JPH0124195B2 - - Google Patents

Info

Publication number
JPH0124195B2
JPH0124195B2 JP5750281A JP5750281A JPH0124195B2 JP H0124195 B2 JPH0124195 B2 JP H0124195B2 JP 5750281 A JP5750281 A JP 5750281A JP 5750281 A JP5750281 A JP 5750281A JP H0124195 B2 JPH0124195 B2 JP H0124195B2
Authority
JP
Japan
Prior art keywords
hydrogen
agent
exothermic
iron powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5750281A
Other languages
Japanese (ja)
Other versions
JPS57172974A (en
Inventor
Shinichi Igarashi
Shigeru Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP5750281A priority Critical patent/JPS57172974A/en
Publication of JPS57172974A publication Critical patent/JPS57172974A/en
Publication of JPH0124195B2 publication Critical patent/JPH0124195B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は空気の存在下に発熱する発熱剤の改良
に関する。更に詳しくは、少なくとも2種の水素
抑制剤を鉄系発熱剤に添加することにより、水素
発生をほぼ抑制した発熱剤に関する。 最近空気との接触により発熱する鉄系発熱剤の
研究が盛んに行なわれているが、発熱体として用
いられているタイプに2種類ある。そのうちの1
つは、鉄粉、反応助剤、保水剤および水を混合状
態で内袋に充填しておき、使用時に外袋を破り空
気と接触させ発熱させるものである。他の1つ
は、鉄粉、反応助剤および保水剤を混合して保存
しておき、使用に際しては、これと水を混合し
て、空気と接触させ発熱させるものである。 しかし前者は保存時に水素の発生が起り、徐々
に水素濃度が増加するため長期保存においては外
袋の膨張が生じ、外袋の破裂、引火、爆発等の危
険性が生じる。これに対し後者は保存時に水素発
生の恐れはないが、充填構造が複雑であるため
に、生産速度をあげることができず、コスト高に
なる等の欠点を有する。 このようなことから、従来は前者に対する水素
抑制剤としてリン酸塩、チオ硫酸塩、亜硫酸塩
(特開昭55−52377、同55−56180)が単独で用い
られていたが、いずれも水素抑制効果は不十分
で、発熱体の長期保存という観点からは、外袋の
破裂、引火、爆発等の危険性をまつたく除去する
ものではなかつた。また、そのような事態になら
ずとも、外袋が膨張し、発熱体の商品価値を損う
ものであつた。さらに水素抑制効果をあげるため
には前記の塩に変えて水酸化ナトリウム、水酸化
カリウムなどの強塩基性物質を用いて発熱剤の塩
基性を高くしなければならず、この発熱剤をカイ
ロとして用いた際発熱体内袋からの強塩基性物質
の染み出しによる人体への危険性がある。 以上のような欠点を克服して安全で商品価値の
ある発熱体を作るために、本発明者らは鋭意検討
の結果、酸化剤、アルカリ性物質、イオウ、アン
チモン、セレン、リンおよびテルルからなる群よ
り選ばれた少なくとも2種の水素抑制剤を鉄系発
熱剤に添加し、その相乗効果により、それらの単
独添加では達成しえなかつたほど著しく水素発生
が抑制されることを見出し本発明を完成するに至
つた。 周知のとおり鉄系発熱剤は鉄の酸化反応を利用
するものである。その酸化反応を説明すると以下
のようになる。すなわち、酸化を受けている鉄表
面のアノードの部分では、 Fe→Fe2++2e (1) カソードの部分では、 2H++2e→H2 (2) 2H2O+2e→H2+2OH- (3) あるいは H2O+1/2O2+2e→2OH- (4) の反応が起つている。アノードの部分で生じた第
1鉄イオンFe2+は、さらに次のような反応で酸
化物を形成する。 Fe2++2OH-→Fe(OH)2 (5) 2Fe(OH)2+1/2O2→Fe2O3+2H2O (6) このように、カソードの部分では水素が発生す
るため、発熱体としてこの水素発生量は無視する
ことができず、その抑制が切望されている。従つ
て、この水素発生を抑制する方法としては、 () 鉄に対してアルミニウム、マグネシウム、
亜鉛などの両性金属を接触させ(1)の反応を抑制
する。 () PHを上昇して(2)、(3)、(4)の反応を抑制す
る。 () 鉄を不動態化して(5)、(6)の反応を抑制す
る。 の3つの方法が考えられる。さらに () 発生した水素を除去する。 方法も考えられる。 ()の方法では発熱剤のPH域によつては水素
を発生しやすくなる。従つて、発熱体の外袋中に
蓄積する水素対策としては、()、()、()
の方法が考えられる。このようなことから本発明
ではアルカリ性物質、酸化剤、イオウ、アンチモ
ン、セレン、リンおよびテルルからなる群より選
ばれた水素抑制剤の少なくとも2種を鉄系発熱剤
に添加して水素抑制を行なうものである。 以下本発明について説明する。 本発明は、鉄粉、反応助剤、保水剤および水を
含有した発剤であれば、そのいずれにも適用しう
るものであるが、具体的に説明すると次のようで
ある。すなわち、鉄粉は粉状ないし粒状の電解
鉄、還元鉄、鋳鉄等であり、このうちで黒鉛含有
量の多い鉄粉が好ましい。黒鉛含有量の多い鉄粉
としては、黒鉛含有量0.5%以上好ましくは1.7%
以上の鋳鉄例えばねずみ鋳鉄、可鍛鋳鉄等があげ
られる。反応助剤は例えば塩化ナトリウム、硫酸
ナトリウム、硫酸カリウム、硫酸第1鉄、硫酸第
2鉄等である。保水剤は活性炭、おがくず炭、木
炭、シリカゲル、アルミナ粉等である。 また、本発明の酸化剤としては、硝酸塩、亜硝
酸塩、酸化物、過酸化物、ハロゲン化酸素酸塩、
過マンガン酸塩、クロム酸塩があり、例えば
NaNo3、KNO3、NaNO2、KNO3、CuO、
MnO2、H2O2、NaClO、NaClO3、NaClO4
NaMnO4、KMnO4、Na2CrO4、K2CrO4等があ
げられる。アルカリ性物質としては、ケイ酸塩、
硼酸塩、第2リン酸塩、第3リン酸塩、亜硫酸
塩、チオ硫酸塩、炭酸塩、炭酸水素塩があり、例
えばNa2SiO3、Na4SiO4、NaBO2、Na2B4O7
KBO2、Na2HPO4、Na2SO3、K2SO3
Na2S2O3、Na2CO3、NaHCO3等のアルカリ弱酸
塩があげられる。 本発明は水素抑制剤を2種以上組合せて用いる
が、好ましい組合せとしては次のようなものがあ
げられる。すなわち、アルカリ弱酸塩−アルカリ
弱酸塩;Na2SO3−Na2SiO3、Na2SO3
Na2S2O3、Na2SO3−Na2B4O7、Na2B4O7
Na3PO4、Na2CO3−NaHCO3−Na2SO3、酸化剤
