JPH01242817A - Hydrodynamic foil bearing - Google Patents

Hydrodynamic foil bearing

Info

Publication number
JPH01242817A
JPH01242817A JP63070390A JP7039088A JPH01242817A JP H01242817 A JPH01242817 A JP H01242817A JP 63070390 A JP63070390 A JP 63070390A JP 7039088 A JP7039088 A JP 7039088A JP H01242817 A JPH01242817 A JP H01242817A
Authority
JP
Japan
Prior art keywords
bearing
housing
rotating shaft
thin metal
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63070390A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hayashi
和宏 林
Keiji Hirasata
平佐多 敬二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Sangyo University
Original Assignee
Osaka Sangyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Sangyo University filed Critical Osaka Sangyo University
Priority to JP63070390A priority Critical patent/JPH01242817A/en
Publication of JPH01242817A publication Critical patent/JPH01242817A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To make a bearing optimum as one for a high speed rotating body by spirally inserting a metallic sheet having metallic wires fixed on its one surface between a housing and a rotating shaft, and fixing the outside end of the metallic sheet to the housing. CONSTITUTION:A metallic sheet 3 having plural metallic wires 2 fixed on its face is spirally inserted into an annular gap 5 between the inner periphery of the housing 1 and a rotating shaft 4 inserted into the housing 1 to fix the outside end of the sheet 3 to the housing 1. Thus the most inside face of the sheet 3 comes into contact with the outer peripheral face of the shaft 4 to function as a bearing face, and a fluid film is formed between the bearing face and the surface of the shaft 4 during its rotation to perform bearing action. The sheet 3 therefore functions as the optimum bearing for a high speed rotating body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高速回転体用の流体力学的箔軸受に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a hydrodynamic foil bearing for high-speed rotating bodies.

〔従来の技術] 高速回転体として一般的な機械のほかに自動車のターボ
チャージャを例示することができる。
[Prior Art] In addition to general machines, a turbocharger for an automobile can be exemplified as a high-speed rotating body.

近年、例えば、自動車へのターボチャージャの採用が急
増し、大型トラックへの搭載にはじまり、現在では小型
乗用車、単車にまで普及している。
In recent years, for example, the adoption of turbochargers in automobiles has rapidly increased, starting with installation in large trucks and now spreading to small passenger cars and motorcycles.

そして性能向上のために、ますます小型化、軽量化され
、また高速化されてきた。
In order to improve performance, they have become smaller, lighter, and faster.

このターボチャージャ用軸受としては、従来、油潤滑の
浮動ブッシェ軸受が用いられているが、エンジンルーム
からの高温の排気ガスにさらされるタービン側ではいく
つかの問題点が生じる。
Conventionally, oil-lubricated floating bushier bearings have been used as turbocharger bearings, but several problems arise on the turbine side, which is exposed to high-temperature exhaust gas from the engine room.

即ち、油の温度上昇による粘度低下及び劣化に伴う潤滑
性能の低下、シール部からの漏油の増加と火災の危険性
などである。
That is, the viscosity decreases due to the rise in oil temperature, the lubricating performance decreases due to deterioration, the oil leakage from the seal increases, and there is a risk of fire.

このため、ターボチャージャ用軸受として要求される条
件しとては、高速安定性、耐衝撃性、耐異物性などが特
に重要であり、同時に小型で低コストであることが望ま
れ、これらの要求を満たす軸受形式として流体力学的箔
軸受が有望である。
For this reason, the conditions required for bearings for turbochargers are particularly important, such as high-speed stability, impact resistance, and foreign object resistance.At the same time, it is desired that the bearings be compact and low-cost. Hydrodynamic foil bearings are promising as a bearing type that satisfies these requirements.

