JPH01242541A - Production of glycol ethers - Google Patents

Production of glycol ethers

Info

Publication number
JPH01242541A
JPH01242541A JP63069270A JP6927088A JPH01242541A JP H01242541 A JPH01242541 A JP H01242541A JP 63069270 A JP63069270 A JP 63069270A JP 6927088 A JP6927088 A JP 6927088A JP H01242541 A JPH01242541 A JP H01242541A
Authority
JP
Japan
Prior art keywords
glycol
catalyst
hydrogen
glycol esters
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069270A
Other languages
Japanese (ja)
Inventor
Osamu Takahashi
収 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP63069270A priority Critical patent/JPH01242541A/en
Publication of JPH01242541A publication Critical patent/JPH01242541A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the present substances useful as a solvent, refrigerant, absorber, plasticizer, etc., in high yield at a low cost, by reacting glycol esters with hydrogen in the presence of a catalyst capable of hydrogenating ester bonds into ether bonds. CONSTITUTION:Glycol esters (e.g., propylene glycol monoacetate) are reacted with hydrogen in the presence of a catalyst containing Fe, Co, Ni, Ru, Rh, Pd, Pt, etc., and supported by alumina, etc., at 50-350 deg.C under 10-300kg/cm<2>G for 0.1-50hr to afford the present substances. The molar ratio of the glycol esters to the hydrogen used is preferably 1:0.1-50 and the weight ratio of the glycol esters to the catalyst is preferably 0.1-1000. The reaction can be carried out in any of the liquid, vapor and vapor-liquid phases.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、グリコールエステル類からグリコールエーテ
ル類を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing glycol ethers from glycol esters.

[従来の技術および発明が解決しようとする課題]グリ
コールエーテル類には、グリコールモノエーテル類、グ
リコールエーテルエステル類およびグリコールジエーテ
ル類があり、各種溶剤、冷媒、吸収剤、可塑剤、浸透剤
、軟化剤など幅広い用途に使用することができる工業上
有用な化合物である。
[Prior art and problems to be solved by the invention] Glycol ethers include glycol monoethers, glycol ether esters, and glycol diethers, and they can be used in various solvents, refrigerants, absorbents, plasticizers, penetrants, It is an industrially useful compound that can be used for a wide range of purposes, including as a softening agent.

従来、グリコールエーテル類の製造方法としては、エポ
キシ化合物とアルコールまたはカルボン酸エステルを反
応させる方法(特開昭61−204141号公報、特開
昭60−78938号公報)がある。しかし、この方法
は、原料として、エポキシ化合物およびアルコール又は
カルボン酸エステルを用いるため、変動加工費が割高と
なり、主に溶剤として使用する場合、コスト的に不利で
あるという問題点があった。
Conventionally, as a method for producing glycol ethers, there is a method of reacting an epoxy compound with an alcohol or a carboxylic acid ester (JP-A-61-204141, JP-A-60-78938). However, since this method uses an epoxy compound and alcohol or carboxylic acid ester as raw materials, variable processing costs are relatively high, and when used mainly as a solvent, there is a problem in that it is disadvantageous in terms of cost.

一方、従来の他の製造方法としては、グリコール類とオ
レフィンを反応させる方法(特開昭60−163831
号公報)がある。しかし、この方法は、原料であるグリ
コール類が、エポキシ化合物から得られるため結果的に
は、前記方法に比較して製造工程が1段長くなるという
欠点があつtこ 。
On the other hand, as another conventional production method, there is a method of reacting glycols with olefins (Japanese Patent Application Laid-Open No. 163831/1983)
Publication No.). However, this method has the disadvantage that since the raw material glycols are obtained from epoxy compounds, the production process is one step longer than in the above method.

さらに、従来の他の製造方法としては、アルデヒド類と
合成ガスを反応させる方法(特開昭60−246334
号公報)がある。しかし、この方法は、得られるグリコ
ールエーテル類の収率が低いという欠点があった。
Furthermore, as another conventional production method, a method of reacting aldehydes with synthesis gas (Japanese Patent Application Laid-Open No. 60-246334
Publication No.). However, this method has the drawback that the yield of glycol ethers obtained is low.

本発明は上記欠点を解決した高収率のグリコールエーテ
ル類の製造方法を提供することを目的とするものである
The object of the present invention is to provide a method for producing glycol ethers with high yield, which solves the above-mentioned drawbacks.

