JPH01242747A - Corrosion-resistant zirconium alloy - Google Patents

Corrosion-resistant zirconium alloy

Info

Publication number
JPH01242747A
JPH01242747A JP6813888A JP6813888A JPH01242747A JP H01242747 A JPH01242747 A JP H01242747A JP 6813888 A JP6813888 A JP 6813888A JP 6813888 A JP6813888 A JP 6813888A JP H01242747 A JPH01242747 A JP H01242747A
Authority
JP
Japan
Prior art keywords
corrosion
zirconium
corrosion resistance
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6813888A
Other languages
Japanese (ja)
Inventor
Kanemitsu Sato
佐藤 金光
Junko Kawashima
川島 純子
Emiko Higashinakagaha
東中川 恵美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6813888A priority Critical patent/JPH01242747A/en
Publication of JPH01242747A publication Critical patent/JPH01242747A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance, particularly nodular corrosion- resistant characteristics of the title alloy by specifying tellurium, nickel, chromium, tin, niobium and zirconium. CONSTITUTION:The zirconium alloy is formed with the compsn. constituted of, by weight, 0.05-3% tellurium, <=5% nickel, <=5% iron, <=1% chromium, <=1.5% tin, 2.5% niobium and the balance consisting of zirconium. The above alloy has excellent corrosion resistance, particularly excellent nodular corrosion- resistant characteristics.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は耐食性ジルコニウム合金に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to corrosion resistant zirconium alloys.

(従来の技術) ジルコニウム合金は耐食性がよく種々の用途に用いられ
ている。例えば水冷却型原子炉に用いられた場合、原子
炉の炉心構造物に使われる大部分の材料として有効であ
る。さてこの材料として適合される条件はその性質とし
て熱中性子吸収断面積が小さいこと、環境に対する耐食
性が優れていること、及び機械的性質が充分に満足し得
ることが必要である。これ等を満足させた材料としてジ
ルカロイ−2やジルカロイ−4、オーゼナイト0.5及
び1.0等が知られている。このジルカロイまたはオー
ゼナイト等は鉄、ニッケル、クロム、ジルコニウム、ニ
オブ、錫、等の合金を所定量混合した合金であるが、こ
れ等は上記合金の全ての炉心構造材としての特性を完全
に備えているものとは必ずしも言えず、例えば水冷却型
原子炉に用いていると中性子照射下の過酷な条件の下で
は経時変化が起きて合金表面に白色斑点状の新調ノジュ
ラーコロージョン(Nodular Corrosio
n)と呼ば  ゛れる腐食生成物が発生することがある
。この現象は通常の使用状態で成長するという誠に都合
の悪い現象である。そしてこれが進行すれば集結し剥離
現象を起し徐々に本体がやせて機械的強度が低下するこ
とも予想される。またこの剥離現象は他にも影響を及ぼ
す他、剥にされた腐食物が不所望に蓄積されて熱伝導効
率を悪くしたりして局部的な過熱をもたらす場合も考え
られ好ましくない。
(Prior Art) Zirconium alloys have good corrosion resistance and are used for various purposes. For example, when used in water-cooled nuclear reactors, it is effective as the material for most of the reactor core structures. The conditions for this material to be met include a small thermal neutron absorption cross section, excellent environmental corrosion resistance, and sufficiently satisfactory mechanical properties. Zircaloy-2, Zircaloy-4, Auzenite 0.5 and 1.0, etc. are known as materials that satisfy these requirements. Zircaloy, Auzenite, etc. are alloys made by mixing certain amounts of alloys such as iron, nickel, chromium, zirconium, niobium, tin, etc., but these alloys have all the characteristics of the above alloys as core structural materials. For example, when used in a water-cooled nuclear reactor, changes occur over time under the harsh conditions of neutron irradiation, resulting in new nodular corrosion in the form of white spots on the alloy surface.
Corrosion products called n) may be generated. This phenomenon is a truly inconvenient phenomenon that grows under normal usage conditions. As this progresses, it is expected that they will aggregate and cause a peeling phenomenon, gradually thinning the main body and reducing its mechanical strength. Moreover, this peeling phenomenon not only has other effects, but is also undesirable because the peeled off corrosive substances may accumulate undesirably, impair heat conduction efficiency, and cause local overheating.

またこの腐食物は放射能を十分に含有しており。This corrosive material also contains sufficient radioactivity.

これが一部に蓄積することは取扱上好ましくない。It is undesirable for this to accumulate in some areas in terms of handling.