流体力学的箔軸受の基本的な考えは、金属箔(以下金属
薄板という)で軸受面を構成し、その可IQ性や金属薄
板と回転軸間に形成される薄い流体膜の減衰効果によっ
て優れた安定性を実現し、更に金属薄板の可撓性により
異物の混入やミスアライメントに対しても優れた特性を
発揮させようとするものである。
The basic idea behind hydrodynamic foil bearings is that the bearing surface is made of metal foil (hereinafter referred to as a thin metal sheet), and the bearing surface is superior due to its IQ properties and the damping effect of the thin fluid film formed between the thin metal sheet and the rotating shaft. In addition, the flexibility of the thin metal plate is intended to provide excellent characteristics against contamination by foreign matter and misalignment.

従来の流体力学的箔軸受としては、例えば特公昭62−
29649号に示されるようなものが知られている。
As a conventional hydrodynamic foil bearing, for example,
The one shown in No. 29649 is known.

上記の流体力学的箔軸受は、回転軸が挿入されたハウジ
ングの内周面に複数枚の金属薄板を円周方向に一定の間
隔で取付け、各金属薄板の先端側軸受面を回転軸の外周
面に接触させ、回転軸の外周面と軸受面に形成される薄
い流体膜によって回転軸を流体力学的に支持する構造に
なっている。
The hydrodynamic foil bearing described above has multiple metal thin plates installed at regular intervals in the circumferential direction on the inner peripheral surface of the housing into which the rotating shaft is inserted. The structure is such that the rotating shaft is hydrodynamically supported by a thin fluid film formed on the outer peripheral surface of the rotating shaft and the bearing surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記のような構造の流体力学的箔軸受は、金
属薄板が間歇的に配置されているため、流体膜の生成面
積が少なく、高速回転用の軸受として十分な効果が得ら
れないという問題がある。
By the way, the hydrodynamic foil bearing with the structure described above has the problem that because the thin metal plates are arranged intermittently, the area where a fluid film is generated is small, making it difficult to obtain a sufficient effect as a bearing for high-speed rotation. There is.

また、各金属薄板は、回転軸の回転数の変化に対応して
回転軸への接合力をハウジングの外部より調整する必要
があり、このため、構造が複雑になると共に、全体が大
型化するという問題がある。
In addition, it is necessary to adjust the bonding force of each thin metal plate to the rotating shaft from the outside of the housing in response to changes in the rotating speed of the rotating shaft, which makes the structure complex and increases the overall size. There is a problem.

この発明は、上記のような問題点を解決するためになさ
れたものであり、小型で高速回転に対応でき、高速回転
体用の軸受として最適な流体力学的箔軸受を提供するこ
とを目的としている。
This invention was made to solve the above-mentioned problems, and the purpose is to provide a hydrodynamic foil bearing that is small in size, can handle high-speed rotation, and is optimal as a bearing for high-speed rotating bodies. There is.

〔課題を解決するための手段〕[Means to solve the problem]

上記のような課題を解決するため、この発明は、一面側
に複数本の金属線を長手方向に適当な間隔で固定した金
属薄板を、ハウジングとこのハウジング内に挿入した回
転軸の隙間に、金属薄板の他面側が回転軸の外周面に向
くよう渦巻状に挿入し、前記金属薄板の外側端部をハウ
ジングに固定した構成としたものである。
In order to solve the above-mentioned problems, the present invention provides a thin metal plate having a plurality of metal wires fixed at appropriate intervals in the longitudinal direction on one side, in the gap between the housing and the rotating shaft inserted into the housing. The thin metal plate is inserted in a spiral shape so that the other side faces the outer peripheral surface of the rotating shaft, and the outer end of the thin metal plate is fixed to the housing.

〔作用〕[Effect]

ハウジングと回転軸の隙間へ渦巻状にして挿入した金属
薄板の一端をハウジングに固定した状態で、金属薄板は
回転軸外周面と接する最も内側の面が軸受面となり、回
転軸の回転時に軸面との間に流体膜を形成することによ
って軸受作用を行なうことになる。
With one end of the thin metal plate spirally inserted into the gap between the housing and the rotating shaft fixed to the housing, the innermost surface of the thin metal plate in contact with the outer peripheral surface of the rotating shaft becomes the bearing surface, and when the rotating shaft rotates, the shaft surface A bearing action is performed by forming a fluid film between the two.

