JPH01242042A - Ultrasonic doppler blood flowmeter - Google Patents

Ultrasonic doppler blood flowmeter

Info

Publication number
JPH01242042A
JPH01242042A JP6709288A JP6709288A JPH01242042A JP H01242042 A JPH01242042 A JP H01242042A JP 6709288 A JP6709288 A JP 6709288A JP 6709288 A JP6709288 A JP 6709288A JP H01242042 A JPH01242042 A JP H01242042A
Authority
JP
Japan
Prior art keywords
stored
blood flow
memory means
signals
correlation function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6709288A
Other languages
Japanese (ja)
Inventor
Yoichi Sumino
住野 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6709288A priority Critical patent/JPH01242042A/en
Publication of JPH01242042A publication Critical patent/JPH01242042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To obtain data having good stability, by performing correlational operation between echo signals with respect to transmission timings of at least two times and operating the primary and secondary moments of the correlation coefficient thereof. CONSTITUTION:An ultrasonic probe 1 transmits an ultrasonic wave on the basis of the drive signal applied through a rate pulse generator 2, a delay line 3 and a pulser 4 and the echo signal obtained by the probe 1 is stored in a memory means 10 through a preamplifier 5, a delay wire 6, an adder 7, a gate circuit 8 and an A/D converter 9. The difference of the signals at every rates is calculated by a difference device 11 to be stored in a memory means 12. The data stored in the memory means 12 is sent to an FFT 13 through a switch SW2 and the output thereof is stored in a memory means 14 through switches SW3, SW4. An operation means 15 performs the correlational operation between echo signals with respect to transmission timings of at least two times and the primary and secondary moments relating to the correlation coefficient obtained by said operation are operated.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は、被検体の血管内を流れる血流速を超音波ビー
ムを用いて測定する超音波ドプラ血流計に関するもので
ある。
Detailed Description of the Invention [Objective of the Invention 1 (Industrial Application Field) The present invention relates to an ultrasonic Doppler blood flow meter that measures the velocity of blood flowing in a blood vessel of a subject using an ultrasonic beam. It is.

(従来の技術) 従来の超音波ドプラ血流計は、被検体に超音波を送波し
、被検体内の血流情報を得てその血流情報から血流速度
を求めるようにしている。
(Prior Art) A conventional ultrasonic Doppler blood flow meter transmits ultrasonic waves to a subject, obtains blood flow information within the subject, and calculates blood flow velocity from the blood flow information.

この場合、相異なるレートで得られた受信エコー同志の
時間軸上での相関関数を求め、折り返りなく高速血流を
得る方法が文献[υLTRASONICIHAGING
 8.73−85(1986) P73〜P85」に紹
介されている。この方式の概要を第2図及び第3図を用
いて説明する。
In this case, there is a method in the literature [υLTRASONICIHAGING] that obtains a correlation function on the time axis of received echoes obtained at different rates and obtains high-speed blood flow without aliasing.
8.73-85 (1986) P73-P85. An outline of this method will be explained using FIGS. 2 and 3.

