Status (1)

Country Link
JP (1) JPH01243353A (en)

Similar Documents

Publication Publication Date Title
JPS6255264B2 (en)
US9583324B2 (en) High-voltage power unit and mass spectrometer using the power unit
CN110491767B (en) Mass spectrometer with multiple dynode multipliers for high dynamic range operation
US3936756A (en) Field emission electron gun having automatic current control
US3975657A (en) Method of and apparatus for controlling amount of electron beam in image pickup tube
JPH01243353A (en) Dc high-voltage generator
US3786305A (en) Field emission electron gun
US4099054A (en) Sem having d-c bias of video signal controlled by maximum and/or minimum of crt beam current
US4044249A (en) Voltage supply including bilateral attenuator
US4686466A (en) Method for automatically setting the voltage resolution in particle beam measuring devices and apparatus for implementation thereof
JP2726442B2 (en) Power supply for charged particle detector
JP4041260B2 (en) Charged particle beam device and control method of charged particle beam device
US3740571A (en) High voltage dual isolated output tracking power supply
JP4410579B2 (en) Charged particle beam apparatus and charged particle beam energy correction method
JPH0588503B2 (en)
JP3418941B2 (en) Electron beam generator
JP2006294883A (en) Drive voltage generating circuit
JP2621369B2 (en) Electron beam processing equipment
JPS63231841A (en) Discharge power supply device for ion source
US4701679A (en) Method of and apparatus for controlling amount of electron beam in image pickup tube
JP2834195B2 (en) Adjustment method for filament current of electron gun
JPH0465054A (en) Field emission-type electron gun
JPH01241744A (en) Electron beam generating device
JP3328089B2 (en) Switching device control device and control method
JPH0223973B2 (en)