JPH01241300A - Speaker diaphragm - Google Patents

Speaker diaphragm

Info

Publication number
JPH01241300A
JPH01241300A JP6793888A JP6793888A JPH01241300A JP H01241300 A JPH01241300 A JP H01241300A JP 6793888 A JP6793888 A JP 6793888A JP 6793888 A JP6793888 A JP 6793888A JP H01241300 A JPH01241300 A JP H01241300A
Authority
JP
Japan
Prior art keywords
diaphragm
curved
shape
yarns
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6793888A
Other languages
Japanese (ja)
Inventor
Noboru Hiroshima
広嶋 登
Hiroshi Hatta
博志 八田
Toshiyuki Sugano
俊行 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6793888A priority Critical patent/JPH01241300A/en
Publication of JPH01241300A publication Critical patent/JPH01241300A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve sound pressure frequency characteristic while suppressing split resonance and to improve the yield of manufacture by using radial direction threads and circumferential direction threads so as to weave the diaphragm stereoscopically into the shape of a speaker and employing a curved face stereoscopic textile solidified by a matrix member. CONSTITUTION:In case of forming a curved conical honey-comb speaker diaphragm, radial direction threads 1 prolonged in the radial direction from the center and circumferential threads 2 in a direction substantially orthogonal to the radial direction threads 1 are woven together to form a stereoscopical textile. In this case, the curved shape stereoscopic textile solidified by a matrix member is employed, and the deviation of the thread density is within + or -5%, no disturbance in fibers is caused in stereoscopic forming and anisotropy and ununiformity of the raw material characteristic are avoided. Thus, a stereoscopic diaphragm such as cone, dome or parabolic shape with excellent sound pressure frequency characteristic is obtained, and a forming defect (textile uneven weave, flaw or crack) in the manufacture process is not caused, the yield of product is improved and the versatile sound pressure frequency characteristic is obtained with versatile shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コーン状、ドーム状、パラボラ秋など立体形
状を有するスピーカ振動板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a speaker diaphragm having a three-dimensional shape such as a cone shape, a dome shape, or a parabolic shape.

〔従来の技術〕[Conventional technology]

スピーカ振動板として、要求される最も重要な特性は用
いる素材の比弾性率すなわちV/)(1!!;弾性率、
ρ;密度)の大きいことである。従来。
The most important properties required for a speaker diaphragm are the specific elastic modulus of the material used, that is, V/) (1!!; elastic modulus,
ρ (density) is large. Conventional.

用いられている素材として、天然パルプ高分子材料、ア
ルミ、セラミックスなどがあり、これらの中から、形状
や大きさに応じて使いわけされている。
Materials used include natural pulp polymer materials, aluminum, and ceramics, which are selected depending on the shape and size.

最近では、振動板の素材として高弾性炭素繊維を用いて
樹脂を強化したf′R維強化プラスチックがある。これ
ら繊維強化プラスチックは強化材である繊維とマトリッ
クスである樹脂との複合化により9強化材とマトリック
スとの間にある機械特性を設計できる素材として注目さ
れている。たとえば、前述の炭素繊維を樹脂に対して、
高い体積充填率で複合化させると、素材単体としては最
も騒特性の優れたセラミックスよυも大きな鴎を有す・
る素材を得ることができるため広く用いられている。
Recently, as a material for the diaphragm, there is an f'R fiber-reinforced plastic in which the resin is reinforced using high-modulus carbon fiber. These fiber-reinforced plastics are attracting attention as materials that can be designed to have mechanical properties between the reinforcing material and the matrix by combining fibers, which are reinforcing materials, and resin, which is a matrix. For example, if the carbon fiber mentioned above is compared to a resin,
When composited with a high volumetric filling rate, it has a large porosity compared to ceramics, which has the best noise characteristics as a single material.
It is widely used because it can obtain materials that can be used.

ところで、振動板の特性は、素材特性であるpに依存す
るだけでなく、形状にも依存する。
By the way, the characteristics of the diaphragm depend not only on p, which is a material characteristic, but also on its shape.