第2図に示すように、血管内をその壁に平行な方向にV
なる速度で流れる血流速を図示の如き超音波ビームを用
いて測定する系を考える。ここで説明を簡単にするため
に血球が1個しか存在しないとする。k番目、に+1番
目のレートで受信エコーをyk(t)、 Vk+1(t
)とし、レート周期を王とすると、血球は、■の時間内
に・ COSθ・王だけ移動し通常T=250m、v=
1m/s程度とするとvl=0.25mであり、サンプ
ルボリウムの大きさく3繭稈度)に対してVTは十分少
さいのでに番目、に+1番目の両方のレートにおいて血
球エコーはyk(t)、 yk+1(t)の両方に表わ
れ、yk+1(t)とyk(t)とでは血球からのエコ
ーはrd=2v−cosθ−T/c(cは音速)だけ遅
延する。すなわち、この関係よっτdを測定すればv 
cosθが測定できることになる(T、Cは既知)。従
来技術ではτd測測定るために第3図(a)、(b)で
示されるVk(t)とyk+1(t)との相関関数R(
τ)を次式によって求め、R(τ) = f yk(t
)・yk+1(t+τ)dt同図(C)のようにIR(
τ)1が最大となるτの値をτdの推定値としている。
As shown in Figure 2, V inside the blood vessel is parallel to its wall.
Consider a system in which the velocity of blood flowing at a certain velocity is measured using an ultrasonic beam as shown in the figure. Here, to simplify the explanation, it is assumed that only one blood cell exists. The received echo at the k-th rate is yk(t), Vk+1(t
), and let the rate period be the king, the blood cells move by ・COSθ・in the time of ■, and normally T=250m, v=
If it is about 1 m/s, vl = 0.25 m, and VT is sufficiently small for the sample volume (3 culms), so the blood cell echo at both the 2nd and +1st rates is yk(t ), yk+1(t), and the echo from the blood cell is delayed by rd=2v-cosθ-T/c (c is the speed of sound) between yk+1(t) and yk(t). In other words, if we measure τd based on this relationship, v
This means that cos θ can be measured (T and C are known). In the prior art, in order to measure τd, the correlation function R(
τ) is determined by the following formula, and R(τ) = f yk(t
)・yk+1(t+τ)dtAs shown in the same figure (C), IR(
The value of τ for which τ)1 is the maximum is taken as the estimated value of τd.

この方法の重要な長所は高速血流の測定に適していると
いう点である。
An important advantage of this method is that it is suitable for measuring high velocity blood flow.

(発明が解決しようとする課題) しかしながら従来技術では、あるサンプルボリウム内の
平均流速を得るのに上述のように相互相関関数の絶対値
IR(τ)1が最大となるτをτいXとし、それを流速
Vの演算に用いるために、スペックルやホワイトノイズ
などの影響を受は易く、データの安定性が悪いという問
題があった。
(Problem to be Solved by the Invention) However, in the prior art, in order to obtain the average flow velocity in a certain sample volume, as described above, τ at which the absolute value IR(τ)1 of the cross-correlation function is maximum is set as τ , because it is used to calculate the flow velocity V, it is easily affected by speckles, white noise, etc., and there is a problem that the stability of the data is poor.

また、血流速のバラツキの指標である分散の情報が得ら
れないという臨床上重要な問題があった。
Furthermore, there was a clinically important problem in that information on dispersion, which is an index of variation in blood flow velocity, could not be obtained.

本発明は上記問題点を解決するためになされたものであ
り、安定性の良いデータが得られ、従来技術では得られ
なかった流速のバラツキの情報をも(qることのできる
超音波ドプラ血流計を提供することを目的とするもので
ある。
The present invention was made to solve the above-mentioned problems, and it is an ultrasonic Doppler blood system that can obtain data with good stability and also obtain information on flow velocity variations that could not be obtained with conventional technology. The purpose is to provide a flow meter.

[発明の構成] (課題を解決するための手段) 前記課題を解決するための本発明の構成は、被検体に超
音波を送受波し、被検体内の血流情報を冑て、その血流
情報から血流速度を求める超音波ドプラ血流計において
、受信エコー信号よりクラッタ成分を除去する除去手段
と、除去手段から得られた信号のうち少なくとも2回の
異なる送信タイミングで被検体内の同一部位からのエコ
ー信号間で相関演算を行う演算手段と、この演算ににつ
て得られた相関関数に関する1次及び2次モーメントを
演算する手段とを設けたものである。
[Structure of the Invention] (Means for Solving the Problems) The structure of the present invention for solving the above-mentioned problems is to transmit and receive ultrasonic waves to and from a subject, obtain information on blood flow inside the subject, and detect blood flow in the subject. In an ultrasonic Doppler blood flow meter that calculates blood flow velocity from flow information, a removal means removes clutter components from received echo signals, and a signal obtained from the removal means is transmitted at least two times at different timings within the subject. The apparatus is provided with a calculation means for performing a correlation calculation between echo signals from the same region, and a means for calculating the first and second moments regarding the correlation function obtained in this calculation.