〔実施例〕〔Example〕

以下、この発明の実施例を添付図面に基づいて説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図のように、流体力学的箔軸受は、大別して二つの
要素から構成され、その一つは軸受全体の形を規定する
ハウジング1であり、他の一つは一面側に複数本の金属
線2を取付けた金属薄板3である。
As shown in Figure 1, a hydrodynamic foil bearing is roughly divided into two parts, one of which is a housing 1 that defines the overall shape of the bearing, and the other is a housing 1 that defines the shape of the entire bearing. This is a thin metal plate 3 to which a metal wire 2 is attached.

上記金属薄板3は、第2図と第3図に示すように、リン
青銅板等を用いて帯状に形成され、その一面側の幅方向
全長にピアノ線を用いた金属線2が、金属薄板3の長手
方向に適当な間隔の配置で固定化されている。
As shown in FIGS. 2 and 3, the metal thin plate 3 is formed into a band shape using a phosphor bronze plate or the like, and a metal wire 2 made of piano wire is attached to the entire length of one side in the width direction of the metal thin plate 3. 3 are fixed at appropriate intervals in the longitudinal direction.

この金属薄板3は、第1図の如く、ハウジング1の内周
とこのハウジング1内に挿入した回転軸4の環状隙間5
へ、金属薄板3の他面側が回転軸4の外周面に向くよう
渦巻状に挿入し、金属薄板3の外側に位置する端部がハ
ウジング内れている。
As shown in FIG.
The thin metal plate 3 is inserted in a spiral shape so that the other side faces the outer circumferential surface of the rotating shaft 4, and the outer end of the thin metal plate 3 is inside the housing.

上記金属薄板3のハウジング1に対する固定は、金属薄
板3の一方端部にビン6を巻付固定し、ハウジング1の
内面に設けた取付孔7にピン6を挿入することによって
行なっていると共に、金属薄板3は、内側端部から回転
軸4の回転方向に巻付ける渦巻状態で環状隙間5に挿入
されている。
The thin metal plate 3 is fixed to the housing 1 by wrapping and fixing a pin 6 around one end of the thin metal plate 3 and inserting a pin 6 into a mounting hole 7 provided on the inner surface of the housing 1. The thin metal plate 3 is inserted into the annular gap 5 in a spiral manner so as to be wound in the rotational direction of the rotating shaft 4 from the inner end thereof.

この発明の軸受は上記のような構成であり、ハウジング
1の内周と回転軸4の環状隙間5に挿入した金属薄板3
の最内周面が軸受面8となり、この軸受面8と回転軸4
の外周面との間に流体膜(気体膜、液体膜)を形成する
ことによって回転軸4に対する軸受作用を行なうことに
なり、高速回転する各種機械やターボチャージャ用の軸
受として用いられる。
The bearing of the present invention has the above-described structure, and includes a thin metal plate 3 inserted between the inner periphery of the housing 1 and the annular gap 5 between the rotating shaft 4.
The innermost circumferential surface of the bearing surface 8 becomes the bearing surface 8, and this bearing surface 8 and the rotating shaft 4
By forming a fluid film (gas film, liquid film) between the bearing and the outer circumferential surface of the bearing, it acts as a bearing for the rotating shaft 4, and is used as a bearing for various machines that rotate at high speed and for turbochargers.

