JPH01242217A - Manufacture of resin manifold - Google Patents

Manufacture of resin manifold

Info

Publication number
JPH01242217A
JPH01242217A JP63069729A JP6972988A JPH01242217A JP H01242217 A JPH01242217 A JP H01242217A JP 63069729 A JP63069729 A JP 63069729A JP 6972988 A JP6972988 A JP 6972988A JP H01242217 A JPH01242217 A JP H01242217A
Authority
JP
Japan
Prior art keywords
core
resin
molding
melting point
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069729A
Other languages
Japanese (ja)
Inventor
Yuji Tanaka
裕二 田中
Noriyoshi Tanada
規義 棚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63069729A priority Critical patent/JPH01242217A/en
Publication of JPH01242217A publication Critical patent/JPH01242217A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/52Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles soluble or fusible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/44Removing or ejecting moulded articles for undercut articles
    • B29C45/4457Removing or ejecting moulded articles for undercut articles using fusible, soluble or destructible cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To manufacture a manifold of various kinds of shapes with superior mechanical strength easily by combining a core having superior flexibility and shape retaining properties and a metal core. CONSTITUTION:A core 1 is heated with a flexible heater 5 and a low melting point alloy 6 sealed inside is melted to deform into a desired shape. After deforming, the low melting point alloy 6 is solidified by cooling and fixing into a desired shape. A core 7 for molding is formed by combining the core 1 of desired shape and a metal insert block 9. Said core 7 is inserted into a model mold 8 of a manifold, and then resin 10 is injected to coat the outer peripheral section of the core 7 for molding. Then, a molded product is released from the model mold 8, and a flexible heater 5 of the core 1 is heated to melt the low melting point alloy 6 and pulled out, and then the metal insert block 9 is pulled out. Pulling completed in several minutes and a desired manifold is manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数の屈曲パイプ部と該屈曲パイプ部につな
がる中空ひろがり部とによって構成される樹脂製多岐管
(例えば自動車用樹脂製吸気管)の製造法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a resin manifold (for example, a resin intake pipe for an automobile) that is composed of a plurality of bent pipe parts and a hollow expanding part connected to the bent pipe parts. ).

(従来の技術) 従来技術を自動車用吸気管の例を代表として説明すると
現在、はとんどの自動車用吸気管は、その複雑な中空形
状のため、アルミニウム合金等の金属材料によって鋳造
により作られている。しかしながら、前記方法及び素材
で作られた吸気管の内壁表示は粗(、このため、エンジ
ン燃焼室への空気の流入に除し、圧力損失が大きく、吸
入効率を低下させ、かつ重いという欠点を有している。
(Prior art) To explain the conventional technology using the example of an automobile intake pipe as a representative example, most automobile intake pipes are currently made by casting from metal materials such as aluminum alloys due to their complex hollow shapes. ing. However, the inner wall of the intake pipe made with the above method and material is rough (because of this, it has the disadvantages of large pressure loss, low intake efficiency, and heavy weight, compared to the inflow of air into the engine combustion chamber). have.

本発明に関わる技術としては、低融点合金(例えば、1
38℃)のビスマス合金によって、所望形状の中子を作
製し、該中子を金型内に挿入し、これに樹脂を被覆した
後、前記中子を溶出して作られる樹脂製吸気管の製造方
法がある。この方法によって作られた吸気管の内壁表面
は平滑で、エンジン性能の向上に大きく寄与する。
The technology related to the present invention includes low melting point alloys (for example, 1
A core of a desired shape is made from bismuth alloy (38°C), the core is inserted into a mold, the core is coated with resin, and the core is eluted to create a resin intake pipe. There is a manufacturing method. The inner wall surface of the intake pipe made by this method is smooth, which greatly contributes to improving engine performance.