(作 用) 流速を求めるのに相関関数の1次モーメント(重心)を
用いているので安定したデータが得られ、また、その2
次モーメント(分散)を求めることにより流速の分散の
情報をも得ることができる。
(Function) Since the first moment (center of gravity) of the correlation function is used to determine the flow velocity, stable data can be obtained, and the second
Information on the dispersion of flow velocity can also be obtained by determining the second moment (dispersion).

(実施例) 以下実施例により本発明を具体的に説明する。(Example) The present invention will be specifically explained below using Examples.

先ず本発明の詳細な説明するために実施例で用いる相関
関数の1次、2次モーメントの81偉方法を説明する。
First, in order to explain the present invention in detail, the 81 method of determining the first and second moments of the correlation function used in the embodiments will be explained.

相関関数R(τ)の1次モーメン!・をτ、2次七−メ
ンj〜をσ2とするとこれらは次式(11,(2+で表
わされる。
First moment of correlation function R(τ)! When .tau. is τ and the quadratic 7-men j~ is σ2, these are expressed by the following equation (11, (2+).

fτR(τ)dτ τ−・・・(1) J R(τ)d°τ f′″′(τ−r)2f?(τ)dτ σ2−□  ・・・(′2J J R(τ)dτ ここでR(τ)のフーリエ変換をVc(f)とするとV
c(f)はクロススペクトルと呼ばれ複素数となり、こ
れを絶対値と位相とに分けて次式(3)で表わす。
fτR(τ)dτ τ−...(1) J R(τ)d°τ f′″′(τ−r)2f?(τ)dτ σ2−□・・・(′2J J R(τ) dτ Here, if the Fourier transform of R(τ) is Vc(f), then V
c(f) is called a cross spectrum and is a complex number, which is divided into an absolute value and a phase and is expressed by the following equation (3).

i f)r(f) VC(f)= ! Vc(f) i 6−−−=−、、
、(3]また、相関関数の演算の入力となる2つの波形
Vk(t)、  yl+t(t)のそれぞれのフーリエ
変換をVk(f)、 Vk÷1(f)とするとそれぞれ
は次式(4)乃至(6)となる。
i f) r(f) VC(f)=! Vc(f) i 6−−−=−,,
, (3) Furthermore, if the Fourier transforms of the two waveforms Vk(t) and yl+t(t), which are input to the calculation of the correlation function, are Vk(f) and Vk÷1(f), then the following equations ( 4) to (6).

vc(r)=  Vk(f)  ・ Vk+1(f) 
           =(4)V k(f)= X 
k(f)+j Y k(f)      ・・(5)V
k+1(f)−Xk+1(f)+jYk+1m   ・
c61Xk(f)、 Yk(f)、 Xk+1(f)、
 Yk+1(f)は実数とすると上式(4)乃至(6)
より次式(7)が成り立つVc(f)= Xc(f)+
j Yc(f)X c(f)= X k(f)X k+
1 (f)+  Y k(f)Y k÷1(f)Y c
(f)−X k(f)Y k−1(f)−X k(f)
Y k+1(f)”’(7)Xc(f)、 Yc(f)
は実数 また、上式(3)と(7)とにより次式(8)、 (9
)の関係が成立する。
vc(r)=Vk(f) ・Vk+1(f)
=(4)Vk(f)=X
k(f)+j Y k(f)...(5)V
k+1(f)-Xk+1(f)+jYk+1m ・
c61Xk(f), Yk(f), Xk+1(f),
If Yk+1(f) is a real number, the above equations (4) to (6)
Therefore, the following equation (7) holds: Vc(f)=Xc(f)+
j Yc(f)X c(f)=X k(f)X k+
1 (f) + Y k (f) Y k ÷ 1 (f) Y c
(f)-X k(f)Y k-1(f)-X k(f)
Y k+1(f)''(7)Xc(f), Yc(f)
is a real number. Also, using the above equations (3) and (7), the following equations (8) and (9
) holds true.

l Vc(f) l = E累y「「丁Yc’(f) 
 ・・・(8)また、τ、σ2はVC(f)を用いて次
のように変形できる。
l Vc(f)
...(8) Also, τ and σ2 can be transformed as follows using VC(f).