たとえば、同一素材で重量の等しい異なる形状の振動板
を成形し音圧周波数特性を測定しても、同一の特性図が
得られることはない。従来よシ用いられている振動板の
形状としては、平板、コーン状、ドーム状、パラボラ状
などがあり、−数的にコーン状、ドーム状、パラボラ状
などシェル構造をもつ振動板は平板などの平面形振動板
より再生周波数帯域が広く、また高域限界周波数も大き
いので高性能の振動板として適用されている。
For example, even if diaphragms of different shapes with the same weight are molded from the same material and their sound pressure frequency characteristics are measured, identical characteristic diagrams will not be obtained. The shapes of diaphragms commonly used in the past include flat plates, cone shapes, dome shapes, and parabolic shapes. - Numerically speaking, diaphragms with shell structures such as cone shapes, dome shapes, and parabolic shapes are flat plates. The reproduction frequency band is wider than that of the planar diaphragm, and the upper limit frequency is also large, so it is used as a high-performance diaphragm.

しかしながら、これらシェル構造の振動板は。However, these shell structure diaphragms.

高音領域において、振動面の2点が互いに他の点とは逆
位相で振動する分割共振が生じ、音圧レベルが低くなる
という欠点をもつ。
In the high-pitched sound region, split resonance occurs in which two points on the vibration surface vibrate in opposite phases to other points, resulting in a low sound pressure level.

繊維強化プラスチックの撮動板としては、高弾性炭素繊
維のたて糸とよこ糸からなる平織平面布に樹脂を含浸し
、コーン状やドーム状、パラボラ状の撮動板にプレス成
形したものが使用されている。しかしながら、これらは
素材特性(騒)が。
The fiber-reinforced plastic imaging plate used is a plain-woven flat cloth made of high-modulus carbon fiber warp and weft impregnated with resin and press-molded into a cone-shaped, dome-shaped, or parabolic-shaped imaging plate. There is. However, these materials have material characteristics (noise).

織物の網目格子の辺方向と対角線方向とで異なる異方性
を示す。
The mesh lattice of the fabric exhibits different anisotropy in the side direction and diagonal direction.

この網目格子(正方形)は、コーン状、ドーム状および
パラボラ状など立体形状に賦形させるときに剪断的に変
形して菱形となる。この変形は対角線方向で最も大きく
おこ)、前述の異方性が強められる。このため平織平面
布をコーン状、ドーム状、パラボラ状の振動板に用いる
と高温領域で分割共振を生じやすかった。
This mesh lattice (square) is sheared and deformed into a rhombus when it is shaped into a three-dimensional shape such as a cone shape, a dome shape, and a parabolic shape. This deformation is greatest in the diagonal direction), and the above-mentioned anisotropy is strengthened. For this reason, when a plain-woven plane cloth is used for a cone-shaped, dome-shaped, or parabolic-shaped diaphragm, split resonance tends to occur in high-temperature regions.

この異方性を解決する方法として、特開昭61−495
92号公報に、中心より放射状に配列された繊維と円周
方向に配列した繊維によって構成した環状布を用いた振
動板が提案されている。これらは、軸対称荷重に対して
等方性を示す。
As a method to solve this anisotropy, Japanese Patent Application Laid-Open No. 61-495
No. 92 proposes a diaphragm using an annular cloth made up of fibers arranged radially from the center and fibers arranged circumferentially. These exhibit isotropy for axisymmetric loads.

しかしながら、これらは平面織物であるため。However, since these are flat woven fabrics.

やはりコーン状やドーム状およびパラボラ状などの立体
形状に賦形させるときに織物の目づれや繊維配向の乱れ
を生じる。すなわち、ストレートコーンのような可展面
を有する振動板に成形する場合には、これら環状布を裁
断し、貼シ合わせることによって繊維配向の乱れを生じ
させずに成形することが可能である。
After all, when the fabric is shaped into a three-dimensional shape such as a cone shape, a dome shape, or a parabolic shape, the fabric becomes misaligned and the fiber orientation is disturbed. That is, when molding into a diaphragm having a developable surface such as a straight cone, the annular cloth can be cut and pasted together to form the diaphragm without disturbing the fiber orientation.

しかしながら貼シ合わせることは、撮動板として貼り合
わせた部分での繊維密度の増加および円周方向に配列さ
れた強化繊維の不連続化をもたらすので、素材特性(V
p)が等方でなくなってしまう。
However, bonding them together increases the fiber density in the area where they are bonded together as an imaging plate and causes discontinuity of the reinforcing fibers arranged in the circumferential direction, so the material properties (V
p) is no longer isotropic.