(発明が解決すべき課題) しかしながら、低融点合金の中子を用いて作られる吸気
管は、その中子の溶出において熱風あるいはヒータ等の
加熱(伝熱)を必要とする。すなわち、中子の溶出は低
融点合金の熱溶融という状態変化が律速となるため、中
子の溶出除去には時間がかかり、吸気管1個当りの生産
時間は長くなってしまう。また中子の溶出時間を短縮す
るために、中子への加熱温度を上げると製品素材は好ま
しからざる熱的影響を受けるとともに、使用できる素材
を制限してしまうことにもなる。また複雑な内部形状を
有する吸気管の場合、中子の溶出において、吸気管内壁
に固着した低融点合金を完全に除去することは困難であ
り、固着した低融点合金が吸気管内壁に残留したままエ
ンジンに装着した場合、振動等によって脱落し、エンジ
ン内部に取込まれ、著しい支障をきたす可能性が高く、
実用に供するには多(の問題を残しているのが現状であ
る。
(Problems to be Solved by the Invention) However, an intake pipe made using a core of a low melting point alloy requires heating (heat transfer) using hot air or a heater to elute the core. That is, since the elution of the core is rate-determined by the state change of thermal melting of the low melting point alloy, it takes time to elute and remove the core, and the production time per intake pipe becomes longer. Furthermore, if the heating temperature of the core is increased in order to shorten the elution time of the core, the product material will be subject to undesirable thermal effects, and the materials that can be used will be limited. In addition, in the case of an intake pipe with a complicated internal shape, it is difficult to completely remove the low melting point alloy that has adhered to the inner wall of the intake pipe during core elution, and the fixed low melting point alloy may remain on the inner wall of the intake pipe. If it is attached to the engine as it is, there is a high possibility that it will fall off due to vibration etc. and be taken into the engine, causing serious trouble.
At present, there are still many problems in putting it into practical use.

(課題を解決する手段) 本発明は、 (1)屈曲パイプ部を形成するべき複数の屈曲自在性及
び形状保持性とを合せ持った中子lと、核屈曲パイプ部
につながる中空ひろがり部を形成するべき金属製入子9
とを連結したのち、屈曲パイプ部を形成するべき複数の
中子1を所望形状に変形させて、成形用中子7として、
これを金型8内に挿入しこれに樹脂10を被覆して成形
品を得た後、成形品から該成形用中子を構成する複数の
屈曲自在性及び形状保持性とを合せ持った中子lと金属
製入子9とを引抜き、必要に応じて樹脂部品11で、金
属製入子9を引抜いた中空ひろがり部の開口部を溶着に
よってふたをすることを特徴とする、複数の屈曲パイプ
部と該屈曲パイプにつながる中空ひろがり部とによって
構成される樹脂製多岐管の製造方法 (2)屈曲パイプ部を形成するべき複数の屈曲自在性及
び形状保持性とを合せ持った中子lを分岐部品14を用
いて連結した後、これら複数の中子を該屈曲パイグ部に
つながる中空ひろがり部を形成するべき金属製入子16
に連結して得た成形用中子13を用いることを特徴とす
る前記第(1)項記載の、複数の屈曲パイプ部と該屈曲
パイプ部につながる中空ひろがり部とによって構成され
、かつ前記屈曲パイプ部が少なくとも部分的に分岐して
いる樹脂製多岐管の製造方法 (3)樹脂10が発泡成形によって得られる、前記第(
tlまたは(2)項記載の樹脂製多岐管の製造方法(4
)  多岐管が吸気管である前記(11、(21または
(3)項記載の樹脂製多岐管の製造方法 を提供する。
(Means for Solving the Problems) The present invention provides: (1) A core l having a plurality of bending properties and shape retention properties to form a bent pipe part, and a hollow expanding part connected to the core bending pipe part. Metal insert 9 to be formed
After connecting them, the plurality of cores 1 to form the bent pipe portion are deformed into a desired shape to form a molding core 7.
After inserting this into a mold 8 and coating it with resin 10 to obtain a molded product, the molded product is made into a plurality of molding cores that have both flexibility and shape retention. A plurality of bends characterized by pulling out the insert 1 and the metal insert 9, and, if necessary, using a resin component 11 to cover the opening of the hollow expanding part from which the metal insert 9 was pulled out by welding. Method for manufacturing a resin manifold consisting of a pipe portion and a hollow expanding portion connected to the bent pipe (2) A plurality of cores having flexibility and shape retention for forming a bent pipe portion After connecting the plurality of cores using the branch part 14, a metal insert 16 is formed to form a hollow expanding part that connects the plurality of cores to the bent pipe part.
The molding core 13 described in item (1) above, characterized in that the molding core 13 obtained by connecting the molding core 13 to Method for manufacturing a resin manifold in which the pipe portion is at least partially branched (3) The resin 10 is obtained by foam molding.
tl or the method for manufacturing a resin manifold described in section (2) (4
) Provides a method for manufacturing a resin manifold according to item (11, (21) or (3) above, wherein the manifold is an intake pipe.

ここでいう中空ひろがり部とは、例えば自動車用の場合
は吸気管のサージタンク部あるいはキャブレター装着部
のことをいい、屈曲パイプ部とは、前記中空ひろがり部
から空気あるいは混合気をエンジン燃焼室へ導く通路の
ことをいう。
For example, in the case of automobiles, the hollow extending section refers to the surge tank section of the intake pipe or the carburetor mounting section, and the bent pipe section refers to the hollow extending section that directs air or air-fuel mixture to the engine combustion chamber. It refers to a passage that leads.