く以下余白) dr2 ター(2π)2./:τ2 R(r) e−J”drこ
れらの式より次式(ト)乃za2)が得られる。
(margin below) dr2 ter (2π)2. /: τ2 R(r) e-J"dr From these equations, the following equation (g) za2) is obtained.

VC(0)= f”R(r)dr        −0
n)・・・側 上記(1)、 (2)、 (to)、 (II)、 (
12)式より次式(13,(14)が成立する。
VC(0)=f”R(r)dr −0
n)... side above (1), (2), (to), (II), (
From equation 12), the following equations (13 and (14)) hold true.

・・・(14) 以上のように(1)、 (2)式はクロススペクトルを
用いると(13,(14)式で表わされ、(1)、 (
2)式を使う方法では時間軸上での積和波等を行う必要
があるが、(13,(14)式を用いる方法ではFFT
(高速フーリエ変換)を用いてVC(f)を求めるので
(1)、 (2)式を用いる方法に比べ非常に高速にτ
、σ2を求めることができる。
...(14) As mentioned above, using cross spectra, equations (1) and (2) can be expressed as equations (13 and (14)), and (1), (
In the method using equation 2), it is necessary to perform a product-sum wave on the time axis, but in the method using equations (13 and (14)), FFT
(Fast Fourier Transform) is used to find VC(f), which is much faster than the method using equations (1) and (2).
, σ2 can be obtained.

第1図は上記原理を実現するための本発明の構成の一実
施例ブロック図である。以下同図に従ってその構成と作
用を説明する。
FIG. 1 is a block diagram of an embodiment of the configuration of the present invention for realizing the above principle. The structure and operation will be explained below with reference to the figure.

1は超音波プローブであり、レートパルス発生器2.遅
延線3.パルサー4を介しての駆動信号により超音波の
送信が行われるようになっている。
1 is an ultrasonic probe, rate pulse generator 2. Delay line 3. Ultrasonic waves are transmitted by a drive signal via the pulser 4.

このプローブ1によって得られたエコー信号はプリアン
プ5.遅延線6.加算器7を介してアレイ振動子の各チ
(/ンネルの信号を位相制御して加算した出力信号Sl
 (t)として得られるようになっている。8はゲート
回路であり前記信QS1(t)を各レート毎にA/D変
換器9に送る。A/D変換器9の出力はスイッチSW1
を介して各レート毎に複数のメモリを有する第1の記憶
手段10に送出され、格納される。すなわち、各メモリ
には各レート毎の信号ek(t)、 ek+1(t)、
 ek+2(t)−・・が格納される。このようにして
各メモリに格納された信号は差分器11によって隣接す
るレー]−間の差分を得る演算が行われ、その結果を複
数のメモリを有する第2の記憶手段12に格納される。
The echo signal obtained by this probe 1 is transmitted to the preamplifier 5. Delay line 6. An output signal Sl is obtained by controlling the phase of the signals of each channel of the array transducer and adding them via an adder 7.
(t). A gate circuit 8 sends the signal QS1(t) to the A/D converter 9 at each rate. The output of the A/D converter 9 is sent to the switch SW1.
The data is sent to the first storage means 10 having a plurality of memories for each rate and stored therein. That is, each memory stores signals ek(t), ek+1(t), and ek+1(t) for each rate.
ek+2(t)-... are stored. The signals stored in each memory in this manner are subjected to an operation to obtain a difference between adjacent rays by a subtractor 11, and the result is stored in a second storage means 12 having a plurality of memories.

すなわら、各メモリにはそれぞれV k(t)−e k
(t)−e k+1(t)、   v k+1(t)−
e k+1(t) −e k+2(t)−・・が格納さ
れる。このように差分をとるのは、血液などの移動して
いる物体以外の工]−をキャンセルするために行うもの
である。この意味でクラッタ除去手段と呼ぶことができ
る。
That is, each memory has V k(t)−e k
(t)-e k+1(t), v k+1(t)-
e k+1(t)-e k+2(t)-... are stored. The purpose of taking the difference in this way is to cancel the effects of objects other than moving objects such as blood. In this sense, it can be called a clutter removal means.