上記のように、金属薄板3にはその一面側に所定の間隔
で金属線2が固定しであるため、金属線2がスペーサと
なって環状隙間5へ渦巻状に挿入した金属薄板3は金属
線2間の部分が弾性変形可能になり、この弾性変形や金
属薄板3間または薄板3とハウジング1間の流体膜のス
クイズ効果及び薄板3と金属線2間のクーロンFt擦に
よって、励振エネルギーを吸収・減衰して高速回転の安
定性を高める。
As mentioned above, since the metal wires 2 are fixed to one side of the thin metal plate 3 at predetermined intervals, the thin metal plate 3 inserted spirally into the annular gap 5 with the metal wires 2 serving as spacers is made of metal. The area between the wires 2 can be elastically deformed, and the excitation energy is absorbed by this elastic deformation, the squeezing effect of the fluid film between the thin metal plates 3 or between the thin plates 3 and the housing 1, and the Coulomb Ft friction between the thin plates 3 and the metal wires 2. Absorbs and damps to improve stability at high speeds.

さらに、金属薄板3の可撓性により、異物の混入に対し
ても対応することができる。
Furthermore, due to the flexibility of the thin metal plate 3, it is possible to deal with the intrusion of foreign matter.

次に、上記流体力学的箔軸受に対して行なった回転性能
の実験方法とその結果を以下に説明する。
Next, the method and results of an experiment conducted on the rotational performance of the hydrodynamic foil bearing will be explained below.

ハウジング1は、軸受隙間を変化させるためその内径が
18.03〜18.15mmの範囲で4種類を製作した
Four types of housings 1 were manufactured with inner diameters ranging from 18.03 to 18.15 mm in order to vary the bearing clearance.

金属薄板3は、厚さ0.05an++、幅19.5rl
aのリン青銅板を用い、一面側に直径0.2mのピアノ
線を用いた金属線2を、9本と18本および27本を接
着固定した3種類を用意し、各金属薄板3を、一端に巻
付は固定した5IIIII径のピン6をハウジング1の
取付孔7に挿入することにより、ハウジング1への取付
けを行なうことで供試軸受を形成した。
The thin metal plate 3 has a thickness of 0.05an++ and a width of 19.5rl.
Using the phosphor bronze plate of a, prepare three types of metal wires 2 using piano wire with a diameter of 0.2 m on one side, 9, 18, and 27 adhesively fixed, and each metal thin plate 3, A test bearing was formed by attaching to the housing 1 by inserting a pin 6 with a diameter of 5III with a fixed winding at one end into the attachment hole 7 of the housing 1.

第4図は回転性能試験装置の概略図であり、同図におい
て、回転軸11はステンレス製で表面の一部にイオン窒
化処理を施した直径17m、長さ220mn+、質量0
.44kgであり、中央部に回転駆動のためのタービン
羽根12が取付けられ、両端部寄りの位置を前記した供
試軸受(流体力学的箔軸受10.10)で支持し、両端
部は端面に加圧空気を吹付けるスラスト軸受13によっ
てスラスト方向に支持されている。
FIG. 4 is a schematic diagram of the rotational performance test device. In the same figure, the rotating shaft 11 is made of stainless steel and has a part of its surface treated with ion nitriding. It has a diameter of 17 m, a length of 220 m+, and a mass of 0.
.. The turbine blade 12 for rotational drive is attached to the center, and the positions near both ends are supported by the above-mentioned test bearings (hydrodynamic foil bearings 10.10), and both ends are It is supported in the thrust direction by a thrust bearing 13 that blows compressed air.

上記回転軸11は、エアタービン駆動によって回転が与
えられると共に、回転軸11の振動振幅は、軸端近傍の
水平および鉛直方向について、非接触式変位計14を用
いて測定する。
The rotating shaft 11 is rotated by an air turbine drive, and the vibration amplitude of the rotating shaft 11 is measured in the horizontal and vertical directions near the shaft end using a non-contact displacement meter 14.

また、回転軸11に働く反動トルクは、一方の流体力学
的箔軸受10を静圧空気ジャーナル軸受15で支え、流
体力学的箔軸受10に働くトルクを歪ゲージを用いたト
ルクセンサ16により検出する。
In addition, the reaction torque acting on the rotating shaft 11 is detected by supporting one hydrodynamic foil bearing 10 with a hydrostatic air journal bearing 15, and detecting the torque acting on the hydrodynamic foil bearing 10 with a torque sensor 16 using a strain gauge. .