上記を解決するために種々の改良がなされている6例え
ば米国特許第3005706号明細書にはジルコニウム
合金に少量イリリウムを添加したもの、米国特許第32
61682号及び第3150972号明a7にはジルコ
ニウム合金にカリウム、イツトリウム、カルシウムの少
なくとも1種を微量添加したものが提案されている。し
かし、こうしたものの組成的変化についての長期的結果
については報告書は見られないし、市販のジルコニウム
合金にはこうした追加成分は含まれていない。
Various improvements have been made to solve the above problems.6 For example, U.S. Pat.
No. 61682 and No. 3150972 A7 propose a zirconium alloy to which a trace amount of at least one of potassium, yttrium, and calcium is added. However, there are no reports on the long-term results of these compositional changes, and commercially available zirconium alloys do not contain these additional components.

(発明が解決しようとする課題) このようにジルコニウム合金はそもそも耐食性に優れた
材料であるが、ノジュラーコロージョンの発生の間層等
が残されており、より優れた耐食性が要求されている。
(Problems to be Solved by the Invention) As described above, zirconium alloy is a material with excellent corrosion resistance to begin with, but there remains a layer between which nodular corrosion occurs, and even better corrosion resistance is required.

そこで本発明は、優れた耐食性を示す耐食性ジルコニウ
ム合金を提供することを目的とする。
Therefore, an object of the present invention is to provide a corrosion-resistant zirconium alloy that exhibits excellent corrosion resistance.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)」二足ジルコ
ニウム合金の腐食原因を解明するために、現用のジルコ
ニウム合金であるジルカロイ−2についてその合金元素
の影響を許可に調べたところ次のような結果を得た。す
なわち、ジルカロイ−2の合金元素であるFc、 Ni
、 Sn、 Crのそれぞれについて耐食性に関する単
独の効果を示べたところFe、 Niが耐食性に顕著な
効果があることを見出した。
(Means and actions for solving the problem) In order to elucidate the cause of corrosion of bipedal zirconium alloys, we investigated the effects of alloying elements on Zircaloy-2, a currently used zirconium alloy, and found the following. Got the results. That is, Fc, Ni which is an alloying element of Zircaloy-2
, Sn, and Cr were shown to have an independent effect on corrosion resistance, and it was found that Fe and Ni had a remarkable effect on corrosion resistance.

これらニッケル含有ジルコニウム合金と鉄含有ジルコニ
ウム合金を詳細に澗査したところ、ニッケルおよび鉄と
ジルコニウムとから成る金属間化合物Zr2Niおよび
ZrFe、が耐食性に関与することがわかった。さらに
金属間化合物の中でもその結晶構造が正方品(tetr
agonal)および立方晶(cubic)であるもの
が耐食性改善に効果がある。Zr2Niはすべて正方品
(tetragonal)であり、ZrFc2は立方晶
(cubic)又は正方品(tetrar<anal)
と六方晶(hexagonal)と2種の結晶構造が室
温で安定である。
When these nickel-containing zirconium alloys and iron-containing zirconium alloys were examined in detail, it was found that intermetallic compounds Zr2Ni and ZrFe, which are composed of nickel, iron, and zirconium, are involved in corrosion resistance. Furthermore, among intermetallic compounds, their crystal structure is tetragonal (tetr
Agonal and cubic crystals are effective in improving corrosion resistance. All Zr2Ni are tetragonal, and ZrFc2 is cubic or tetragonal.
Two types of crystal structures, hexagonal and hexagonal, are stable at room temperature.

そこで発明者らはZrとの金属間化合物が立方晶(cu
bic)又は正方晶(tetragonal)になる金
属をさがしたところTeの金属間化合物は多種存在する
がそのうちのZr4Te3は正方品(tetragon
al)であることを見出し、ジルコニラt−と合金化し
たところ耐食性、に顕著な効果があり、ノジュラーコロ
ージョンの発生を防止することができた。
Therefore, the inventors discovered that the intermetallic compound with Zr is cubic (cu).
I searched for metals that form Te (bic) or tetragonal crystals, and found that there are many types of Te intermetallic compounds, but Zr4Te3 is a tetragonal compound.
When alloyed with zirconia t-, it had a remarkable effect on corrosion resistance and was able to prevent the occurrence of nodular corrosion.

、Teは0.05〜3.0重量%の含有でノジュラーコ
ロージョンの発生を防止することができる。Te含有敏
が、3.0重景%を超えてもノジュラーコロージョンを
防止することはできるが、中性子吸収断面積および加工
性に与える影響を少なくするために、3重量%を超えて
添加しない方が良い。
, Te can prevent the occurrence of nodular corrosion by containing 0.05 to 3.0% by weight. Although nodular corrosion can be prevented even if the Te content exceeds 3.0% by weight, it should not be added in an amount exceeding 3% by weight to reduce the effect on the neutron absorption cross section and processability. It's better.