本発明は、屈曲自在性と形状保持性とを合せ持つ中子と
金属製入子とを用いることで、樹脂製多岐管例えば樹脂
製吸気管を容易に製造する方法を提供するものである。
The present invention provides a method for easily manufacturing a resin manifold, such as a resin intake pipe, by using a core and a metal insert that have both flexibility and shape retention.

本発明は樹脂製の前記第(1)ないしく4)項記載の構
成を有する多岐管の製造法に広く応用可能である。
The present invention can be widely applied to a method of manufacturing a manifold made of resin and having the configuration described in items (1) to 4) above.

本発明の詳細な説明快に説明するために以下自動車用吸
気管の例について述べる。
DETAILED DESCRIPTION OF THE INVENTION In order to provide a convenient explanation of the present invention, an example of an automobile intake pipe will be described below.

しかし本発明の技術的範囲はこれらの例に限定されるも
のではない。
However, the technical scope of the present invention is not limited to these examples.

本発明は、例えば自動車用樹脂製吸気管の製造を目的と
した場合は以下の工程に従う。以下、第1.2.3.4
,5.6図を用いて本発明を説明する。
For example, when the present invention is intended to manufacture a resin intake pipe for an automobile, the following steps are followed. Below, Section 1.2.3.4
, 5.6, the present invention will be explained.

イン 吸気管の屈曲パイプ部を形成すべき、複数の、屈
曲自在性と形状保持性とを合せ持つ芯材(例えば金属製
たわみ管)2に、樹脂10と非接着性を有し、かつ該樹
脂の成形温度において流動しない耐熱性を有するエラス
トマー3を芯は表面の凹凸を消失させるように被覆した
中子1と前記屈曲パイプ部よりつながる開口部を有する
中空ひろがり部を形成すべき金属製入子9とを連結し、
成形用中子7とする。
In. A plurality of core materials (for example, metal flexible pipes) 2 having both bendability and shape retention properties, which are to form the bent pipe portion of the intake pipe, are non-adhesive to the resin 10 and are A core 1 is coated with a heat-resistant elastomer 3 that does not flow at the molding temperature of the resin so as to eliminate surface irregularities, and a metal insert is formed to form a hollow widening part having an opening connected to the bent pipe part. Connect child 9,
This is referred to as a molding core 7.

前記屈曲自在性とは、中子lを成形品(吸気管)から引
抜く時に生じる中子1の曲げ、曲げ戻し力及び中子表面
と被覆した樹脂10との間に生じる。・プ振力に起因す
る中子1の引抜き力が、成形品母材の破壊強度を超えな
い力で口出に変形可能なことをいう。また形状保持性と
は、金型内において所望形状を維持し、かつ少なくとも
成形時の樹脂の流動圧等によって変形しない程度の剛性
を有することをいう。
The above-mentioned bendability is caused by the bending and unbending force of the core 1 that occurs when the core 1 is pulled out from the molded product (intake pipe), and between the core surface and the coated resin 10.・It means that the core 1 can be deformed into a protrusion with a force that does not exceed the breaking strength of the base material of the molded product when the pull-out force caused by the vibration force of the core 1 is generated. In addition, shape retention refers to maintaining a desired shape in a mold and having at least enough rigidity not to be deformed by resin flow pressure during molding.

前記、屈曲自在性と形状保持性とを合せ持つ芯材2(実
施例)としては、屈曲自在性を有したたわみ管あるいは
ホース等に低融点合金6(例えば融点124℃、ビスマ
スと鉛の共晶合金)を封入して、加熱することにより低
融点合金6を溶融させ屈曲自在性を持たせ、冷却するこ
とによって低融点合金6を固化させ形状保持性を持たせ
たものなどがある。中子lの形状保持性は、少なくとも
被覆する樹脂10の流動圧によって変形しない程度の剛
性を有していれば良いが必要に応じて低融点合金6の封
入量及び封入形態(例えば、丸棒状、中空パイプ状)を
考慮することで剛性を自由に向上、低下させることがで
きる。しかしながら芯材2の構造及び該構造体を形成す
る素材は特に限定されるものではな(・。
As the core material 2 (embodiment) having both flexibility and shape retention, a flexible tube or hose having flexibility is made of a low melting point alloy 6 (for example, a melting point of 124°C, a combination of bismuth and lead). There is one in which the low melting point alloy 6 is encapsulated with a crystalline alloy and heated to melt the low melting point alloy 6 to provide flexibility, and the low melting point alloy 6 is solidified by cooling to provide shape retention. The shape retention of the core 1 should be such that it has at least enough rigidity to not be deformed by the flow pressure of the resin 10 covering it, but if necessary, the amount of low melting point alloy 6 and the shape of the encapsulation (for example, a round bar shape) may be determined. , hollow pipe shape), the rigidity can be freely increased or decreased. However, the structure of the core material 2 and the material forming the structure are not particularly limited.