次に第2の記憶手段12に格納されている情報をスイッ
チSW2を介して順次取り出して高速フーリエ変換器(
FF工)13に送出する。FFT13では前記(5)、
 (6)式に示すJ:うな複素フーリエ変換演算性われ
、各周波数スペクトラム、すなわち、Xk(f)、 Y
k(f)、 Xk÷1げ)、 Yk+1(f)が(qら
れ、ここが実部Reと虚部Imに娠り分けられた後スイ
ッチSW3.SW4を介して第3の記憶手段14内の複
数のメモリに格納される。
Next, the information stored in the second storage means 12 is sequentially retrieved via the switch SW2, and the fast Fourier transformer (
FF engineering) Send to 13. In FFT13, the above (5),
J shown in equation (6) is the complex Fourier transform operability, and each frequency spectrum, that is, Xk(f), Y
k(f), stored in multiple memories.

その後演算手段15によって次の如き演算が行われる。Thereafter, the calculation means 15 performs the following calculation.

つまり、先ず前記(7)式の演算によってVc(f)が
求められ、次に前記(131,(14]式によってτ。
That is, first, Vc(f) is obtained by calculating the above equation (7), and then τ is obtained by the above equation (131, (14)).

σ2が求められる。σ2 is calculated.

このようにして得られたτが前記相関関数R(τ)の1
次モーメントであり、これが受信信号の重心となる。ま
た、σ2は2次モーメントであり受信信号の周波数スペ
クトラムの分散を示している。このようなτ、σ2 (
又はσ)がディジタルスキャンコンバータ(DSC>1
6を介して表示用信号として処理される。
τ obtained in this way is 1 of the correlation function R(τ)
This is the second moment, which is the center of gravity of the received signal. Further, σ2 is the second moment and indicates the dispersion of the frequency spectrum of the received signal. Such τ, σ2 (
or σ) is a digital scan converter (DSC>1
6 and processed as a display signal.

尚、前記演算手段15は上述の如き演算を行うものだけ
に限らず、前記(IJ、 <2)式の演算により直接τ
、σ2を求めるようにしてもよい。また、前記(13,
(141式を変形した次式(15,(16)式のような
演算を行うようにしてもよい。
Note that the calculation means 15 is not limited to the one that performs the calculations described above, but also directly calculates τ by calculation of the formula (IJ, <2).
, σ2 may be calculated. In addition, the above (13,
(You may perform calculations such as the following equations (15 and (16), which are modified versions of equation 141.

・・・(16) [発明の効果] 以上詳述した本発明では、流速を求めるのに相関関数の
1次モーメント(重心)を用いているため瞬時的に受信
信号に重畳されてくるスペックルやホワイトノイズ等の
影響により相関関数に異常なピークが観測されるような
場合には重心の値・  とじては変動が小さい安定した
データが1qられる。
...(16) [Effects of the Invention] In the present invention described in detail above, since the first moment (center of gravity) of the correlation function is used to determine the flow velocity, speckles are instantaneously superimposed on the received signal. If an abnormal peak is observed in the correlation function due to the influence of white noise, etc., stable data with small fluctuations in the value of the center of gravity is selected.

また、相関関数の2次モーメント(分散)は2つの受信
信号の到達時間差のバラツキを示し、これは流速のバラ
ツキによって生ずるので、この相関関数の分散は流速の
分散を反映していることとなり、臨床上有意義なデータ
を得ることができる。
Furthermore, the second moment (dispersion) of the correlation function indicates the dispersion of the arrival time difference between the two received signals, and this is caused by the dispersion of the flow velocity, so the dispersion of this correlation function reflects the dispersion of the flow velocity. Clinically meaningful data can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図及
び第3図(a)乃至(C)は従来例を説明するための図
である。 1・・・超音波プローブ、11・・・クラッタ除去手段
、13・・・相関演算手段、 15・・・モーメント演算手段。 代理人 弁理士 則  近  古  佑同      
近    藤     猛第  3 図 手続補正書(自発) 63.8.−9 昭和 年 月 日
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIGS. 2 and 3 (a) to (C) are diagrams for explaining a conventional example. DESCRIPTION OF SYMBOLS 1... Ultrasonic probe, 11... Clutter removal means, 13... Correlation calculation means, 15... Moment calculation means. Agent Patent Attorney Yudo Chikako
Takeshi Kondo 3rd drawing procedure amendment (voluntary) 63.8. -9 Showa year month day