さらに、切れ目のない環状布を、コーン状、ドーム状お
よびパラボラ状など立体形状に賦形させるときに、環状
布の網目格子は剪断的な変形をせずに目ずれやしわを発
生させ、ときには織物が破断したりする。この目ずれや
しわは、成形後の撮動板の形状をゆがませたり、あるい
は表面に溝および割れなど成形欠陥を引起こし1分割共
振を押えることが難かしくなるばかりでなく、製造歩留
りも悪くなる。
Furthermore, when an unbroken circular cloth is shaped into a three-dimensional shape such as a cone shape, a dome shape, or a parabolic shape, the mesh lattice of the circular cloth generates misalignment and wrinkles without shearing deformation, and sometimes The fabric may break. These misalignments and wrinkles not only distort the shape of the imaging plate after molding, but also cause molding defects such as grooves and cracks on the surface, making it difficult to suppress single-division resonance, and also reducing manufacturing yield. Deteriorate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、コーン状、ドーム状およびパラボラ状な
どの立体形状の撮動板において従来の平面布を用いて成
形すると、目づれや繊維の乱れが発生し、これらは素材
特性(Vp )を不均質にさせたシ、異方性にさせたシ
するため、高音領域の分割共蛋を抑えることができない
だけでなく、製造工程での歩留シが悪いという問題点が
あった。
As mentioned above, when conventional flat cloth is used to mold a three-dimensional imaging plate such as a cone shape, dome shape, or parabolic shape, misregistration and fiber disorder occur, which affect the material properties (Vp). Since it is made non-uniform and anisotropic, it is not only impossible to suppress the splitting of the treble region, but also the yield rate in the manufacturing process is poor.

本発明は上記のような問題点を解決するためになされた
もので、素材特性(%)を形状全体にわたって均一化さ
せることにより1分割共振を抑えられ、音圧周波数特性
にすぐれるとともに、製造歩留シのよい振動板を得るこ
とを目的とする。
The present invention was made to solve the above-mentioned problems, and by making the material characteristics (%) uniform over the entire shape, one-division resonance can be suppressed, and the sound pressure frequency characteristics are excellent. The purpose is to obtain a diaphragm with good yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のスピーカ振動板は、中央から放射方向に伸びる
半径方向糸とこの半径方向糸に対して実質的に直交する
方向に織り込まれる周方向糸を用いて曲面状に立体的に
製織し、マトリックス材で固めた曲面状立体織物を用い
たものである。
The speaker diaphragm of the present invention is three-dimensionally woven into a curved shape using radial threads extending radially from the center and circumferential threads woven in a direction substantially perpendicular to the radial threads, and a matrix It uses a curved three-dimensional fabric made of wood.

また1本発明の別の発明は、中央から放射方向に伸びる
斜め方向糸と1円周方向に渦巻き状に織り込まれる周方
向糸を用い、隣接する上記斜め方向糸同士を交互に絡ま
せ、その斜め方向糸を絡ませるごとにそれらの糸の間に
上記周方向糸を織り込み、それによって3軸の織物とし
て曲面状に立体的にa織し、マトリックス材で固めた曲
面状立体織物を用いたものである。
Another invention of the present invention uses diagonal yarns extending radially from the center and circumferential yarns woven in a spiral shape in one circumferential direction, and alternately entwining the adjacent diagonal yarns with each other. Each time the directional yarns are intertwined, the circumferential yarns are woven between the yarns, thereby creating a three-dimensional curved weave as a triaxial woven fabric, and using a curved three-dimensional woven fabric that is solidified with a matrix material. It is.

〔作用〕[Effect]

本発明におけるスピーカ振動板は、スピーカ形状に立体
的に製織された曲面状立体織物を用いることによシ、コ
ーン状、ドーム状、パラボラ状などの立体形状を持つ振
動板を繊維の乱れや、目づれを起こさずに成形できるた
め、織布の配向設計そのままの状態で繊維が配列され、
振動板の素材特性(Vp)が安定し、音圧周波数特性を
すぐれたものにする。
The speaker diaphragm of the present invention uses a curved three-dimensional fabric woven three-dimensionally into the shape of a speaker. Because it can be molded without causing misalignment, the fibers are arranged in the same state as the orientation design of the woven fabric.
The material characteristics (Vp) of the diaphragm are stabilized and the sound pressure frequency characteristics are excellent.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1 第1図はこの発明の実施例1に係わる曲面状立体織物の
組織を示す模式図で、(1)は半径方向糸。
Example 1 FIG. 1 is a schematic diagram showing the structure of a curved three-dimensional fabric according to Example 1 of the present invention, and (1) is a radial yarn.