[課題を解決するだめの手段1 そこで、本発明者らは、従来技術よりも高収率で、かつ
安価にグリコールエーテル類を製造するために鋭意研究
を重ねた結果、工業上安価に入手できるオレフィン、カ
ルボン酸および酸素を反応させることによって高収率で
容易に得ることができるグリコールエステル類に着目し
、このグリコールエステル類のエステル結合を水素化す
ることによりエーテル結合に変換することができること
を見い出し、本発明を完成するに至った。
[Means to Solve the Problem 1] Therefore, the present inventors have conducted extensive research to produce glycol ethers at a higher yield and at a lower cost than conventional techniques, and as a result, the present inventors have developed a method for producing glycol ethers that can be obtained industrially at a low cost. Focusing on glycol esters, which can be easily obtained in high yields by reacting olefins, carboxylic acids, and oxygen, we discovered that the ester bonds of these glycol esters could be converted to ether bonds by hydrogenation. This finding led to the completion of the present invention.

すなわち、本発明は、エステル結合をエーテル結合に水
素化することができる触媒の存在下、グリコールエステ
ル類を水素と反応させることを特徴とするグリコールエ
ーテル類の製造方法である。
That is, the present invention is a method for producing glycol ethers, which is characterized by reacting glycol esters with hydrogen in the presence of a catalyst capable of hydrogenating ester bonds to ether bonds.

本発明において原料として使用するグリコールエステル
類とは、グリコールモノエステル類およびグリコールジ
エステル類であり、具体的には、たとえは、エチレング
リコールモノホルメート、エチレングリコールジアセテ
ート、エチレンクリコールモノアセテ−1・、エチレン
グリコールジアセテート、エチレングリコールモノプロ
ビオネート、エチレングリコールジアセテート、プロピ
レングリコールモノホルメート、プロピレングリコール
モノアセテート、プロピレングリコールジアセテート、
プロピレングリコールモノプロピオネート、プロピレン
グリコールジアセテート、1.2−ブチレングリコール
モノアセテート、1.2−ブチレングリコールジアセテ
ート、2.3−ブチレングリコールモノアセテート、2
.3−ブチレングリコールジアセテート、2.3−ブチ
レングリコールジブロピオ不一ト、2.3−ブチレンゲ
リコールモノブチレートおよび、これらに反応を阻害し
ない置換基を有するものなどがある。反応を阻害しない
置換基としては、たとえば、アルキル基、アリール基、
アラルキル基、アミノ基、ハロゲン原子などがある。
Glycol esters used as raw materials in the present invention include glycol monoesters and glycol diesters, and specifically, examples include ethylene glycol monoformate, ethylene glycol diacetate, and ethylene glycol monoacetate.・, ethylene glycol diacetate, ethylene glycol monoprobionate, ethylene glycol diacetate, propylene glycol monoformate, propylene glycol monoacetate, propylene glycol diacetate,
Propylene glycol monopropionate, propylene glycol diacetate, 1.2-butylene glycol monoacetate, 1.2-butylene glycol diacetate, 2.3-butylene glycol monoacetate, 2
.. Examples thereof include 3-butylene glycol diacetate, 2,3-butylene glycol dibropiopropionate, 2,3-butylene gelicol monobutyrate, and those having substituents that do not inhibit the reaction. Examples of substituents that do not inhibit the reaction include alkyl groups, aryl groups,
Examples include aralkyl groups, amino groups, and halogen atoms.

本発明において使用する前記グリコールエステル類は、
1種単独で使用してもよいし、2種以上使用してもよい
。    − 本発明において使用する水素は、純水素だけでなく、不
純物を含んでもよい。不純物としては、−酸化炭素、二
酸化炭素、メタン、エタンなどの炭化水素などがある。
The glycol esters used in the present invention are:
One type may be used alone, or two or more types may be used. - The hydrogen used in the present invention is not only pure hydrogen, but may also contain impurities. Impurities include carbon oxide, carbon dioxide, hydrocarbons such as methane, and ethane.

具体的には、たとえば、水の電解、水性ガスの変性、石
油類のガス化などにより得られる水素が使用できる。
Specifically, hydrogen obtained by, for example, electrolysis of water, modification of water gas, gasification of petroleum, etc. can be used.