Claims (1)

【特許請求の範囲】[Claims] 被検体に超音波を送受波し、被検体内の血流情報を得て
、その血流情報から血流速度を求める超音波ドプラ血流
計において、受信エコー信号よりクラツタ成分を除去す
る除去手段と、除去手段から得られた信号のうち少なく
とも2回の異なる送信タイミングで被検体内の同一部位
からのエコー信号間で相関演算を行う演算手段と、この
演算によって得られた相関関数に関する1次及び2次モ
ーメントを演算する手段とを設けたことを特徴とする超
音波ドプラ血流計。
A removal means for removing clutter components from received echo signals in an ultrasonic Doppler blood flow meter that transmits and receives ultrasound waves to and from a subject to obtain blood flow information within the subject and determine blood flow velocity from the blood flow information. and a calculation means for performing a correlation calculation between echo signals from the same part of the subject at at least two different transmission timings among the signals obtained from the removal means, and a first-order correlation function related to the correlation function obtained by this calculation. and means for calculating a second-order moment.
JP6709288A 1988-03-23 1988-03-23 Ultrasonic doppler blood flowmeter Pending JPH01242042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6709288A JPH01242042A (en) 1988-03-23 1988-03-23 Ultrasonic doppler blood flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6709288A JPH01242042A (en) 1988-03-23 1988-03-23 Ultrasonic doppler blood flowmeter

Publications (1)

Publication Number Publication Date
JPH01242042A true JPH01242042A (en) 1989-09-27

Family

ID=13334898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6709288A Pending JPH01242042A (en) 1988-03-23 1988-03-23 Ultrasonic doppler blood flowmeter

Country Status (1)

Country Link
JP (1) JPH01242042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151990A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Ultrasonograph
JP2010185690A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Azimuth detection device and azimuth detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151990A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Ultrasonograph
JP2010185690A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Azimuth detection device and azimuth detection method

Similar Documents

Publication Publication Date Title
Bonnefous et al. Time domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation
US5662115A (en) Method for determining the velocity-time spectrum of blood flow
JP2544342B2 (en) Ultrasonic Doppler diagnostic device
JPH01207042A (en) Method and apparatus for reducing repeated adaptation of phase differential effect
JPH0693890B2 (en) Ultrasonic diagnostic equipment
JPS62123355A (en) Method and device for scanning body
US4084148A (en) Object recognition system
CN104995530A (en) Subject information acquisition apparatus, subject information acquisition method, and program
JP4369427B2 (en) Doppler velocity detection device and ultrasonic diagnostic device using the same
JPS6111659A (en) Ultrasonic insepction device
EP0375441B1 (en) Ultrasonic doppler blood flow velocity detection apparatus
JP2763155B2 (en) A device that measures the moving speed of moving organs and blood with an ultrasonic echograph
JPH01242042A (en) Ultrasonic doppler blood flowmeter
JPH03173551A (en) Device for measuring and displaying blood stream
Walker et al. Aberrator integration error in adaptive imaging
KR101524550B1 (en) Method and Apparatus for a fast Linear Frequency Modulation target detection compensating Doppler effect according to the target speed
EP0807825B1 (en) Ultrasonic continuous wave doppler blood flow-meter
CN107907591A (en) The ultrasonic testing system and method for multicomponent solid-liquid two-phase mixture concentration of component
Long et al. Frequency-dependent spatial coherence in conventional and chirp transmissions
JPS60144660A (en) Inspection device for body by ultrasonic echograph
JPH0843525A (en) Inverted-filter processing circuit
JPH03234247A (en) Device for improving sensitivity of apparatus for imaging ultrasonic wave doppler flow
JP2594994B2 (en) Pulse Doppler measurement device
JPH08322836A (en) Ultrasonic diagnostic device
JP2714067B2 (en) Pulse Doppler measurement device