(2)は周方向糸である。外径I2(ms内径3Crr
L、高さ5c!ILのカーブドコーン状ハニカムスピー
カ振動板を成形するために、まずこの寸法で形状の等し
い曲面状立体織物を第1図に示すように炭素繊維(東し
製、  T300.  IK)を用いて、中央から放射
方向に伸びる半径方向糸fl+と、各半径方向糸+11
に対して実質的に直交する方向に周方向糸(2)を織り
込んで立体的に製織した。またこの織物の糸密度は半径
方向糸9周方向糸共に9本/cWLでるり、糸密度の偏
差は±5%以内であった。この中央から周辺部に至るま
で等しい糸密度を擁する曲面状立体織物を得る方法とし
ては1例えば、特願昭62−302909号明細書に示
されている製織機を用いる方法がある。次にハニカム振
動板のスキン材100/11)を含浸させプリプレグと
し、コア材として厚さ105mのアルミ箔からなる。セ
ルサイズ3/16°、厚さ1.5nのハニカムコアを用
意し、金型内でプレスしながら100℃、3時間硬化さ
せて。
(2) is a circumferential thread. Outer diameter I2 (ms inner diameter 3Crr
L, height 5c! In order to form the IL curved cone-shaped honeycomb speaker diaphragm, first, as shown in Figure 1, a curved three-dimensional fabric with the same dimensions and shape is made of carbon fiber (T300. a radial thread fl+ extending radially from , and each radial thread +11
Circumferential yarn (2) was woven in a direction substantially orthogonal to the 3D weave. Further, the yarn density of this fabric was 9 radial yarns and 9 circumferential yarns/cWL, and the deviation in yarn density was within ±5%. One method for obtaining a curved three-dimensional fabric having an equal thread density from the center to the periphery is, for example, a method using a weaving machine as disclosed in Japanese Patent Application No. 62-302909. Next, the skin material 100/11) of the honeycomb diaphragm was impregnated to form a prepreg, and the core material was made of aluminum foil with a thickness of 105 m. A honeycomb core with a cell size of 3/16° and a thickness of 1.5n was prepared and cured at 100°C for 3 hours while being pressed in a mold.

ハニカム振動板を成形した。この振動板のスキン材(す
なわちマトリックス材で固めた曲面状立体織物)の繊維
の体積含右率は50チであった。
A honeycomb diaphragm was formed. The volume content of fibers in the skin material of this diaphragm (that is, the curved three-dimensional fabric solidified with the matrix material) was 50 cm.

一方、比較のために、このハニカム振動板と寸法9重量
の等しい振動板を平織平面布(東し製。
On the other hand, for comparison, a diaphragm with the same size and weight as this honeycomb diaphragm was made of plain woven flat cloth (manufactured by Toshi).

IK、 $6142)を前述と同一の樹脂、コア材、硬
化条件で成形した。
IK, $6142) was molded using the same resin, core material, and curing conditions as described above.

これら双方の振動板の音圧周波数特性を、第2図の特性
図に示す。第2図において、縦軸は音圧(aB)、横軸
は周波数(Hz)を表わし、特性曲線(a)は曲面状立
体織物、特性曲線(1))は平織平面布を用いた場合の
音圧周波数特性を示す。
The sound pressure frequency characteristics of both of these diaphragms are shown in the characteristic diagram of FIG. In Fig. 2, the vertical axis represents sound pressure (aB), the horizontal axis represents frequency (Hz), characteristic curve (a) is the curved three-dimensional fabric, and characteristic curve (1) is the case when the plain weave plane fabric is used. Shows sound pressure frequency characteristics.

第2図から明らかなように、この実施例1のハニカム振
動板は、高音域の分割共振が抑えられたすぐれた撮動板
であることがわかる。これは、この発明の振動板が、あ
らかじめ、振動面の軸対称荷重に対して1等方な配向を
有し、しかも中央から周辺部に至るまで、半径方向と周
方向に等密度で織り込まれた高弾性繊維が、音圧周波数
特性を安定にするためである。
As is clear from FIG. 2, the honeycomb diaphragm of Example 1 is an excellent imaging plate in which split resonance in the high frequency range is suppressed. This is because the diaphragm of the present invention has an isotropic orientation in advance with respect to the axisymmetric load on the vibration surface, and is woven with equal density in the radial and circumferential directions from the center to the periphery. This is because the high elastic fibers stabilize the sound pressure frequency characteristics.