前記芯材に被覆するエラストマー3としては、ポリイソ
プレン等の天然ゴム、シリコンゴム、ふっ素ゴム、ウレ
タンゴム、ブタジェンゴム等の合成ゴム及び熱可塑性エ
ラストマー等を使用できるが、前記芯材2の表面の凹凸
を消失させかつ成形しようとする樹脂lOの成形温度に
おいて流動しない耐熱性と該樹脂と非接着性という機能
を有すれば素材は特に限定されるものではない。
As the elastomer 3 covering the core material, natural rubber such as polyisoprene, synthetic rubber such as silicone rubber, fluoro rubber, urethane rubber, butadiene rubber, thermoplastic elastomer, etc. can be used. The material is not particularly limited as long as it has the functions of being heat resistant and non-adhesive to the resin 1O and disappearing at the molding temperature of the resin IO to be molded.

第1図は中子1の一例であるが、18はフレキシブルヒ
ーター5のサポート%19は金属製たわみ管2のサポー
ト、20は電源である。
FIG. 1 shows an example of the core 1, in which 18 is a support for the flexible heater 5, 19 is a support for the metal flexible tube 2, and 20 is a power source.

口)次に前記成形用中子7の屈曲パイプ部を形成する中
子lを加熱し、内部に封入された低融点合金6を溶融さ
せ所望の形状に変形させた後、そのまま冷却しく例えば
放冷)低融点合金6を固化させることで形状を作製する
。屈曲パイプ部を形成する中子lの加熱法としては、外
部加熱(例えば、熱風)でも良いが、形状作製の操作時
間を短縮するために該中子内部に屈曲自在性を有するヒ
ータ5を挿入し、内部から直接加熱すると一層効果的で
ある。
) Next, the core l forming the bent pipe part of the molding core 7 is heated, the low melting point alloy 6 sealed inside is melted and deformed into a desired shape, and then cooled as it is, for example, released. A shape is produced by solidifying the cold) low melting point alloy 6. External heating (for example, hot air) may be used as a heating method for the core l that forms the bent pipe portion, but a bendable heater 5 is inserted inside the core to shorten the operation time for shape creation. However, direct heating from the inside is more effective.

また、中子lの形状作製操作は、金属性入子9に連結し
た後でも、先でもさしつかえはない。
Further, the shape of the core 1 may be formed either after or after the core 1 is connected to the metal insert 9.

ハ)前記所望形状に変形させた成形用中子7を余塵8内
に挿入し5、該中子外周部に樹脂lOを被覆する。成形
用中子7表面への樹脂(成形品)10の成形法としては
、熱可塑性樹脂を用いる場合は、射出成形あるいは発泡
射出成形等があり、また熱硬化樹脂を用いる場合は、注
型成形、トランスファー成形、圧縮成形等で成形される
。この際、使用される樹脂は公知の任意の樹脂を使用で
きるが、吸気管としての性能を考慮して選択される。
c) The molding core 7 deformed into the desired shape is inserted 5 into the residual dust 8, and the outer periphery of the core is coated with resin lO. Methods for molding the resin (molded product) 10 onto the surface of the molding core 7 include injection molding or foam injection molding when using a thermoplastic resin, and cast molding when using a thermosetting resin. , transfer molding, compression molding, etc. At this time, the resin used may be any known resin, but it is selected in consideration of the performance as an intake pipe.

また、樹脂(成形品)10の成形法として発泡成形は特
に有効である。発泡成形とは、成形時に中子lへは樹脂
の流動圧及び発泡圧しかかからず、例えば、射出成形時
の射出圧力のような力はかからない成形法のことをいう
。このため中子lへの樹脂の圧縮力も小さく中子lを成
形品から引抜く際に必要な引抜き力を小さくできる。し
かしながら使用する樹脂及び成形法は特に限定されるも
のではない。また、製品の使用目的に応じて該樹脂は補
強材、充填材、発泡剤、着色剤、安定剤、滑剤等を含有
してもよいことはもちろんである。
Furthermore, foam molding is particularly effective as a molding method for the resin (molded article) 10. Foam molding refers to a molding method in which only resin flow pressure and foaming pressure are applied to the core l during molding, and no force such as injection pressure during injection molding is applied, for example. Therefore, the compressive force of the resin on the core 1 is small, and the pulling force required to pull out the core 1 from the molded product can be reduced. However, the resin used and the molding method are not particularly limited. Furthermore, it goes without saying that the resin may contain reinforcing materials, fillers, foaming agents, colorants, stabilizers, lubricants, etc., depending on the intended use of the product.