−アルカリ弱酸塩;NaNO2−Na2SiO3、NaNO2
−Na2HPO4、NaNO2−Na2SO3、NaNO2
Na2S2O3、NaNO3−Na2SiO3、NaNO3
Na2HPO4、NaNO3−Na2SO3、NaNO3
Na2S2O3、MnO2−Na2SiO3、MnO2
Na2HPO4、MnO2−Na2S2O3、NaClO−
Na2SiO3、NaClO−Na2HPO4、NaClO−
Na2SO3、KMnO4−Na2SiO3、KMnO4
Na2HPO4、KMnO4−Na2SO3、イオウ−アルカ
リ弱酸塩;S−Na2SiO3、S−Na2HPO4、S−
Na2SO3、S−Na2S2O3の組合せである。 水素抑制剤の使用量は、各水素抑制剤の合計量
で鉄粉に対し0.05〜12.0重量%、好ましくは0.5〜
2.0重量%である。0.05重量%未満では水素発生
の抑制効果に乏しく、一方12.0重量%を超える
と、水素発生の抑制効果はあるが発熱温度が低下
するので適当ではない。その添加方法としては、
作業性、混合の均一性から、水溶液として添加し
た方が好ましいが、水とは別に固形として加えて
も、水素抑制効果に関しては、水溶液の場合とほ
とんど変わりない。 しかしながら、過酸化物、ハロゲン化酸素酸塩
等の酸化剤については、発熱剤への添加により接
触分解を起すことから、あらかじめ該酸化剤の水
溶液で鉄粉を浸漬処理した場合の方が水素抑制効
果がある。また、亜硝酸塩、硝酸塩については、
発熱剤に添加した場合、アンモニアガスの発生が
ある。従つて亜硝酸塩、硝酸塩の水液によりあら
かじめ鉄粉を浸漬処理し、次いで中和処理した場
合の方が簡単にアンモニア臭を除去できるため、
添加した場合より好ましい。 前述のごとく、本発明は、2種以上の水素抑制
剤を用いことによる相乗効果によつて、極めて優
れた水素発生の抑制効果を有するものである。こ
のことを後述の実施例および比較例に基づいて説
明する。すなわち、単一の水素抑制剤添加の場合
(例えば比較例1、2、3、4)、50℃、7日間の
強制テストでの水素濃度は、水素抑制剤無添加の
それを100とすると、40〜80もの濃度である。一
方、2種以上の水素抑制剤の添加の場合(前記比
較例に対応する実施例1、2)、50℃、10日間の
強制テストの水素濃度は、水素抑制剤無添加のそ
れを100とすると、わずか約10程度である。この
ように、本発明は単一水素抑制剤添加の場合に対
して4倍以上の水素発生の抑制効果を有するもの
である。 従つて、鉄粉、反応助剤、保水剤および水を主
成分とした発熱剤に水素抑制剤を含有させた混合
物を通気性のある内袋に充填し、さらにその内袋
を非通気性の外袋に封入して、発熱体として使用
する場合、本発明は下記の効果を生じる。 (1) 水素抑制が可能であるため、発熱体外袋の膨
張による外袋の破裂、引火、爆発等の危険性を
ほぼ皆無とし、発熱体の長期保存を可能にす
る。 (2) 内袋への充填機構が簡単であるため、汎用の
自動製袋充填機で高速充填することが可能とな
る。 さらに、本発明の発熱剤の発熱性能は、水素抑
制剤無添加の場合と比べほとんど損われるもので
はない。 以下、実施例で本発明を具体的に説明するが、
これらにより本発明は限定されるものではない。 実施例1〜6および比較例1〜9 鉄粉135g、活性炭20g、保水剤40g、反応助
剤12g、水50gおよび表−1に示された各種の水
素抑制剤を混合して、内袋不織布(紙)の有効部
寸法8×12cm中に充填、シールする。その後充
填、シールされた内袋を非通気性外袋中に充填、
シールして発熱体を得る。この発熱体を50℃恒温
器中で強制テストを行ない、外袋中の水素濃度
(vol%)をガスクロマトグラフにて分析する。表
−1に、水素抑制剤無添加の場合を100とし、無
添加の場合に対する各々の実施例、比較例の水素
濃度の割合を示す(以下の実施例および比較例に
おいても同様である)。
The present invention relates to improvements in exothermic agents that generate heat in the presence of air. More specifically, the present invention relates to a heat generating agent in which hydrogen generation is substantially suppressed by adding at least two kinds of hydrogen suppressants to the iron-based heat generating agent. Recently, research on iron-based exothermic agents that generate heat upon contact with air has been actively conducted, and there are two types of exothermic agents used as exothermic agents. one of them
One is to fill an inner bag with a mixture of iron powder, a reaction aid, a water retention agent, and water, and when it is used, the outer bag is torn open and brought into contact with air to generate heat. The other method is to mix and store iron powder, a reaction aid, and a water retaining agent, and then, when used, mix this with water and bring it into contact with air to generate heat. However, in the former case, hydrogen is generated during storage, and the hydrogen concentration gradually increases, so that the outer bag expands during long-term storage, creating a risk of the outer bag bursting, catching fire, or exploding. On the other hand, the latter method does not pose the risk of hydrogen generation during storage, but has disadvantages such as a complicated filling structure, which makes it impossible to increase the production rate and increases costs. For this reason, phosphates, thiosulfates, and sulfites (Japanese Patent