実施例2 第3図はこの発明の実施例2に係わる曲面状立体織物の
組織を示す模式図であり1図において。
Example 2 FIG. 3 is a schematic diagram showing the structure of a curved three-dimensional fabric according to Example 2 of the present invention, and is similar to FIG. 1.

(3)は斜め方向糸、(4)は周方向糸である。長円径
15α、短円径10cIIL、内径3cR,高さ51の
振動面がだ円であるスピーカ振動板を成形するために。
(3) is a diagonal yarn, and (4) is a circumferential yarn. To mold a speaker diaphragm whose vibration surface is an ellipse with an oval diameter of 15α, a short circle diameter of 10cIIL, an inner diameter of 3cR, and a height of 51.

まずこの寸法で形状が等しい曲面状立体織物を炭素繊維
(東し製、  7300. 1K)およびアラミド繊維
(デュポン社製、380デニール)を用いて、3軸の配
向をもつ曲面状立体織物を第3図に示すように立体的に
製織した。この織物の配向は中央から放射方向く伸びる
斜め方向糸(3)に炭素繊維1円周方向に渦巻き状に織
り込まれる周方向糸(4)にアラミド繊維を用いて、振
動板の仮想稜線とのなす角を斜め方向糸(3)が±30
°で2周方向糸(4)が90゜とし、隣接する斜め方向
糸(3)を交互に絡ませ、斜め方向糸(3)を絡ませる
ごとに、斜め方向糸(3)の間に周方向糸(4)を織り
込んで製織した。また糸密度を示すとなり合う3軸交点
の1c1nあたシの個数は4.5個で、その偏差が斜め
方向および周方向ともに±8チ以内であった。ここでこ
の曲面状立体織物を得る方法としては2例えば、特願昭
62−302910号明細書に示されている製織機を用
いる方法がある。次にハニカム振動板のスキン材として
、この織物にマトリックス材のエポキシ樹脂■ (エピコート828 / )リエチレンテトラミンー1
°0/11)を含浸させプリプl/グとし、コア材とし
て厚さ0.05mのアルミ箔からなる。セルサイズ3/
16°、厚さ1.5nのハニカムコアを用意し、金型内
でプレスしながら100℃、3時間硬化させてハニカム
振動板を成形した。スキン材(すなわちマトリックスで
固めた曲面状立体織物)の繊維の体積含有率は45チで
あった。
First, a curved three-dimensional fabric with the same dimensions and shape was made using carbon fiber (manufactured by Toshi, 7300.1K) and aramid fiber (manufactured by DuPont, 380 denier), and a curved three-dimensional fabric with triaxial orientation was made. The fabric was woven three-dimensionally as shown in Figure 3. The orientation of this fabric is determined by using aramid fibers for the diagonal yarns (3) extending radially from the center and the circumferential yarns (4) that are woven in a spiral shape in the circumferential direction of the carbon fibers. The diagonal direction thread (3) is ±30
2 Circumferential threads (4) are set at 90°, and adjacent diagonal threads (3) are intertwined alternately, and each time a diagonal thread (3) is entwined, a circumferential The thread (4) was woven into the fabric. Further, the number of 1c1n points of adjacent triaxial intersections indicating yarn density was 4.5, and the deviation was within ±8 inches in both the diagonal direction and the circumferential direction. Here, as a method for obtaining this curved three-dimensional fabric, there is, for example, a method using a weaving machine shown in Japanese Patent Application No. 302,910/1982. Next, as a skin material for the honeycomb diaphragm, this fabric was coated with a matrix material of epoxy resin ■ (Epicote 828/) Liethylene Tetramine-1.
The core material is made of aluminum foil with a thickness of 0.05 m. Cell size 3/
A honeycomb core having a diameter of 16° and a thickness of 1.5 nm was prepared and cured at 100° C. for 3 hours while being pressed in a mold to form a honeycomb diaphragm. The fiber volume content of the skin material (that is, the curved three-dimensional fabric consolidated with the matrix) was 45 cm.