実験結果: (1)タービン給気圧と軸回転数−軸受半径隙間Cおよ
び金属線本数nを変えて、タービン給気圧と軸回転数の
関係を測定した結果を第5図と第6図に示す。比較のた
めに静圧空気軸受に対する実験結果も示しである。ここ
で用いた静圧空気軸受は、190幅で軸受半径隙間15
n、単列等間隔8給気孔(孔径0.5m+++、自戒絞
り)のもので、給気圧0.49MPaで回転試験を行な
ったものである。流体力学的箔軸受10では起動トルク
が大きいため、静圧軸受の場合のように、低速域での滑
らかな回転上昇は得られないが、高速域では滑らかな昇
速が得られている。金属線本数で言えば9本のものが少
し劣っている。
Experimental results: (1) Turbine supply pressure and shaft rotation speed - Figures 5 and 6 show the results of measuring the relationship between turbine supply pressure and shaft rotation speed by changing the bearing radial clearance C and the number of metal wires n. . Experimental results for a hydrostatic air bearing are also shown for comparison. The hydrostatic air bearing used here has a width of 190 mm and a bearing radius clearance of 15 mm.
n, a single row of 8 air supply holes equally spaced (hole diameter 0.5m+++, self-diaphragm), and a rotation test was conducted at a supply pressure of 0.49 MPa. In the hydrodynamic foil bearing 10, since the starting torque is large, a smooth increase in rotation in a low speed range cannot be obtained as in the case of a hydrostatic bearing, but a smooth increase in speed can be obtained in a high speed range. In terms of the number of metal wires, the one with nine metal wires is a little inferior.

(2)軸振動−回転軸の振動振幅と回転数の関係を第7
図と第8図に示す。第7図はn=18の場合の鉛直方向
(荷重方向)の振動振幅、第8図はn”27の場合の水
平方向の振動振幅の測定結果である。
(2) Shaft vibration - The relationship between the vibration amplitude of the rotating shaft and the rotation speed is
As shown in Fig. and Fig. 8. FIG. 7 shows the measurement results of the vibration amplitude in the vertical direction (load direction) when n=18, and FIG. 8 shows the measurement results of the vibration amplitude in the horizontal direction when n=27.

これから、軸受隙間は比較的大きい方が安定した特性を
示すことがわかる。また、いずれの場合も96.00O
rpm  (軸の固有振動数)付近で振動振幅が急増し
、それ以上の昇速はできなかったが、振動波形の分析結
果から、いわゆるハーフフリケンシーホワールは生じて
いないことが知られた。なお比較のために前述の静圧軸
受による実験結果を第9図に示す。給気圧を増すととも
に最高回転数は上昇するが、この場合にはいずれもハー
フフリケンシーホワールが発生した。
From this, it can be seen that a relatively large bearing gap exhibits stable characteristics. Also, in both cases, 96.00O
The vibration amplitude rapidly increased around rpm (the natural frequency of the shaft), and it was not possible to increase the speed any further, but it was found from the analysis of the vibration waveform that so-called half-frequency whirl did not occur. For comparison, the experimental results using the above-mentioned hydrostatic bearing are shown in FIG. As the boost pressure increases, the maximum rotational speed increases, but in both cases, half-frequency whirl occurred.

(3)軸トルク−回転軸に働(摩擦トルクを知るために
、軸受に働く反動トルクを測定した。測定結果の例を第
10図と第11図に示す。金属線本数が少ない場合(n
=9の場合)には安定したトルク特性は得られなかった
が金属線本数が多い場合には安定した特性が得られた。
(3) Shaft torque - acting on the rotating shaft (in order to know the friction torque, the reaction torque acting on the bearing was measured. Examples of measurement results are shown in Figures 10 and 11. When the number of metal wires is small (n
=9), stable torque characteristics were not obtained, but stable characteristics were obtained when the number of metal wires was large.