また、 0.05重量%未満では充分な効果を得ること
ができない。さらに1本発明者等は、テルルを添加すべ
きジルコニウム合金として、ジルカロイ−2,ジルカロ
イ−4を含むニッケル5重量%以下、鉄5重量%以下、
クロム1重量%以下、°錫、1.5重斌%以下、ニオブ
2.5重量%以下を含むジルコニウム合金とすると一層
効果がある。
Further, if the amount is less than 0.05% by weight, sufficient effects cannot be obtained. Furthermore, the present inventors have proposed that the zirconium alloy to which tellurium should be added includes 5% by weight or less of nickel and 5% by weight or less of iron, including Zircaloy-2 and Zircaloy-4.
A zirconium alloy containing 1% by weight or less of chromium, 1.5% by weight or less of tin, and 2.5% by weight or less of niobium is even more effective.

この場合のニッケル、鉄、クロムはジルコニウムとの金
属間化合物により析出硬化し、充分な強度及び耐ノジユ
ラーコロ−ジョン性を得る為に添加される。ニッケル、
鉄は5重量%まで耐ノジユラーコロ−ジョン性、強度を
向上させ、又クロムは1重量%まで耐ノジユラーコロ−
ジョン性2強度を向上させるがこれを超えて含有した場
合には耐ノジユラーコロ−ジョン性向上には影響を与え
ず、また中性子吸収断面積が大きくなる為、この範囲と
した。錫の1.5重量%までの含有は、ニッケル、鉄、
クロムによる耐ノジユラーコロ−ジョン性改善効果を損
なう事なく強度及び加工性を向上させる事ができる。ニ
オブも2.5重に%までの含有は耐ノジユラーコロ−ジ
ョン性を向」ニさせるが、これを超えると、加工性が悪
くなる為この範囲とした。
In this case, nickel, iron, and chromium are precipitation hardened by intermetallic compounds with zirconium, and are added in order to obtain sufficient strength and nodular corrosion resistance. nickel,
Iron improves nodular corrosion resistance and strength up to 5% by weight, and chromium improves nodular corrosion resistance up to 1% by weight.
Although it improves the corrosion resistance 2 strength, if the content exceeds this range, it will not affect the improvement of the nodular corrosion resistance and the neutron absorption cross section will increase, so this range was set. The content of tin up to 1.5% by weight is nickel, iron,
Strength and workability can be improved without impairing the effect of improving nodular corrosion resistance due to chromium. Niobium content of up to 2.5% by weight improves the nodular corrosion resistance, but if it exceeds this, workability deteriorates, so this range was set.

(実施例) 実施例1 重量%でスズ1.5%、鉄0.10%、クロム0.10
%、ニッケル0.05%(以上ジルカロイ−2成分)、
テルル0.1%、残部ジルコニラ11を溶解し、 fJ
!2造、熱間押出β急冷し、その後冷間圧延と焼鈍の繰
り返しで2 nwn厚の板材を製造した。
(Example) Example 1 Tin: 1.5%, iron: 0.10%, chromium: 0.10% by weight
%, nickel 0.05% (Zircaloy - 2 components),
Dissolve 0.1% tellurium and the balance zirconia 11, fJ
! A plate material having a thickness of 2 nwn was produced by repeatedly hot extruding, β-quenching, and then cold rolling and annealing.

該板(才と全く同じ方法で作ったジルカロイ−2板材と
を500℃、107 kg / ajの高温水蒸傑中の
腐食加速試験を行った結果、ジルカロイ−2板材は24
時間でノジュラーコロージョンが発生したが本発明のテ
ルルを含む合金ではノジュラーコロージョンの発生は無
かった。
As a result of conducting a corrosion acceleration test in high-temperature steam steam at 500℃ and 107 kg/aj on this plate (and a Zircaloy-2 plate made in exactly the same way as the plate), the Zircaloy-2 plate material had a corrosion resistance of 24.
Nodular corrosion occurred over time, but no nodular corrosion occurred in the tellurium-containing alloy of the present invention.

実施例2 重)迂でスズ1.5%、 鉄0.2%、 クロム0.1
%(以」ニジ用カロイ−4成分)、テルル0.3%、残
部ジルコニウムの板材を得た。ジルカロイ−4と共に実
施例−1と同様の腐食加速試験を行なった結果1本発明
の合金はノジュラーコロージョンは発生せず良好な耐食
性を示した。
Example 2 Heavy: 1.5% tin, 0.2% iron, 0.1 chromium
% (hereinafter referred to as 4 components of Caloy for Rainbow), 0.3% tellurium, and the balance zirconium. As a result of carrying out the same accelerated corrosion test as in Example 1 with Zircaloy-4, the alloy of the present invention did not cause nodular corrosion and exhibited good corrosion resistance.

実施例;3 重量%で、スズ0.5%、鉄0.2%、ニッケル0.1
%。
Example; 3 Weight%: tin 0.5%, iron 0.2%, nickel 0.1
%.

テルル1.0%、残部ジルコニウムを溶解して実施例1
と同様に合金板材を作った。
Example 1 by dissolving 1.0% tellurium and remaining zirconium
An alloy plate material was made in the same way.