また、比較例として、このハニカム振動板と寸法および
重量の等しい振動板を平織平面布(東し製、炭素繊維で
300とアラミド繊維380デニールのハイブリッド比
−2/1)を用いて前述と同一の樹脂、コア材、硬化条
件で成形した。
In addition, as a comparative example, a diaphragm having the same dimensions and weight as this honeycomb diaphragm was fabricated using a plain weave cloth (manufactured by Toshi, hybrid ratio of 300 denier carbon fiber and 380 denier aramid fiber -2/1). Molded using resin, core material, and curing conditions.

これら双方の音圧周波数特性図を、第4図に示す。第4
図において、縦軸は音圧(aB)、  横軸は周波数(
Hz)を表わし、特性曲線(C)は曲面状立体織物、(
d)は平織平面布を用いた場合の音圧周波数特性を示す
Sound pressure frequency characteristic diagrams for both of these are shown in FIG. Fourth
In the figure, the vertical axis is sound pressure (aB), and the horizontal axis is frequency (aB).
Hz), and the characteristic curve (C) represents the curved three-dimensional fabric, (
d) shows the sound pressure frequency characteristics when a plain woven plane cloth is used.

第4図から明らかなように、この実施例2のノー二カム
損動板は高音領域の分割共振が抑えられ。
As is clear from FIG. 4, the two-cam damping plate of Example 2 suppresses the split resonance in the high-frequency range.

高音限界周波数が向上したすぐれた振動板であることが
わかる。
It can be seen that this is an excellent diaphragm with improved treble limit frequency.

これは、平織平面布を用いた振動板は、成形時に長円方
向と小円方向とで異なる繊維乱れを発生するため、特性
が低下するが、この発明の振動板は振動面がだ円である
ような非軸対称の形状でも。
This is because a diaphragm using a plain-woven plane cloth has different fiber disturbances in the oval direction and the small circular direction during molding, resulting in degraded characteristics, but the diaphragm of this invention has an elliptical vibration surface. Even for non-axisymmetric shapes.

曲面状立体織物を用いているので、繊維乱れの発生が全
くなく、特性が向上することになる。
Since a curved three-dimensional fabric is used, there is no occurrence of fiber disorder, resulting in improved properties.

この発明の振動板の重要な点は、繊維配向及び密度が曲
面状立体織物の製織時において任意に設計することがで
き、さらにこれが成形後も変動しないことにある。
The important point of the diaphragm of the present invention is that the fiber orientation and density can be arbitrarily designed during weaving of the curved three-dimensional fabric, and furthermore, this does not change after molding.

また、この発明の振動板は、実施例で示したように、薄
膜のスキン材に曲げ剛性を負担させて。
Furthermore, as shown in the embodiments, the diaphragm of the present invention has a thin film skin material that provides bending rigidity.

振動特性を向上させるハニカム振動板の場合には。In the case of honeycomb diaphragm which improves vibration characteristics.

きわめて有効に作用する。この発明の振動板は。It works extremely effectively. The diaphragm of this invention is.

薄膜にしても、繊維配向が乱れない曲面状立体織物で構
成させているためで、成形後に振動板の表面に溝やしわ
が発生し、振動特性を低下させることはない。
Even if it is a thin film, it is made of a curved three-dimensional fabric that does not disturb the fiber orientation, so there will be no grooves or wrinkles on the surface of the diaphragm after molding, which will not degrade the vibration characteristics.

この発明に係る半径方向糸9周方向糸、斜め方向糸には
1例えば炭素繊維、アラミド繊維、アルミナ繊維などの
高弾性繊維が用いられ、特に種類を限定するものではな
いが2曲面状立体織物の素材設計を詳細に行うために、
フィラメント数の小さいものが好ましい。
According to the present invention, high elastic fibers such as carbon fibers, aramid fibers, and alumina fibers are used for the radial yarns, the circumferential yarns, and the diagonal yarns, and the types thereof are not particularly limited.2 Curved three-dimensional fabrics In order to carry out the detailed material design of
Preferably, the number of filaments is small.

また音圧周波数特性を向上させるかぎシ、使用する曲面
状立体織物の糸密度など糸配向設計において、必ずしも
織物全体にわたシ2等しくする必要はなく9%−ダル解
析などによシ、最適糸配向。
In addition, when designing yarn orientation such as hooks to improve sound pressure frequency characteristics and thread density of the curved three-dimensional fabric used, it is not necessarily necessary to make the entire fabric have an equal width of 2. Orientation.