特に金属線27本のものは起動後の速やかな流体潤滑膜
移行がうかがわれる。そして、この場合、軸受隙間が比
較的大きい方が起動トルクは小さい。
In particular, the one with 27 metal wires shows a rapid transition of the fluid lubrication film after startup. In this case, the larger the bearing clearance, the smaller the starting torque.

(4)耐久性−試作した流体力学的箔軸受の耐久性を調
べるために、起動・停止の繰り返し運動による回転軸お
よび軸受面(金属薄板面)の表面損傷の観察と、繰り返
し運転による回転特性の変化を実験的に測定した。ここ
では50回の繰り返し運転試験を行ない、5回目ごとに
回転特性を調べ、それ以外の時は起動から浮上まで昇速
した後(0〜50、OOOrpm ) 、直ちに降速停
止させた。回転軸に働く摩擦トルクが繰り返し運転によ
って如何に変化するかを第12図に示す。起動トルクは
繰り返し数とともに増大している。これは組み込み前に
回転軸面および金属薄板面に塗布したMO52粉末が散
失したためと考えられる。しかし、それ以外では繰り返
し運転によるトルクの変化はあまりなく、全体的に見る
と繰り返し運転後の方が安定してきていることがわかる
(4) Durability - In order to investigate the durability of the prototype hydrodynamic foil bearing, we observed surface damage to the rotating shaft and bearing surface (metal thin plate surface) due to repeated starting and stopping movements, and rotational characteristics due to repeated operation. The change in was measured experimentally. Here, a repeated operation test was conducted 50 times, and the rotational characteristics were examined every fifth time.Other times, the speed was increased from startup to ascent (0 to 50, OOOrpm), and then the speed was immediately lowered to a stop. FIG. 12 shows how the friction torque acting on the rotating shaft changes with repeated operation. The starting torque increases with the number of repetitions. This is thought to be because the MO52 powder applied to the rotating shaft surface and the thin metal plate surface before assembly was scattered. However, other than that, there is not much change in torque due to repeated operation, and overall it can be seen that it is more stable after repeated operation.

第13図は回転軸11の振動特性の変化を見たものであ
る。全体として、繰り返し運転による特性の悪化は認め
られず、むしろ、1回目の回転試験時に、50.000
rpH以上の高速域での振動特性が不。
FIG. 13 shows changes in the vibration characteristics of the rotating shaft 11. Overall, no deterioration in characteristics was observed due to repeated operation; rather, during the first rotation test, 50,000
Vibration characteristics are poor at high speeds above rpH.

安定であり、繰り返し運転によって安定しているように
さえ見える。この原因としては、1回目の回転試験時に
は、潤滑面に塗布したMoS z粉末が軸受隙間内を飛
散・移動して悪影響を与えたこと、繰り返し運転で金属
薄板形状が回転軸になじんだことが考えられる。
It is stable and even appears to be stable after repeated operation. The cause of this is that during the first rotation test, the MoS z powder applied to the lubricated surface was scattered and moved within the bearing gap, causing an adverse effect, and that the shape of the thin metal plate adapted to the rotating shaft due to repeated operations. Conceivable.

第14図にタービン給気圧と軸回転数の関係を示す。両
者の関係は50回の繰り返し回転試験において全く変わ
らなかった。また、面の損傷はわずかであった。
FIG. 14 shows the relationship between turbine supply pressure and shaft rotation speed. The relationship between the two did not change at all after 50 repeated rotation tests. In addition, there was only slight damage to the surface.