Application Laid-Open Nos. 55-52377 and 55-56180) have been used alone as hydrogen inhibitors for the former, but none of them suppress hydrogen. The effect was insufficient, and from the viewpoint of long-term storage of the heating element, it did not completely eliminate the dangers such as bursting of the outer bag, ignition, and explosion. Moreover, even if such a situation does not occur, the outer bag expands, which impairs the commercial value of the heating element. Furthermore, in order to increase the hydrogen suppression effect, it is necessary to increase the basicity of the exothermic agent by using a strong basic substance such as sodium hydroxide or potassium hydroxide instead of the above-mentioned salt, and this exothermic agent can be used as a body warmer. When used, there is a danger to the human body due to strong basic substances seeping out from the inner bag of the heating element. In order to overcome the above-mentioned drawbacks and create a heating element that is safe and has commercial value, the inventors of the present invention have conducted intensive studies and found that a group consisting of an oxidizing agent, an alkaline substance, sulfur, antimony, selenium, phosphorus, and tellurium has been developed. The present invention has been completed by discovering that by adding at least two selected hydrogen inhibitors to an iron-based exothermic agent, the synergistic effect results in hydrogen generation being suppressed to a degree that could not be achieved by adding them alone. I came to the conclusion. As is well known, iron-based exothermic agents utilize the oxidation reaction of iron. The oxidation reaction is explained as follows. That is, at the anode part of the iron surface undergoing oxidation, Fe→Fe 2+ +2e (1) at the cathode part, 2H + +2e→H 2 (2) 2H 2 O+2e→H 2 +2OH - (3) or The reaction H 2 O + 1/2O 2 + 2e→2OH - (4) is occurring. The ferrous ion Fe 2+ generated at the anode further forms an oxide through the following reaction. Fe 2+ +2OH - →Fe(OH) 2 (5) 2Fe(OH) 2 +1/2O 2 →Fe 2 O 3 +2H 2 O (6) In this way, since hydrogen is generated at the cathode, the heating element As such, the amount of hydrogen generated cannot be ignored, and there is an urgent need to suppress it. Therefore, as a method to suppress this hydrogen generation, () aluminum, magnesium,
Suppress the reaction (1) by contacting an amphoteric metal such as zinc. () Increasing PH and inhibiting reactions (2), (3), and (4). () Passivates iron to suppress reactions (5) and (6). There are three possible methods. Furthermore, () the generated hydrogen is removed. There are other possible methods. In the method (), hydrogen is likely to be generated depending on the PH range of the exothermic agent. Therefore, as a countermeasure against hydrogen accumulating in the outer bag of the heating element, (), (), ()