および最適糸密度に応じ任意設定してもかまわない。例
えば半径方向糸または斜め方向糸と周方向糸の弾性率が
異なっていてもよいし、半径方向糸または斜め方向糸の
弾性率が周方向において、−定の周期で異なっていても
よい。
and may be arbitrarily set according to the optimum thread density. For example, the modulus of elasticity of the radial thread or diagonal thread may be different from that of the circumferential thread, or the modulus of elasticity of the radial thread or diagonal thread may be different at a constant period in the circumferential direction.

また、この発明の振動板においては9曲面状立体織物が
前述実施例1の2軸配向、または実施例2の3軸配向で
構成するかは、振動板の形状によって選択できる。
Further, in the diaphragm of the present invention, whether the nine-curved three-dimensional fabric is configured with the biaxial orientation as in the first embodiment or the triaxial orientation as in the second embodiment can be selected depending on the shape of the diaphragm.

さらKまた。用いるマトリックス材としては。Sara K again. As the matrix material to be used.

エポキシ樹脂の他に、耐熱性イミド、フェノール樹脂な
どやあるいはスピーカーの要求仕様に応じて、アルミや
、セラミックスなどをマトリックス材としてもかまわな
い。
In addition to epoxy resin, the matrix material may be heat-resistant imide, phenol resin, etc., or aluminum, ceramics, etc. depending on the required specifications of the speaker.

〔発明の効果〕〔Effect of the invention〕

以上のように1本発明によれば、中央から放射方向に伸
びる半径方向糸とこの半径方向糸に対して実質的に直交
する方向に織り込まれる周方向糸を用いて曲面状に立体
的に製織し、マトリックス材で固めた曲面状立体織物を
用いることによシ。
As described above, according to the present invention, three-dimensional weaving is performed in a curved shape using radial yarns extending radially from the center and circumferential yarns woven in a direction substantially perpendicular to the radial yarns. However, by using a curved three-dimensional fabric hardened with a matrix material.

また9本発明の別の発明によれば、中央から放射方向に
伸びる斜め方向糸と1円周方向に渦巻き状に織り込まれ
る周方向糸を用い、隣接する上記斜め方向糸同士を交互
に絡ませ、その斜め方向糸を絡ませるごとにそれらの糸
の間に上記周方向糸を織り込み、それによって3軸の織
物として曲面状に立体的に製織し、マトリックス材で固
めた曲面状立体織物を用いることによシ、ともに立体形
状に成形する際、礒維乱れが2発生することなく。
According to another aspect of the present invention, using diagonal yarns extending radially from the center and circumferential yarns spirally woven in one circumferential direction, the adjacent diagonal yarns are alternately entwined with each other, Each time the diagonal yarns are intertwined, the circumferential yarn is woven between the yarns, thereby weaving the circumferential yarn in a three-dimensional curved shape as a triaxial fabric, and using a curved three-dimensional fabric that is solidified with a matrix material. In addition, when molding into a three-dimensional shape, no fiber disorder occurs.

素材特性(TVp )の異方性および不均一部分がなく
なるため、音圧周波数特性にすぐれたコーン状。
Cone shape with excellent sound pressure frequency characteristics due to the absence of anisotropy and non-uniformity in material properties (TVp).