本発明は、前記グリコールエステル類と水素を特定の触
媒の存在下に反応させる。本発明において使用できる触
媒は、エステル結合をエーテル結合に水素化できる触媒
であり、具体的には、t;とエバ、鉄、コバルト、ニッ
ケル、ルテニウム、ロジウム、パラジウム、イリジウム
、白金などの周期律表第■属の元素を1種以上含む触媒
、クロム、モリブデン、タングステンなどの周期律表第
■属の元素を1種以上含む触媒、マンガン、レニウムな
どの周期律表第■属の元素を1種以上含む触媒などがあ
り、好ましくは、鉄、コバルト、ニッケル、ルテニウム
、ロジウム、パラジウム、イリジウム、白金などの周期
律表第■属の元素を1種以上含む触媒である。
In the present invention, the glycol esters and hydrogen are reacted in the presence of a specific catalyst. Catalysts that can be used in the present invention are catalysts that can hydrogenate ester bonds to ether bonds, and specifically include t; Catalyst containing one or more elements of group ■ of the periodic table, such as chromium, molybdenum, tungsten, etc. Catalyst containing one or more elements of group ■ of the periodic table, such as manganese, rhenium, etc. There are catalysts containing one or more types of elements, preferably catalysts containing one or more elements of group Ⅰ of the periodic table, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum.

なお、これらの元素は、1種単独で用いてもよいし、2
種以上を組み合わせて使用してもよい。
Note that these elements may be used alone or in combination of two
You may use a combination of two or more species.

前記触媒に含まれる元素の状態は、特に限定されるもの
ではなく、たとえ−ば、金属単体、合金、金属間化合物
、酸化物、硫化物、炭化物、窒化物、水素化物、塩化物
、水酸化物、炭酸塩、オキシノ10ゲン化物、カルボン
酸塩、硫酸塩、リン酸塩、ケイ酸塩、シアン化物、酸素
酸塩、シアノ錯体などの無機化合物の形で存在してもよ
く、また、カルボニル錯体、アレン錯体、ヒドリド錯体
、ホスフィン錯体、アルキル錯体、アセチルアセトナト
錯体、オレフィン錯体、ジエン錯体、アセチレン錯体、
カルベン錯体などの有機金属錯体もしくは、有機金属化
合物の形で存在してもよい。これらの成分は、1種°単
独でもよく、2種以上組み合わせて用いてもよい。
The state of the elements contained in the catalyst is not particularly limited, and includes, for example, simple metals, alloys, intermetallic compounds, oxides, sulfides, carbides, nitrides, hydrides, chlorides, and hydroxides. It may exist in the form of inorganic compounds such as carbonates, oxyno-10 compounds, carboxylates, sulfates, phosphates, silicates, cyanides, oxylates, cyano complexes, etc. complex, arene complex, hydride complex, phosphine complex, alkyl complex, acetylacetonato complex, olefin complex, diene complex, acetylene complex,
It may be present in the form of an organometallic complex or organometallic compound such as a carbene complex. These components may be used alone or in combination of two or more.

本発明の触媒は、上記の様に種々の形で用いることがで
きるが、上記元素を含む成分を担体に担持させたものが
好ましい。担体には、特に制限はなく、通常、担持水素
化触媒に使用される担体を用いることができる。このよ
うな担体として、具体的には、たとえば、γ−アルミナ
、l−アルミナ、α〜アルミナなどのアルミナ、シリカ
ゲル、シリカ、シリカアルミナ、ケイソウ土、カーボン
、ゼオライト、チタニア、ジルコニアまたは、ヘテロポ
リ酸を担持した酸性担体などがある。
The catalyst of the present invention can be used in various forms as described above, but it is preferable to use a catalyst in which a component containing the above-mentioned elements is supported on a carrier. The carrier is not particularly limited, and carriers commonly used for supported hydrogenation catalysts can be used. Specifically, such carriers include, for example, alumina such as γ-alumina, l-alumina, α-alumina, silica gel, silica, silica alumina, diatomaceous earth, carbon, zeolite, titania, zirconia, or heteropolyacid. Examples include acidic carriers.

本発明に使用する触媒が固体触媒である場合、その形状
には、特に制限はなく、たとえば、粉体、粒状、柱状、
球、ペレット状、繊維状などの形状で用いることができ
る。
When the catalyst used in the present invention is a solid catalyst, its shape is not particularly limited, and examples include powder, granules, columns,
It can be used in the form of spheres, pellets, fibers, etc.