Possible methods are: For this reason, in the present invention, hydrogen is suppressed by adding at least two hydrogen suppressants selected from the group consisting of alkaline substances, oxidizing agents, sulfur, antimony, selenium, phosphorus, and tellurium to the iron-based exothermic agent. It is something. The present invention will be explained below. The present invention can be applied to any developing agent containing iron powder, a reaction aid, a water retention agent, and water, and will be specifically explained as follows. That is, the iron powder is powdered or granular electrolytic iron, reduced iron, cast iron, etc., and among these, iron powder with a high graphite content is preferable. Iron powder with a high graphite content should have a graphite content of 0.5% or more, preferably 1.7%.
Examples of the cast irons mentioned above include gray cast iron and malleable cast iron. Examples of reaction aids include sodium chloride, sodium sulfate, potassium sulfate, ferrous sulfate, and ferric sulfate. Water retention agents include activated carbon, sawdust charcoal, charcoal, silica gel, and alumina powder. In addition, the oxidizing agent of the present invention includes nitrates, nitrites, oxides, peroxides, oxyhalides,
There are permanganates, chromates, e.g.
NaNo 3 , KNO 3 , NaNO 2 , KNO 3 , CuO,
MnO2 , H2O2 , NaClO, NaClO3 , NaClO4 ,
Examples include NaMnO 4 , KMnO 4 , Na 2 CrO 4 , K 2 CrO 4 and the like. Alkaline substances include silicates,
There are borates, diphosphates, tertiary phosphates, sulfites, thiosulfates, carbonates, and bicarbonates, such as Na 2 SiO 3 , Na 4 SiO 4 , NaBO 2 , Na 2 B 4 O 7 ,
KBO 2 , Na 2 HPO 4 , Na 2 SO 3 , K 2 SO 3 ,
Examples include weak alkali salts such as Na 2 S 2 O 3 , Na 2 CO 3 and NaHCO 3 . In the present invention, two or more hydrogen inhibitors are used in combination, and preferred combinations include the following. That is, weak alkali salt - weak alkali salt; Na 2 SO 3 −Na 2 SiO 3 , Na 2 SO 3
Na 2 S 2 O 3 , Na 2 SO 3 −Na 2 B 4 O 7 , Na 2 B 4 O 7
Na 3 PO 4 , Na 2 CO 3 −NaHCO 3 −Na 2 SO 3 , oxidizing agent – weak alkali salt; NaNO 2 −Na 2 SiO 3 , NaNO 2
−Na 2 HPO 4 , NaNO 2 −Na 2 SO 3 , NaNO 2
Na 2 S 2 O 3 , NaNO 3 −Na 2 SiO 3 , NaNO 3
Na 2 HPO 4 , NaNO 3 −Na 2 SO 3 , NaNO 3
Na 2 S 2 O 3 , MnO 2 −Na 2 SiO 3 , MnO 2
Na 2 HPO 4 , MnO 2 −Na 2 S 2 O 3 , NaClO−
Na 2 SiO 3 , NaClO−Na 2 HPO 4 , NaClO−
Na 2 SO 3 , KMnO 4 −Na 2 SiO 3 , KMnO 4
Na 2 HPO 4 , KMnO 4 -Na 2 SO 3 , sulfur-alkali weak acid salt; S-Na 2 SiO 3 , S-Na 2 HPO 4 , S-
It is a combination of Na 2 SO 3 and S-Na 2 S 2 O 3 . The amount of hydrogen inhibitor used is 0.05 to 12.0% by weight, preferably 0.5 to 12.0% by weight of the iron powder, in total amount of each hydrogen inhibitor.
It is 2.0% by weight. If it is less than 0.05% by weight, the effect of suppressing hydrogen generation is poor, while if it exceeds 12.0% by weight, although there is an effect of suppressing hydrogen generation, the exothermic temperature decreases, which is not appropriate. The method of adding it is as follows:
From the viewpoint of workability and uniformity of mixing, it is preferable to add it as an aqueous solution, but even if it is added as a solid separately from water, the hydrogen suppression effect is almost the same as in the case of an aqueous solution. However, since oxidizing agents such as peroxides and oxyhalides cause catalytic decomposition when added to exothermic agents, it is better to suppress hydrogen by immersing iron powder in an aqueous solution of the oxidizing agent in advance. effective. Regarding nitrites and nitrates,