ドーム状、パラボラ状など立体形状の振動板を得ること
ができる。さらに製造工程における成形欠陥(織物の目
ずれ、しわ2割れ)を生ずることがなく、廃品の歩留シ
が向上する。また曲面状立体織物の素材特性(Vp )
の設計を直接振動板に反映させることができ、多様な形
状で多様な音圧周波数特性をもつ振動板が提供できる効
果がある。
A diaphragm with a three-dimensional shape such as a dome shape or a parabolic shape can be obtained. Furthermore, molding defects (fabric misalignment, creases, etc.) do not occur during the manufacturing process, and the yield of waste products is improved. Also, the material characteristics (Vp) of curved three-dimensional fabrics
This design can be directly reflected on the diaphragm, and has the effect of providing diaphragms with various shapes and various sound pressure frequency characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係わる曲面状立体織物の
組織を示す模式図、第2図はこの発明の一実施例のスピ
ーカ振動板の音圧周波数特性を比較例とともに示す特性
図、第3図はこの発明の他の実施例に係わる曲面状立体
織物の組織を示す模式図、第4図はこの発明の他の実施
例のスピーカ振動板の音圧周波数特性を比較例とともに
示す特性図である。 図において、(1)は半径方向糸、 (21(41は周
方向糸。 (3)は斜め方向糸である。 なお9図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a schematic diagram showing the structure of a curved three-dimensional fabric according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the sound pressure frequency characteristics of a speaker diaphragm according to an embodiment of the present invention together with a comparative example. FIG. 3 is a schematic diagram showing the structure of a curved three-dimensional fabric according to another embodiment of the present invention, and FIG. 4 is a characteristic diagram showing the sound pressure frequency characteristics of a speaker diaphragm of another embodiment of the present invention together with a comparative example. It is a diagram. In the figure, (1) is a radial yarn, (21 (41 is a circumferential yarn), (3) is a diagonal yarn. In Figure 9, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)中央から放射方向に伸びる半径方向糸とこの半径
方向糸に対して実質的に直交する方向に織り込まれる周
方向糸を用いて曲面状に立体的に製織し、マトリックス
材で固めた曲面状立体織物を用いたスピーカ振動板。
(1) A curved surface woven three-dimensionally into a curved surface using radial yarns extending radially from the center and circumferential yarns woven in a direction substantially perpendicular to the radial yarns, and hardened with a matrix material. A speaker diaphragm using shaped three-dimensional fabric.
(2)中央から放射方向に伸びる斜め方向糸と、円周方
向に渦巻き状に織り込まれる周方向糸を用い、隣接する
上記斜め方向糸同士を交互に絡ませ、その斜め方向糸を
絡ませるごとにそれらの糸の間に上記周方向糸を織り込
み、それによつて3軸の織物として曲面状に立体的に製
織し、マトリックス材で固めた曲面状立体織物を用いた
スピーカ振動板。
(2) Using diagonal yarns that extend radially from the center and circumferential yarns that are woven in a spiral shape in the circumferential direction, the adjacent diagonal yarns are alternately entwined, and each time the diagonal yarns are entwined, A speaker diaphragm using a curved three-dimensional woven fabric which is woven with the circumferential yarns between these yarns to three-dimensionally weave a three-dimensional curved fabric as a three-axis woven fabric and solidified with a matrix material.
JP6793888A 1988-03-22 1988-03-22 Speaker diaphragm Pending JPH01241300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6793888A JPH01241300A (en) 1988-03-22 1988-03-22 Speaker diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6793888A JPH01241300A (en) 1988-03-22 1988-03-22 Speaker diaphragm

Publications (1)

Publication Number Publication Date
JPH01241300A true JPH01241300A (en) 1989-09-26

Family

ID=13359371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6793888A Pending JPH01241300A (en) 1988-03-22 1988-03-22 Speaker diaphragm

Country Status (1)

Country Link
JP (1) JPH01241300A (en)

Similar Documents

Publication Publication Date Title
EP2242645B1 (en) Multidirectionally reinforced shape woven preforms for composite structures
WO2016141745A1 (en) Diaphragm and loudspeaker apparatus
US8234990B2 (en) Methods for improving conformability of non-crimp fabric and contoured composite components made using such methods
JP2003165851A (en) Fiber-reinforced thermoplastic resin sheet, structural material using the same and method for producing fiber- reinforced thermoplastic resin sheet
CN207124738U (en) Reinforcement part and oscillating plate for sound-producing device
JP2019502037A (en) Preform with integrated gap filler
CN109660919B (en) Sound production device
JP4309748B2 (en) Dry preform for FRP window frames used in aircraft
US20050232458A1 (en) Speaker-use diaphragm and speaker
US9633648B2 (en) Loudspeaker membrane and method for manufacturing such a membrane
CN109672965B (en) Sound production device
CN109391887B (en) Sound production device
KR100255247B1 (en) Manufacturing method of speaker diaphragm
JPH01241300A (en) Speaker diaphragm
WO2010014343A1 (en) Self conforming non-crimp fabric and contoured composite components comprising the same
CN204442650U (en) A kind of vibrating diaphragm and a kind of speaker unit
JPH10168699A (en) Composite fiber material and its production
JPH06141394A (en) Method and apparatus for electroacoustic conversion
US5352506A (en) Diaphragm
JPH07243147A (en) Reinforcing woven fabric and frp using the same
JPS62193398A (en) Diaphragm for speaker
JP2681991B2 (en) Diaphragm for speaker
CN111373083B (en) Unidirectional fabric and application thereof
JPH0257096A (en) Diaphragm for acoustic device
JPH01181299A (en) Diaphragm for speaker