二)成形後、成形用中子7を構成する中子lを熱風等に
よる外部加熱あるいは該中子内部に挿入したヒータ5に
よる内部加熱によって、該中子内部に封入しである低融
点合金6を溶融させ、屈曲自在性を持たせることによっ
て成形品12から引抜き、次に中空ひろがり部の開口部
から金属製入子9を引抜く。
2) After molding, the core l constituting the molding core 7 is heated externally by hot air or the like or internally heated by the heater 5 inserted into the core to form a low melting point alloy 6 sealed inside the core. The molded product 12 is pulled out by melting and bending, and then the metal insert 9 is pulled out from the opening of the hollow expanding portion.

ホ)前記成形品12において、金属製入子9を引抜いた
中空ひろがり部の開口部が大きすぎる場合あるいは不要
な場合は、必要に応じ【樹脂部品11によって溶着し密
閉することによって樹脂製吸気管を得る。この際、樹脂
部品11に用いる素材は、成形品と同一であることが良
いのはもちろんである。また、この開口部を利用して付
属部品(例えば、エアー70−メータ、圧力センサー等
を有した部品)をボルト締め、接着、溶着等によって固
定しても良い。
e) In the molded product 12, if the opening of the hollow expanding part from which the metal insert 9 is pulled out is too large or unnecessary, if necessary, [by welding and sealing with the resin part 11, get. At this time, it is of course preferable that the material used for the resin part 11 be the same as that of the molded product. Further, this opening may be used to fix attached parts (for example, parts having an air 70 meter, pressure sensor, etc.) by bolting, adhesion, welding, or the like.

前記溶着法としては、スピンウェルディング、超音波溶
着等の既知の方法で行ない得る。
The welding method may be a known method such as spin welding or ultrasonic welding.

へ)吸気管を構成する屈曲パイプ部が部分的に分岐して
いる場合は、あらかじめ一体成形あるいは少なくとも2
つに分割して成形された部品を、はめあわせ、接着、溶
着等によって接合した分岐部品14で複数の中子lを接
続し、次にこれらa数を中空ひろがり部を形成する金属
製入子16に連結して、成形用中子13とする。前記分
岐部品14は、複数の中子1をさし込み、はさみ込み等
によって接続する機能を有していればよく、分岐部品7
の構造及び素材は限定されない。例えば素材としては樹
脂、金属、セラミック等を用い得る。
f) If the bent pipe that makes up the intake pipe is partially branched, it must be integrally molded or at least two
A plurality of cores l are connected by a branch part 14, which is formed by fitting, gluing, welding, etc., the parts that have been molded separately, and then connecting these a number of parts to a metal insert that forms a hollow expanding part. 16 to form a molding core 13. The branch part 14 only needs to have the function of connecting a plurality of cores 1 by inserting them, inserting them, etc., and the branch part 7
The structure and material are not limited. For example, resin, metal, ceramic, etc. can be used as the material.

(実施例及び比較例) 比較例1 屈曲パイプ部と該パイプ部よりつながる中空ひろがり部
とによって構成される吸気管のモデル型8を用いて、低
融点合金(融点124℃)の中子を作製し、金型内に挿
入した後、射出圧力500路/cm’でG F 33%
補強ナイロン66樹脂を射出成形によって、中子の外周
部に肉厚4m鳳で役i1した。次に成形品を金型から取
出し、150℃のギアオーブン中に入れて中子を溶出さ
せた。中子の溶出には30分以上かかり、かつ成形品に
は変色が見られ、好ましくないほど熱的影響を強く受け
た。
(Examples and Comparative Examples) Comparative Example 1 A core of a low melting point alloy (melting point 124°C) was produced using model type 8 of an intake pipe, which is composed of a bent pipe part and a hollow widening part connected to the pipe part. After inserting it into the mold, the injection pressure was 500 passages/cm' and G F was 33%.
A reinforcing nylon 66 resin was injection molded to form a 4m-thick hole on the outer periphery of the core. Next, the molded product was taken out from the mold and placed in a gear oven at 150° C. to dissolve the core. Elution of the core took more than 30 minutes, and the molded article showed discoloration and was undesirably strongly affected by heat.