実施例4 重量%で0.1%テルルを、ニッケル1.0%残部ジル
コニウムに含有させて合金板材を作った。
Example 4 An alloy plate material was produced by incorporating 0.1% tellurium (by weight) in nickel (1.0% balance) and zirconium.

実施例5 重量%で0.3%テルルを鉄0.5%残部ジルコニウム
に含有させて合金板材を作った。
Example 5 An alloy plate material was produced by containing 0.3% tellurium (by weight) in iron, 0.5% balance zirconium.

実施例6 重量%で0.5%テルルを、ニオブ1.0%残部ジルコ
ニウムに含有させて合金板材を作った。
Example 6 An alloy plate material was produced by incorporating 0.5% tellurium (by weight) into niobium 1.0% balance zirconium.

実施例3〜6の合金に対し、実施例1と同様の高温水蒸
気試験を行ったところ、いずれもジルカロイ−2,ジル
カロイ−4より耐食性は良くノジュラーコロージョンの
発生はなかった。
When the alloys of Examples 3 to 6 were subjected to the same high-temperature steam test as in Example 1, all had better corrosion resistance than Zircaloy-2 and Zircaloy-4, and no nodular corrosion occurred.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、耐食性。 As explained above, according to the present invention, corrosion resistance is achieved.

特に耐ノジユラーコロ−ジョン特性に優れた耐食性ジル
コニウム合金を得ることができる。
A corrosion-resistant zirconium alloy particularly excellent in nodular corrosion resistance can be obtained.

代理人 弁理士 則 近 憲 佑 同     松  山  光  之Agent: Patent Attorney Noriyuki Chika Same pine mountain light

Claims (1)

【特許請求の範囲】[Claims] テルル0.05〜3重量%、ニッケル5重量%以下、鉄
5重量%以下、クロム1重量%以下、錫1.5重量%以
下、ニオブ2.5重量%以下、及び残部が実質的にジル
コニウムより成ることを特徴とする耐食性ジルコニウム
合金。
0.05 to 3% by weight of tellurium, 5% by weight or less of nickel, 5% or less of iron, 1% or less of chromium, 1.5% or less of tin, 2.5% or less of niobium, and the remainder is substantially zirconium. A corrosion-resistant zirconium alloy characterized by comprising:
JP6813888A 1988-03-24 1988-03-24 Corrosion-resistant zirconium alloy Pending JPH01242747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6813888A JPH01242747A (en) 1988-03-24 1988-03-24 Corrosion-resistant zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6813888A JPH01242747A (en) 1988-03-24 1988-03-24 Corrosion-resistant zirconium alloy

Publications (1)

Publication Number Publication Date
JPH01242747A true JPH01242747A (en) 1989-09-27

Family

ID=13365085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6813888A Pending JPH01242747A (en) 1988-03-24 1988-03-24 Corrosion-resistant zirconium alloy

Country Status (1)

Country Link
JP (1) JPH01242747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232220A (en) * 1990-07-25 1992-08-20 Combustion Eng Inc Corrosion-resistant zirconium alloy with improved extensibility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232220A (en) * 1990-07-25 1992-08-20 Combustion Eng Inc Corrosion-resistant zirconium alloy with improved extensibility

Similar Documents

Publication Publication Date Title
US5080861A (en) Corrosion resistant zirconium alloy
KR930006170A (en) Zirconium Alloys with Excellent Ductility
JPH07504500A (en) Reactor fuel rod with double layer cladding
JPS59184882A (en) Nuclear fuel rod
WO2005094504A2 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
US4876064A (en) Corrosion resistant zirconium alloys containing bismuth
US4963323A (en) Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
JPS6239787A (en) Composite nuclear fuel coated tube
US5244514A (en) Creep resistant zirconium alloy
US5901193A (en) Nuclear fuel element for pressurized-water reactors
Cox Recent developments in zirconium alloy corrosion technology
JPH01242747A (en) Corrosion-resistant zirconium alloy
EP0287889B1 (en) Corrosion resistant zirconium alloys containing bisbuth
JPH01242746A (en) Corrosion-resistant zirconium alloy
US4863685A (en) Corrosion resistant zirconium alloys
US2990274A (en) Uranium-titanium-niobium alloys
JPH02173235A (en) Corrosion resisting zirconium alloy
JPH01116045A (en) Corrosion-resistant zirconium alloy
JP3003862B2 (en) Corrosion resistant zirconium alloy
US5122334A (en) Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors
JP2675297B2 (en) Corrosion resistant zirconium alloy
US3431104A (en) Zirconium base alloy
JPS60256084A (en) Composite type zirconium alloy coated pipe
JPH02118044A (en) Corrosion-resistant zirconium alloy
JPH01111837A (en) Corrosion-resistant zirconium alloy