本発明においては、前記グリコールエステル類と前記水
素とを前記触媒の存在下に反応させて、対応するグリコ
ールエーテル類を製造する。
In the present invention, the corresponding glycol ethers are produced by reacting the glycol esters with the hydrogen in the presence of the catalyst.

反応温度は、通常、室温〜450°Cの範囲であるが、
好ましくは、50〜350℃の範囲である。
The reaction temperature is usually in the range of room temperature to 450°C,
Preferably, the temperature is in the range of 50 to 350°C.

反応圧力は、通常、常圧−500kg/ cm’Gの範
囲であるが、好ましくはlO〜300 kg/cm”G
の範囲である。
The reaction pressure is usually in the range of normal pressure - 500 kg/cm'G, but preferably in the range of lO to 300 kg/cm'G.
is within the range of

反応時間は、通常、0.05〜100時間の範囲である
か、好ましくは、001〜50時間の範囲である。
The reaction time usually ranges from 0.05 to 100 hours, preferably from 0.001 to 50 hours.

反応を行うに際しての前記水素とグリコールエステル類
の割合は、グリコールエステル類に対する水素のモル比
が、通常、0.01〜1ooの範囲とするのが好ましく
、特に0.1〜5oの範囲とするのか好ましい。
The molar ratio of hydrogen to glycol esters in carrying out the reaction is usually preferably in the range of 0.01 to 10, particularly in the range of 0.1 to 50. Or preferable.

また、前記グリコールエステル類と触媒の割合は、触媒
に対するグリコールエステル類のMfk比が、通常、0
.01−10000の範囲が好ましく、特に0.1−1
000の範囲とするのが好ましい。
The ratio of the glycol esters to the catalyst is such that the Mfk ratio of the glycol esters to the catalyst is usually 0.
.. A range of 0.01-10000 is preferred, particularly 0.1-1
The range is preferably 000.

なお、前記反応は、液相、気相、気液相のいずれの状態
でも行うことができる。液相反応においては、種々の溶
媒を使用することができ、好ましくは、水素化反応雰囲
気下で反応しないものである。これらの溶媒の具体例と
しては、たとえば、エーテル、ジオキサン、テトラヒド
ロフランなどの環状エーテル、カルボン酸、アルコール
などがある。気相反応においては、種々の希釈剤を使用
することかで°き、好ましくは、水素化反応雰囲気下で
反応しないものである。これらの希釈剤の具体例として
は、窒素、ヘリウム、ネオンなどの不活性ガスがある。
In addition, the said reaction can be performed in any state of liquid phase, gas phase, or gas-liquid phase. In the liquid phase reaction, various solvents can be used, preferably those that do not react in the hydrogenation reaction atmosphere. Specific examples of these solvents include ether, dioxane, cyclic ethers such as tetrahydrofuran, carboxylic acids, and alcohols. In the gas phase reaction, various diluents may be used, preferably those that do not react in the hydrogenation reaction atmosphere. Examples of these diluents include inert gases such as nitrogen, helium, and neon.

前記反応は、気相、液相などのいずれの状態においても
、回分法、連続流通法、半回分法などの反応形式によっ
て実施することができる。
The reaction can be carried out in any state, such as gas phase or liquid phase, by a reaction method such as a batch method, a continuous flow method, or a semi-batch method.

以上のような方法によって、グリコールエステル類を水
素と反応させ、対応するグリコールエーテル類を収率よ
く得ることができる。ここで対応するグリコールエーテ
ル類とは、クリコールエステル類のエステル結合が、エ
ーテル結合に変換された化合物をいう。
By the method described above, glycol esters can be reacted with hydrogen and corresponding glycol ethers can be obtained in good yield. The corresponding glycol ethers herein refer to compounds in which the ester bonds of glycol esters are converted to ether bonds.

なお、得られたグリコールエーテル類は、公知の方法で
、分離、回収され、必要に応じ、精製される。
Incidentally, the obtained glycol ethers are separated and recovered, and if necessary, purified by a known method.

また、本発明においては、未反応物をリサイクルして反
応させることlこより、高収率でグリコールエーテル類
を製造することができる。
Furthermore, in the present invention, glycol ethers can be produced in high yield by recycling unreacted materials and reacting them.

[実施例] 以下、本発明を実施例により、さらに詳細に説明するが
、本発明の範囲は、これらの例によりなんら限定される
ものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited in any way by these Examples.