When added to exothermic agents, ammonia gas may be generated. Therefore, it is easier to remove the ammonia odor by soaking the iron powder in an aqueous solution of nitrites and nitrates and then neutralizing it.
It is more preferable to add it. As described above, the present invention has an extremely excellent hydrogen generation suppressing effect due to the synergistic effect of using two or more hydrogen suppressants. This will be explained based on Examples and Comparative Examples described later. That is, when a single hydrogen inhibitor is added (for example, Comparative Examples 1, 2, 3, and 4), the hydrogen concentration in a forced test at 50°C for 7 days is set to 100 when no hydrogen inhibitor is added. Concentrations range from 40 to 80. On the other hand, in the case of addition of two or more hydrogen inhibitors (Examples 1 and 2 corresponding to the above comparative example), the hydrogen concentration in the forced test at 50°C for 10 days is 100 compared to that without the addition of hydrogen inhibitors. So it's only about 10. As described above, the present invention has an effect of suppressing hydrogen generation four times or more compared to the case where a single hydrogen inhibitor is added. Therefore, a mixture of iron powder, a reaction aid, a water retention agent, a water-based exothermic agent, and a hydrogen suppressant was filled into a breathable inner bag, and the inner bag was then placed in a non-breathable bag. When enclosed in an outer bag and used as a heating element, the present invention produces the following effects. (1) Since hydrogen can be suppressed, there is almost no risk of rupture of the outer bag of the heating element, ignition, explosion, etc. due to expansion of the outer bag of the heating element, and long-term storage of the heating element is possible. (2) Since the mechanism for filling the inner bag is simple, high-speed filling is possible using a general-purpose automatic bag making and filling machine. Furthermore, the exothermic performance of the exothermic agent of the present invention is hardly impaired compared to the case where no hydrogen inhibitor is added. The present invention will be specifically explained below with reference to Examples.
The present invention is not limited to these. Examples 1 to 6 and Comparative Examples 1 to 9 135 g of iron powder, 20 g of activated carbon, 40 g of water retention agent, 12 g of reaction aid, 50 g of water, and various hydrogen inhibitors shown in Table 1 were mixed to make an inner bag nonwoven fabric. Fill and seal the effective part of (paper) with dimensions of 8 x 12 cm. Then fill and seal the inner bag into the non-breathable outer bag.
Seal to obtain a heating element. This heating element is subjected to a forced test in a 50℃ thermostat, and the hydrogen concentration (vol%) in the outer bag is analyzed using a gas chromatograph. Table 1 shows the ratio of hydrogen concentration in each Example and Comparative Example, with the case without hydrogen inhibitor added as 100 (the same applies to the following Examples and Comparative Examples).