実施例1 金属製たわみ管(外径φ19g、内径φ1611)を芯
材2として、これに耐熱性のニジストマー3(シリコン
ゴム、肉厚4 mm )を芯材2表面の凹凸を消失させ
るように被覆した。次に芯材2内部にフレキシブルヒー
タ5(ヒータ容t 60 W/m、 外径φ6龍)を挿
入し、芯材2とフレキシブルヒータ5との間に低融点合
金6(融点124℃)を溶融させ流し込み中子1とした
Example 1 A metal flexible tube (outer diameter φ19 g, inner diameter φ1611) was used as the core material 2, and heat-resistant Nistomer 3 (silicon rubber, wall thickness 4 mm) was coated on this to eliminate irregularities on the surface of the core material 2. did. Next, a flexible heater 5 (heater capacity t 60 W/m, outer diameter φ6) is inserted into the core material 2, and a low melting point alloy 6 (melting point 124°C) is melted between the core material 2 and the flexible heater 5. It was poured into core 1.

次に前記中子1複数を中空ひろがり部を形成する金属製
入子9にさし込み、中子lをフレキシブルヒータ5によ
って加熱し、低融点合金6を溶融させ、所望形状に変形
後そのまま冷却固化させ成形用中子7とした。これを吸
気管のモデルfMsに挿入した後、射出圧力500 k
g/cm”でGF33%補強ナイロン66樹脂を射出成
形によって、成形用中子7の外周部に肉厚4關で被覆し
た。次に成形品を金型から取出し、中子1をフレキシブ
ルヒータ5によって加熱し、低融点合金6を溶融させ引
抜キ、つずいて金属製入子9を引抜いた。中子1及び金
属製入子9の引抜き操作は、数分以内で終了し、かつ中
子lの引抜き力は30時程度と低かった。最後に、金属
製入子9を引抜いた中空ひろがり部の開口部を、樹脂部
品11によってスピンウェルディングにより蓋をし容易
に吸気管のモデル成形品が得られた。
Next, the plurality of cores 1 are inserted into a metal insert 9 forming a hollow expanding part, the core 1 is heated by a flexible heater 5, the low melting point alloy 6 is melted, and after being deformed into a desired shape, it is cooled as it is. It was solidified to form a molding core 7. After inserting this into the intake pipe model fMs, the injection pressure was 500 k.
The outer periphery of the molding core 7 was coated with a thickness of 4 mm by injection molding with GF33% reinforced nylon 66 resin at a strength of was heated to melt the low melting point alloy 6 and then pulled out, and then the metal insert 9 was pulled out.The operation of pulling out the core 1 and the metal insert 9 was completed within a few minutes, and the core The pulling force of l was as low as about 30 hours.Finally, the opening of the hollow widening part from which the metal insert 9 was pulled out was covered by spin welding with the resin part 11, and the intake pipe model molded product was easily formed. was gotten.

実施例2 実施例1と同一の成形用中子7を金型8に挿入後、Q)
’ 33%補強ナイロン66t#脂をショートショット
去による低発泡射出成形(気泡率5〜lO%)により成
形用中子7の外周部に肉厚4 mmで被覆した。次に成
形品を金型かも取出し、実施例1と同様の方法で中子1
及び金属製入子9の引抜いた。中子1及び金属製入子9
は実施例1に示した一般射出成形品に比べて、10〜3
0%低い力で極めて容易に抜けた。
Example 2 After inserting the same molding core 7 as Example 1 into the mold 8, Q)
' 33% reinforced nylon 66t# resin was coated on the outer periphery of the molding core 7 to a thickness of 4 mm by low foaming injection molding (cell ratio 5 to 10%) using short shot removal. Next, the molded product was removed from the mold, and the core 1 was removed in the same manner as in Example 1.
and the metal insert 9 was pulled out. Core 1 and metal insert 9
is 10 to 3 compared to the general injection molded product shown in Example 1.
It came off extremely easily with 0% less force.

実施例3 複数の屈曲パイプ部と該パイプ部よりつながる中空ひろ
がり部とによって構成され、かつ前記屈曲パイプ部が少
なくとも部分的に分岐している吸気管のモデル型15に
、屈曲パイプ部が分岐を有する成形用中子13を挿入し
、射出圧力500 #/cwt2でGF33%補強ナイ
ロン66樹脂を射出成形によって、成形用中子13の外
周部に肉厚4朋で被覆した。成形用中子13は、前記実
施例1と同様の中子1をあらかじめGF33%補強ナイ
ロン66樹脂で2分割して射出成形されたスナツプフィ
ツトによるはめ合せ構造を有する分岐部品14で接続し
、次にこれら複数を金属製入子16に連結したものであ
る。成形後、成形品17を金型15かも取出し、実施例
1と同様の方法で中子1及び金属製入子16の引抜いた
。分岐部品14を用いることによって容易に屈曲パイプ
部が少な(とも部分的に分岐している成形品が得られた
Example 3 A model type 15 of an intake pipe is constructed of a plurality of bent pipe parts and a hollow widening part connected to the pipe parts, and the bent pipe parts are at least partially branched. A molding core 13 having the above-mentioned molding core 13 was inserted, and the outer periphery of the molding core 13 was coated with a wall thickness of 4 mm by injection molding with 33% GF reinforced nylon 66 resin at an injection pressure of 500 #/cwt2. The molding core 13 is made by dividing the same core 1 as in Example 1 into two parts in advance using 33% GF reinforced nylon 66 resin and connecting them with a branch part 14 having a snap-fitting structure formed by injection molding. A plurality of these are connected to a metal insert 16. After molding, the molded product 17 was also removed from the mold 15, and the core 1 and metal insert 16 were pulled out in the same manner as in Example 1. By using the branch part 14, a molded product with a small number of bent pipe parts (both partially branched) was easily obtained.