実施例1 内容1150ccのオートクレーブに、溶媒としての1
.4−ジオキサン60.0g、[料であるプロピレング
リコールモノアセテ−)(PGMA)5.9gを仕込む
。これに触媒として、5%のRuをカーボンに担持させ
たもの(日本エンゲルハルト製)1.09を加えて密封
した。
Example 1 In a 1150 cc autoclave, 1 as a solvent was added.
.. 60.0 g of 4-dioxane and 5.9 g of propylene glycol monoacetate (PGMA) were charged. As a catalyst, 1.09 of 5% Ru supported on carbon (manufactured by Engelhard Japan) was added and sealed.

オートクレーブ内を窒素ガスで2回、水素ガスで2回置
換したのち、室温にて、水素ガスを100 kg/ c
m”Gまで圧入した。オートクレーブを150°Cまで
加熱し、その温度で6時間撹拌を続け、反応を行った。
After purging the inside of the autoclave twice with nitrogen gas and twice with hydrogen gas, at room temperature, replace hydrogen gas at 100 kg/c.
The autoclave was heated to 150°C, and stirring was continued at that temperature for 6 hours to carry out the reaction.

その後、オートクレーブを室温まで冷却し、中の液体を
ガスクロマトグラフにて定量分析した。
Thereafter, the autoclave was cooled to room temperature, and the liquid inside was quantitatively analyzed using a gas chromatograph.

その結果、PGMAの転化率は、53.6%、プロピレ
ングリコールモノエチルエーテル(PGMEE)の選択
率は70.0%であった。
As a result, the conversion rate of PGMA was 53.6%, and the selectivity of propylene glycol monoethyl ether (PGMEE) was 70.0%.

実施例2 実施例1において、反応温度および反応時間を150°
Cで6時間撹拌を続け、その後130°Cで1.5時間
撹拌を続けることに代えたこと以外は、実施例1と同様
の操作で反応を行った。
Example 2 In Example 1, the reaction temperature and reaction time were changed to 150°.
The reaction was carried out in the same manner as in Example 1, except that stirring was continued at C for 6 hours and then at 130°C for 1.5 hours.

その結果、PGMAの転化率69.1%、PGMEEの
選択率65.1%であった。
As a result, the conversion rate of PGMA was 69.1%, and the selectivity of PGMEE was 65.1%.

実施例3 実施例1において、触媒を5%のPdをカーボンに担持
させたもの1.09に代えたこと以外は、実施例1と同
様の操作を行った。
Example 3 The same operation as in Example 1 was performed except that the catalyst was replaced with 1.09% Pd supported on carbon.

その結果、PGMAの転化率は、19.7%、PGME
Eの選択率は72.0%であった。
As a result, the conversion rate of PGMA was 19.7%, PGME
The selectivity of E was 72.0%.

実施例4 実施例1において、触媒を5%のRhをカーボンに担持
させたもの1.09に代えたこと以外は、実施例1と同
様の操作を行った。
Example 4 The same operation as in Example 1 was carried out except that the catalyst was replaced with 1.09 % of Rh supported on carbon.

その結果、PGMAの転化率は、13.0%、PGME
Eの選択率は68.0%であった。
As a result, the conversion rate of PGMA was 13.0%, PGME
The selectivity of E was 68.0%.

実施例5 実施例1において、触媒を5%のPtをカーボンに担持
させたちのt、oyに代えたこと以外は、実施例1と同
様の操作を行った。
Example 5 The same operation as in Example 1 was carried out except that the catalyst was replaced with t,oy, which is made by supporting 5% Pt on carbon.

その結果、PGMAの転化率は、24.6%、PGME
Eの選択率は71.6%であった。
As a result, the conversion rate of PGMA was 24.6%, PGME
The selectivity of E was 71.6%.

実施例6 実施例1において、触媒を50%のNiをケイソウ土に
担持させたもの3.09に代えたこと以外は、実施例1
と同様の操作を行った。
Example 6 Example 1 except that the catalyst was replaced with 50% Ni supported on diatomaceous earth 3.09.
The same operation was performed.

その結果、PGMAの転化率は、18.9%、PGME
Eの選択率は72.1%であった。
As a result, the conversion rate of PGMA was 18.9%, PGME
The selectivity of E was 72.1%.