【表】【table】

【表】 実施例7〜9および比較例10〜13 6%NaOCl溶液200ml中に鉄粉135gを10分間
浸漬した後、ろ過、25℃72時間乾燥処理して
NaOCl処理鉄粉を得る。この処理鉄粉を実施例
1〜6の鉄粉の変わりに用い、さらに実施例7で
はイオウ、実施例8ではセレン、実施例9では亜
硫酸ナトリウムを水素抑制剤として加える。以下
実施例1〜6と同様にして発熱体の作成、強制テ
スト、分析を行なう。その結果を表−2に示す。
また、比較のために、イオウ、セレン、亜硫酸ナ
トリウムおよびNaOClのそれぞれを単独で用い
た場合の結果も表−2に示す。
[Table] Examples 7 to 9 and Comparative Examples 10 to 13 After immersing 135 g of iron powder in 200 ml of 6% NaOCl solution for 10 minutes, filtering and drying at 25°C for 72 hours.
Obtain NaOCl-treated iron powder. This treated iron powder is used instead of the iron powder in Examples 1 to 6, and sulfur is added in Example 7, selenium is added in Example 8, and sodium sulfite is added as a hydrogen suppressant in Example 9. Thereafter, a heating element was prepared, a forced test, and an analysis was performed in the same manner as in Examples 1 to 6. The results are shown in Table-2.
For comparison, Table 2 also shows the results when sulfur, selenium, sodium sulfite, and NaOCl were used alone.