(発明の効果) 本発明は、以下に示す特有の効果をしめす。(Effect of the invention) The present invention exhibits the following unique effects.

(1)複数の屈曲自在性及び形状保持性とを合せ持った
中子と金属性入子及び分岐部品を用いることで、機械的
強度に優れた様々な形状の多岐管例えば吸気管などを容
易に製造できる。
(1) By using a core with multiple flexibility and shape retention properties, metal inserts, and branch parts, manifold pipes of various shapes with excellent mechanical strength, such as intake pipes, can be easily manufactured. can be manufactured.

(a 中子1及び金属性入子は、反復使用が可能であり
、低融点合金からなる中子に見られる作製処理及び溶出
除去等の操作を必要とせず、したがってこれに伴うおお
かかすな付加設備も必要としない。
(a) The core 1 and the metallic insert can be used repeatedly, and do not require the manufacturing process and operations such as elution and removal that are found in cores made of low-melting point alloys, and therefore do not require any major additions. No equipment is required.

(31発泡射出成形によって作られた成形品は、射出成
形によって作られた成形品に比べ、成形用中子への圧縮
力が小さいため、中子1及び金属性入子の引抜き操作を
容易にする。
(31 Molded products made by foam injection molding have less compressive force on the molding core than molded products made by injection molding, so it is easier to pull out the core 1 and the metal insert. do.

(4)現行の金属製吸気管を本発明によって樹脂、化す
れば、吸気管の軽量化を可能にし、自動車の第1.2,
3,4.5.6図は本発明の例を示す。第1図は、本実
施例に用いた屈曲自在性及び形状保持性とを合せ持った
中子1の概略図を示し、第2図は、実施例1に用いた成
形用中子7及び金型8の概略図を示し、第3図は、実施
例1.2によって得られた樹脂製吸気管のモデル成形品
概略図を示し、第4図は実施例2に用いた成形用中子1
3及び金型15の概略図を示し、第5図は、実施例3に
よって得られた樹脂製吸気管のモデル成形品概略図を示
し、第6図はスナツプフィツトによるはめ合せ構造を有
する分岐部品14の概略図を示した。
(4) If the current metal intake pipe is made of resin according to the present invention, it will be possible to reduce the weight of the intake pipe, and
Figures 3, 4, and 5.6 show examples of the invention. FIG. 1 shows a schematic diagram of a core 1 having both flexibility and shape retention properties used in this example, and FIG. 2 shows a molding core 7 and a metal core used in Example 1. A schematic diagram of mold 8 is shown, FIG. 3 is a schematic diagram of a model molded product of the resin intake pipe obtained in Example 1.2, and FIG. 4 is a schematic diagram of the molding core 1 used in Example 2.
3 and a mold 15, FIG. 5 shows a schematic diagram of a model molded product of a resin intake pipe obtained in Example 3, and FIG. 6 shows a branch part 14 having a snap fit structure. A schematic diagram is shown.