実施例7 実施例6において、反応温度を180℃に代えたこと以
外は、実施例6と同様の操作を行った。
Example 7 The same operation as in Example 6 was performed except that the reaction temperature was changed to 180°C.

その結果、PGMAの転化率は、45.0%、PGME
Eの選択率は70.5%であった。
As a result, the conversion rate of PGMA was 45.0%, PGME
The selectivity of E was 70.5%.

実施例8 内容積1’ 50 ccのオートクレーブに、溶媒とし
ての1.4−ジオキサン60.0.、原料であるプロピ
レンゲリコールジアセテート(PGDA)8.09を仕
込む。これに触媒として、5%のRuをカーボンに担持
させたもの(日本エンゲルハルト製)1.09を加え、
密封した。
Example 8 Into an autoclave having an internal volume of 1'50 cc, 60.0% of 1,4-dioxane was added as a solvent. , 8.09% of the raw material propylene gelicol diacetate (PGDA) is charged. To this, 5% Ru supported on carbon (manufactured by Engelhard Japan) 1.09 was added as a catalyst.
Sealed.

オートクレーブ内を窒素ガスで2回置換したのち、水素
ガスで2回置換した。その後、室温にて、水素ガスを1
00 kg/ cm2Gまで圧入した。
The inside of the autoclave was purged twice with nitrogen gas, and then twice with hydrogen gas. Then, at room temperature, 1 liter of hydrogen gas was added.
It was press-fitted up to 00 kg/cm2G.

オートクレーブを180℃まで加熱し、その温度にて、
6時間撹拌を続けた。その後、オートクレーブを室温ま
で冷却し、中の液体をガスクロマトグラフにて定量分析
した。
Heat the autoclave to 180℃, and at that temperature,
Stirring was continued for 6 hours. Thereafter, the autoclave was cooled to room temperature, and the liquid inside was quantitatively analyzed using a gas chromatograph.

その結果、PGDAの転化率は、38.0%、プロピレ
ングリコールエチルエーテルアセテート(PGEEA)
の選択率は、59.7%、プロピレングリコールジエチ
ルエーテル(PGDEE)の選択率は、23.5%、P
GMEHの選択率は、10.2%であった。
As a result, the conversion rate of PGDA was 38.0%, and the conversion rate of propylene glycol ethyl ether acetate (PGEEA) was 38.0%.
The selectivity of P is 59.7%, the selectivity of propylene glycol diethyl ether (PGDEE) is 23.5%, and the selectivity of PGDEE is 23.5%.
The selectivity of GMEH was 10.2%.

実施例9 実施例8において、触媒を5%のPdをカーボンに担持
させたちの1.05+に代えたこと以外は、実施例8と
同様の操作を行った。
Example 9 The same operation as in Example 8 was carried out, except that the catalyst was replaced with 1.05+ of 5% Pd supported on carbon.

その結果、PODAの転化率は、14.6%、PGEE
Aの選択率は、61.3%、PGDEHの選択率は、2
0.8%、PGMEEの選択率は、9.8%であった。
As a result, the conversion rate of PODA was 14.6%, PGEE
The selectivity of A is 61.3%, and the selectivity of PGDEH is 2
The selectivity for PGMEE was 9.8%.

実施例1O 内容積150ccのオートクレーブに、溶媒としての1
,4−ジオキサンso、og、原料であるエチレングリ
コールモノアセテート(EGMA)5.09を仕込んだ
。これに触媒として、5%のRuをカーボンに担持させ
たもの(日本エンゲルハルト製)1.09を加え、密封
した。
Example 1O In an autoclave with an internal volume of 150 cc, 1 as a solvent was added.
, 4-dioxane so, og, and 5.09 g of ethylene glycol monoacetate (EGMA) as a raw material were charged. To this was added 5% Ru supported on carbon (manufactured by Engelhard Japan) 1.09 as a catalyst, and the container was sealed.

オートクレーブ内を窒素ガスで2回置換したのち、水素
ガスで2回置換した。その後、室温にて、水素ガスを1
00 ky/ cm”Gまで圧入した。
The inside of the autoclave was purged twice with nitrogen gas, and then twice with hydrogen gas. Then, at room temperature, 1 liter of hydrogen gas was added.
It was press-fitted to 00 ky/cm"G.