【表】 実施例10〜11および比較例14 5%NaNO2溶液200ml中に鉄粉135gを10分間
浸漬した後、ろ過、25℃72時間乾燥、次いでその
鉄粉をN−H2SO4溶液でPH7に調整水洗、50℃
24時間乾燥処理した鉄粉を使用する。混合は実施
例1〜6の鉄粉の変わりに、上記の処理鉄粉を用
い、実施例10ではイオウ、実施例11ではNa2SO3
を水素抑制剤として加える。以下実施例1〜6と
同様に発熱体の作成、強制テスト、分析を行な
う。その結果を表−3に示す。
[Table] Examples 10 to 11 and Comparative Example 14 After immersing 135 g of iron powder in 200 ml of 5% NaNO 2 solution for 10 minutes, filtering and drying at 25°C for 72 hours, the iron powder was soaked in N-H 2 SO 4 solution. Adjust the pH to 7 and wash with water at 50℃.
Use iron powder that has been dried for 24 hours. For mixing, the above-mentioned treated iron powder was used instead of the iron powder of Examples 1 to 6, and sulfur was used in Example 10, and Na 2 SO 3 was mixed in Example 11.
is added as a hydrogen inhibitor. Thereafter, a heating element was prepared, a forced test, and an analysis was performed in the same manner as in Examples 1 to 6. The results are shown in Table-3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 鉄粉、反応助剤、保水剤および水を含有した
発熱剤に、酸化剤、アルカリ性物質、イオウ、ア
ンチモン、セレン、リンおよびテルルからなる群
より選ばれた少なくとも2種の水素抑制剤を含有
させたことを特徴とする発熱剤。 2 酸化剤が亜硝酸塩、硝酸塩、酸化物、過酸化
物、過マンガン酸塩、クロム酸塩又はハロゲン化
酸素酸塩である特許請求の範囲第1項記載の発熱
剤。 3 アルカリ性物質がケイ酸塩、硼酸塩、亜硫酸
塩、第2リン酸塩、第3リン酸塩又はチオ硫酸塩
である特許請求の範囲第1項記載の発熱剤。 4 鉄粉があらかじめ酸化剤(酸化物を除く)で
処理され、他の水素抑制剤がその酸化剤以外の水
素抑制剤の少なくとも1種である特許請求の範囲
第1項記載の発熱剤。
[Scope of Claims] 1. An exothermic agent containing iron powder, a reaction aid, a water retention agent, and water, and at least two selected from the group consisting of an oxidizing agent, an alkaline substance, sulfur, antimony, selenium, phosphorus, and tellurium. An exothermic agent characterized by containing a hydrogen inhibitor. 2. The exothermic agent according to claim 1, wherein the oxidizing agent is a nitrite, a nitrate, an oxide, a peroxide, a permanganate, a chromate, or an oxyhalide salt. 3. The exothermic agent according to claim 1, wherein the alkaline substance is a silicate, borate, sulfite, dibasic phosphate, tertiary phosphate, or thiosulfate. 4. The exothermic agent according to claim 1, wherein the iron powder is previously treated with an oxidizing agent (excluding oxides), and the other hydrogen inhibitor is at least one hydrogen inhibitor other than the oxidizing agent.
JP5750281A 1981-04-16 1981-04-16 Heat generating agent Granted JPS57172974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5750281A JPS57172974A (en) 1981-04-16 1981-04-16 Heat generating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5750281A JPS57172974A (en) 1981-04-16 1981-04-16 Heat generating agent

Publications (2)

Publication Number Publication Date
JPS57172974A JPS57172974A (en) 1982-10-25
JPH0124195B2 true JPH0124195B2 (en) 1989-05-10

Family

ID=13057493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5750281A Granted JPS57172974A (en) 1981-04-16 1981-04-16 Heat generating agent

Country Status (1)

Country Link
JP (1) JPS57172974A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747841A (en) * 1985-03-19 1988-05-31 Yasuro Kuratomi Methods and instruments of moxibustion
AU2003230196A1 (en) * 2002-06-05 2003-12-22 The Additional Director (Ipr), Defence Research And Development Organisation An electrochemically reacting composition and a process for the preparation thereof

Also Published As

Publication number Publication date
JPS57172974A (en) 1982-10-25

Similar Documents

Publication Publication Date Title
US6174508B1 (en) Method of producing chlorine dioxide using sodium chlorite and a water-retaining substance impregnated in zeolite or in aqueous solution
US3557011A (en) Co2 sorption material
JPH0124195B2 (en)
JPH10113536A (en) Treatment of gas containing nitrogen trifluoride and its treatment agent
US3950263A (en) Gas cooling and filtering agent for air bag gas generator
SU712033A3 (en) Method of processing reduced ferric oxides
JPS6347681B2 (en)
JPH0235686B2 (en)
JP4437053B2 (en) Extinguishing agent manufacturing method
EP0204399A1 (en) Method of regenerating permanganate etch bath
JPH05269376A (en) Oxygen absorbent
JP2008013739A (en) Exothermic agent
JPS5933410B2 (en) How to remove ozone
RU2075319C1 (en) Regenerative agent for the isolated respiratory apparatus
JPS626848B2 (en)
JPH03218904A (en) Method for generating gaseous oxygen
JPH0780479A (en) Treatment of organic compound-containing waste liquid
JPS5547217A (en) Production of exfoliative graphite
JP2007063404A (en) Exothermic agent
JPS6026041B2 (en) oxygen generation method
SU1085043A1 (en) Composition for extinguishing fires
JP2006240931A (en) Method for generating hydrogen and hydrogen generating agent
JPH0333589B2 (en)
WO1998009715A1 (en) Method of treating exhaust gases containing halogen based compound
JPS6120329B2 (en)