l:中子 2:芯材(例:金属製たわみ管) 3:耐熱性エラストマー(例:シリコンゴム)4:全型
内支持部 5:フレキシブルヒータ 6:低融点合金 7:成形用中子(実施例1,2) 8:金を   (実施例1,2) 9:金属製入子(実施例1,2) lO:樹脂   (実施例1,2.3)11:樹脂部品
 (実施例1,2) 12:成形品  (実施例3) 13:成形用中子(実施例3) 14二分岐部品 (実施例3) 15:金型   (実施例3) 16:金属製入子(実施例3) 17:成形品  (実施例3) 特許出願人 旭化成工業株式会社 第1図 第2図 第3図 1を 第4図 第5図
1: Core 2: Core material (e.g. metal flexible tube) 3: Heat-resistant elastomer (e.g. silicone rubber) 4: Support part within the whole mold 5: Flexible heater 6: Low melting point alloy 7: Molding core ( Examples 1, 2) 8: Gold (Examples 1, 2) 9: Metal insert (Examples 1, 2) lO: Resin (Examples 1, 2.3) 11: Resin parts (Example 1) , 2) 12: Molded product (Example 3) 13: Molding core (Example 3) 14 Bifurcated part (Example 3) 15: Mold (Example 3) 16: Metal insert (Example 3) 3) 17: Molded product (Example 3) Patent applicant Asahi Kasei Industries, Ltd. Figure 1 Figure 2 Figure 3 Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 屈曲パイプ部を形成するべき複数の屈曲自在性及び形状
保持性とを合せ持つた中子1と、該屈曲パイプ部につな
がる中空ひろがり部を形成するべき金属製入子9とを連
結したのち、屈曲パイプ部を形成するべき複数の中子1
を所望形状に変形させて、成形用中子7として、これを
金型8内に挿入しこれに樹脂10を被覆して成形品を得
た後、成形品から該成形用中子を構成する複数の屈曲自
在性及び形状保持性とを合せ持つた中子1と金属製入子
9とを引抜くことを特徴とする、複数の屈曲パイプ部と
該屈曲パイプにつながる中空ひろがり部とによつて構成
される樹脂製多岐管の製造方法
After connecting a plurality of cores 1 having both bendability and shape retention properties to form a bent pipe part and a metal insert 9 to form a hollow expanding part connected to the bent pipe part, A plurality of cores 1 to form a bent pipe part
is deformed into a desired shape and inserted into a mold 8 as a molding core 7 and coated with resin 10 to obtain a molded product, and then the molding core is constructed from the molded product. It has a plurality of bent pipe parts and a hollow expanding part connected to the bent pipes, which is characterized by pulling out the core 1 and the metal insert 9, which have both flexibility and shape retention. Manufacturing method for resin manifold consisting of
JP63069729A 1988-03-25 1988-03-25 Manufacture of resin manifold Pending JPH01242217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069729A JPH01242217A (en) 1988-03-25 1988-03-25 Manufacture of resin manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069729A JPH01242217A (en) 1988-03-25 1988-03-25 Manufacture of resin manifold

Publications (1)

Publication Number Publication Date
JPH01242217A true JPH01242217A (en) 1989-09-27

Family

ID=13411209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069729A Pending JPH01242217A (en) 1988-03-25 1988-03-25 Manufacture of resin manifold

Country Status (1)

Country Link
JP (1) JPH01242217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175598A (en) * 2004-12-20 2006-07-06 Matsushita Electric Works Ltd Branch joint molding method and mold therefor
EP3892435A1 (en) * 2020-04-07 2021-10-13 Rohr, Inc. Hybrid mandrel for use in tooling method and the manufacture of thrust reverse cascades and structures susceptible to trapped tooling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175598A (en) * 2004-12-20 2006-07-06 Matsushita Electric Works Ltd Branch joint molding method and mold therefor
JP4569289B2 (en) * 2004-12-20 2010-10-27 パナソニック電工株式会社 Forming method of branch joint
EP3892435A1 (en) * 2020-04-07 2021-10-13 Rohr, Inc. Hybrid mandrel for use in tooling method and the manufacture of thrust reverse cascades and structures susceptible to trapped tooling

Similar Documents

Publication Publication Date Title
US5176866A (en) Process for producing a resin product having a bent hollow portion and a core usable for the same process
JPH01242217A (en) Manufacture of resin manifold
EP0384924B1 (en) A process for producing a resin product having a bent hollow portion and a core usable for the same process
JP2511239B2 (en) Synthetic resin intake pipe for engine and method of manufacturing the same
JP2519481B2 (en) Manufacturing method of pipe with flange
JPS63239037A (en) Synthetic resin suction pipe for engine and manufacture thereof
JPH106348A (en) Hollow core, its production and production of hollow resin product using hollow core
JPH05329844A (en) Mold
JPH07232262A (en) Production of intake manifold
JPH106371A (en) Production of hollow resin product
JPS62144913A (en) Molding device for powder slush
JPH049210Y2 (en)
JPH0624729B2 (en) Molding core
JP3316260B2 (en) Vanishing model casting method
JPH07697Y2 (en) Synthetic resin intake pipe for engine
JPH04246518A (en) Manufacture of tubular body having filter part
JPH0790609B2 (en) Hose molding method for radiator liquid
JP2737456B2 (en) Injection molding method
JPH09254270A (en) Production of bent pipe made of resin
JPH01176526A (en) Manufacture of resin hollow material with flexible pipe section
JPH0530832Y2 (en)
JPH02121746A (en) Thereof low melting point alloy core and manufacture
JPH05253638A (en) Precision casting assembly
JPH1080935A (en) Manufacture of synthetic resin hollow body
JPS6094323A (en) Preparation of radiator header tank