オートクレーブを150°Cまで加熱し、その温度にて
、6時間撹拌を続けた。その後、オートクレーブを室温
まで冷却し、中の液体をガスクロマトグラフにて定量分
析した。
The autoclave was heated to 150°C and stirring was continued at that temperature for 6 hours. Thereafter, the autoclave was cooled to room temperature, and the liquid inside was quantitatively analyzed using a gas chromatograph.

その結果、EGMAの転化率は、48.9%、エチレン
クリコールモノエチルエーテルの選択率は、74.3%
であった。
As a result, the conversion rate of EGMA was 48.9%, and the selectivity of ethylene glycol monoethyl ether was 74.3%.
Met.

[発明の効果] 以上、説明した本発明によれば、グリコールエステル類
を水素化することにより、高収率で、しかも安価に、グ
リコールエーテル類を製造することができる。
[Effects of the Invention] According to the present invention described above, glycol ethers can be produced in high yield and at low cost by hydrogenating glycol esters.

以上のように、本発明は、優れた効果を有し、工業的価
値は、極めて高いものである。
As described above, the present invention has excellent effects and has extremely high industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1 エステル結合をエーテル結合に水素化することがで
きる触媒の存在下、グリコールエステル類を水素と反応
させることを特徴とするグリコールエーテル類の製造方
法。
1. A method for producing glycol ethers, which comprises reacting glycol esters with hydrogen in the presence of a catalyst capable of hydrogenating ester bonds to ether bonds.
JP63069270A 1988-03-25 1988-03-25 Production of glycol ethers Pending JPH01242541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069270A JPH01242541A (en) 1988-03-25 1988-03-25 Production of glycol ethers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069270A JPH01242541A (en) 1988-03-25 1988-03-25 Production of glycol ethers

Publications (1)

Publication Number Publication Date
JPH01242541A true JPH01242541A (en) 1989-09-27

Family

ID=13397817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069270A Pending JPH01242541A (en) 1988-03-25 1988-03-25 Production of glycol ethers

Country Status (1)

Country Link
JP (1) JPH01242541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023081174A1 (en) * 2021-11-05 2023-05-11 Dow Global Technologies Llc Process for producing an ether using a heterogeneous catalyst comprising a transition metal on a zeolite carrier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276152A (en) * 1985-09-30 1987-04-08 東芝ライテック株式会社 Manufacturing glass sealing molybdenum wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276152A (en) * 1985-09-30 1987-04-08 東芝ライテック株式会社 Manufacturing glass sealing molybdenum wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023081174A1 (en) * 2021-11-05 2023-05-11 Dow Global Technologies Llc Process for producing an ether using a heterogeneous catalyst comprising a transition metal on a zeolite carrier

Similar Documents

Publication Publication Date Title
US3755423A (en) Process for preparing an unsaturated glycol diester
US4758600A (en) Process for the manufacture of ethanol
CN1024666C (en) Production of alcohols and ethers by the catalysed hydrogenation of esters
US20080021229A1 (en) Process for Preparing Epichlorhydrin from Ethane
US8420868B2 (en) Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
JP5964961B2 (en) Process for preparing 1,4-cyclohexanedimethanol from terephthalic acid
JP5973565B2 (en) Method for preparing 1,4-cyclohexanedimethanol
CN102245549B (en) An improved process for hydrogenating alkyl ester(s) in the presence of carbon monoxide
JP2014524408A (en) Integrated preparation of 1,4-cyclohexanedimethanol from terephthalic acid
US8394997B2 (en) Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
WO2005116004A1 (en) Process for preparing epichlorohydrin from ethane
JP4121647B2 (en) Method for producing alcohol
US5684167A (en) Process for producing 2-hydroxy-4-methyltetrahydrofuran
JPH01242541A (en) Production of glycol ethers
CN1042128C (en) Process for preparation of alcohols
JP2001172211A (en) Method for producing both of cyclododecanone and cyclododecanol
US6762332B2 (en) Process for preparing an alcohol from an olefin
JP7033686B1 (en) Pentacyclopentadecane dimethanol products
JPS63190837A (en) Conversion of alcohol to homologue thereof
JPS58159433A (en) Preparation of ethylene glycol
JP2001302570A (en) Method for producing cyclododecanone and cyclododecanol
JP2022080721A (en) Production method of alicyclic compound, and alicyclic compound
JP2001302650A (en) Method for producing epoxycyclododecane
JP2023143030A (en) Method for producing 1,3-cyclopentanediol
JPS6259232A (en) Production of ethanol