〔効果〕〔effect〕

以上のように、この発明によると、一面側に金属線を固
定した金属薄板をハウジングと回転軸間の環状隙間へ渦
巻状に挿入し、金属薄板の外側端部をハウン゛ングに固
定したので、金属薄板の他面側で回転軸の外周面に臨む
面が軸受面となり、軸外周面との間に流体膜を形成する
ことによって軸受作用を行ない、回転軸の安定した高速
化を実現することができ、高速回転体用の軸受として用
途の広いものである。
As described above, according to the present invention, a thin metal plate with a metal wire fixed to one side is spirally inserted into the annular gap between the housing and the rotating shaft, and the outer end of the thin metal plate is fixed to the housing. The other side of the thin metal plate facing the outer circumferential surface of the rotating shaft becomes the bearing surface, and a fluid film is formed between it and the outer circumferential surface of the shaft to perform a bearing action and achieve stable high-speed rotation of the rotating shaft. It has a wide range of uses as a bearing for high-speed rotating bodies.

また、金属薄板を回転軸とハウジングの環状隙間へ渦巻
状に挿入し、金属薄板の外側端部を/\ウヅングに固定
したので、構造が簡単で全体を小型化でき、高速回転特
性とによって、各種高速回転機械やターボチャージャ用
軸受の要求を満たすことができる。
In addition, the thin metal plate is spirally inserted into the annular gap between the rotating shaft and the housing, and the outer end of the thin metal plate is fixed to the /\wing, so the structure is simple and the whole can be made compact. It can meet the requirements for bearings for various high-speed rotating machines and turbochargers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る流体力学的箔軸受の縦断正面図
、第2図は同上に使用する金属薄板の斜視図、第3図は
同上の正面図、第4図は回転性能試験装置の説明図、第
5図乃至第14図の各々は流体力学的箔軸受の各種性能
試験結果を示すグラフである。 1・・・・・・ハウジング、   2・・・・・・金属
線、3・・・・・・金属薄板、   4・・・・・・回
転軸、5・・・・・・環状隙間、   6・・・・・・
ピン、7・・・・・・取付孔、    8・・・・・・
軸受面、10・・・・・・流体力学的箔軸受。 特許出願人  学校法人大阪産業大学 問 代理人   鎌   1)  文   −第6図 第7図 第8図 $9図 第10図 第11図 第12図 o   2 4  bb   心 回転1B、  (rpm) 第13図 第14図 ターヒ゛ン給(C月X(MPa)
Fig. 1 is a longitudinal sectional front view of a hydrodynamic foil bearing according to the present invention, Fig. 2 is a perspective view of a thin metal plate used in the same, Fig. 3 is a front view of the same, and Fig. 4 is a rotational performance test device. Each of the explanatory diagrams, FIGS. 5 to 14, is a graph showing the results of various performance tests of hydrodynamic foil bearings. DESCRIPTION OF SYMBOLS 1... Housing, 2... Metal wire, 3... Metal thin plate, 4... Rotating shaft, 5... Annular gap, 6・・・・・・
Pin, 7...Mounting hole, 8...
Bearing surface, 10...Hydrodynamic foil bearing. Patent applicant Osaka Sangyo University Academic Corporation Agent Kama 1) Text - Figure 6 Figure 7 Figure 8 $9 Figure 10 Figure 11 Figure 12 o 2 4 bb Heart rotation 1B, (rpm) 13 Figure 14 Turbine salary (C Monthly X (MPa)

Claims (1)

【特許請求の範囲】[Claims] (1)一面側に複数本の金属線を長手方向に適当な間隔
で固定した金属薄板を、ハウジングとこのハウジング内
に挿入した回転軸の隙間に、金属薄板の他面側が回転軸
の外周面に向くよう渦巻状に挿入し、前記金属薄板の外
側端部をハウジングに固定した流体力学的箔軸受。
(1) A thin metal plate with multiple metal wires fixed at appropriate intervals in the longitudinal direction on one side is placed in the gap between the housing and the rotating shaft inserted into the housing, with the other side of the thin metal plate facing the outer peripheral surface of the rotating shaft. a hydrodynamic foil bearing, the outer end of said metal sheet being fixed to the housing in a spiral manner so as to be directed toward the housing;
JP63070390A 1988-03-23 1988-03-23 Hydrodynamic foil bearing Pending JPH01242817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070390A JPH01242817A (en) 1988-03-23 1988-03-23 Hydrodynamic foil bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070390A JPH01242817A (en) 1988-03-23 1988-03-23 Hydrodynamic foil bearing

Publications (1)

Publication Number Publication Date
JPH01242817A true JPH01242817A (en) 1989-09-27

Family

ID=13430069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070390A Pending JPH01242817A (en) 1988-03-23 1988-03-23 Hydrodynamic foil bearing

Country Status (1)

Country Link
JP (1) JPH01242817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482446B1 (en) * 2002-10-16 2005-04-14 현대자동차주식회사 Manufacturing method of sheet for micro bored bearing
EP3128191A4 (en) * 2014-03-19 2018-02-21 NTN Corporation Foil bearing
WO2024195119A1 (en) * 2023-03-23 2024-09-26 三菱重工エンジン&ターボチャージャ株式会社 Method for determining deterioration in foil bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184415A (en) * 1984-10-03 1986-04-30 Ishikawajima Harima Heavy Ind Co Ltd Foil bearing structure with axis seal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184415A (en) * 1984-10-03 1986-04-30 Ishikawajima Harima Heavy Ind Co Ltd Foil bearing structure with axis seal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482446B1 (en) * 2002-10-16 2005-04-14 현대자동차주식회사 Manufacturing method of sheet for micro bored bearing
EP3128191A4 (en) * 2014-03-19 2018-02-21 NTN Corporation Foil bearing
WO2024195119A1 (en) * 2023-03-23 2024-09-26 三菱重工エンジン&ターボチャージャ株式会社 Method for determining deterioration in foil bearing

Similar Documents

Publication Publication Date Title
KR100573384B1 (en) Radial Foil Bearing
US5498083A (en) Shimmed three lobe compliant foil gas bearing
JPS6311529B2 (en)
Guo et al. Measurement and prediction of nonlinear dynamics of a gas foil bearing supported rigid rotor system
US9640207B2 (en) Bearing device
Shi et al. Experimental study on the static and dynamic performances of gas foil bearings for the centrifugal air compressor used in fuel cell vehicles
Supreeth et al. Foil stiffness optimization of a gas lubricated thrust foil bearing in enhancing load carrying capability
JP2002364643A (en) Hydrodynamic foil bearing
JPH01242817A (en) Hydrodynamic foil bearing
Yang et al. Experimental study on the characteristics of pad fluttering in a tilting pad journal bearing
Kim et al. Static structural characterization of multilayer gas foil journal bearings
Guo et al. Application of multi-leaf foil bearings in high-speed turbo-machinery
JPH0914262A (en) Dynamic pressure gas journal bearing
CN108571590B (en) Mechanical sealing device
JPH0147649B2 (en)
CN115992846A (en) Double-rotation-direction foil pneumatic dynamic bearing
KR20090040956A (en) Bearing seal for gas turbine
CN213511662U (en) Radial gas foil bearing
Kim et al. Rotordynamic performance of an oil-free turbocharger supported on gas foil bearings: effects of an assembly radial clearance
US5536087A (en) Foil journal bearing having straight foils useful for providing support for high speed rotors and a process for fabricating said bearing
Wilde et al. Experimental response of simple gas hybrid bearings for oil-free turbomachinery
Swanson et al. Capabilities of large foil bearings
Guérin et al. Experimental Analysis of Blade-Casing Contacts in a Centrifugal Compressor: Vibration and Thermal Aspects
CN220185601U (en) Spiral groove type dynamic pressure gas thrust foil bearing
Nemeth Experimental evaluation of foil-supported resilient-pad gas-lubricated thrust bearing