JPH01240863A - Method and apparatus for generating speckle pattern - Google Patents

Method and apparatus for generating speckle pattern

Info

Publication number
JPH01240863A
JPH01240863A JP63067266A JP6726688A JPH01240863A JP H01240863 A JPH01240863 A JP H01240863A JP 63067266 A JP63067266 A JP 63067266A JP 6726688 A JP6726688 A JP 6726688A JP H01240863 A JPH01240863 A JP H01240863A
Authority
JP
Japan
Prior art keywords
speckle pattern
diffuser plate
optical system
diffusion
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63067266A
Other languages
Japanese (ja)
Inventor
Yoshinaga Aizu
佳永 相津
Koji Ogino
浩二 荻野
Toshiaki Sugita
利明 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP63067266A priority Critical patent/JPH01240863A/en
Publication of JPH01240863A publication Critical patent/JPH01240863A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable generation of a speckle pattern making a boiling motion depending on none of a lighting optical system and light receiving optical system, by building up a diffusion plate unit with two diffusion plates arranged apart at a specified interval to move the plates relatively. CONSTITUTION:After converged with a lens 11, a laser beam from a laser light source 10 is made to irradiate a diffusion plate 12a. Diffusively transmitted light subjected to a random phase modulation with the diffusion plate 12a further irradiates a diffusion plate 12b. The diffusion plates 12a and 12b are made movable relative to each other within surfaces thereof. Light transmitted through the diffusion plate 12b forms a speckle pattern in a diffraction area or an image area. The speckle pattern thus obtained is detected with a photo detector 15 through a detection opening 14 and a detection output thereof is inputted into a signal processing section 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスペックルパターン発生方法及び装置、さらに
詳細には移動する拡散板にレーザー光を照射し、透過あ
るいは反射拡散したレーザー光によって光の回折領域あ
るいは像領域にボイリング運動するスペックルパターン
を発生させる方法及び装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a speckle pattern generation method and apparatus, and more specifically, to irradiating a moving diffuser plate with laser light and emitting light by the transmitted or reflected and diffused laser light. The present invention relates to a method and apparatus for generating a speckle pattern with boiling motion in a diffraction region or an image region.

[従来の技術] 従来より移動する拡散仮にレーザー光を照射して得られ
るスペックルパターンの運動を検出することにより、拡
散板の移動速度を測定する方法及び装置が知られている
。これらは例えば雑誌「レーザー研究」 (レーザー学
会刊行)第8巻。
[Prior Art] Conventionally, methods and devices are known for measuring the moving speed of a diffuser plate by detecting the movement of a speckle pattern obtained by irradiating a moving diffuser with a laser beam. These include, for example, the magazine "Laser Research" (published by the Laser Society), Volume 8.

第2号(昭和55年3月)の第37頁から第45頁まで
、及び同誌第8巻、第3号(昭和55年5月)の第3頁
から第10頁までに記載されている。それによればスペ
ックル運動には物体の径勅に伴なって一定方向に移動す
る並進運動と、スペックルが穆勤せずその位置で斑点状
の光の強度分布の明暗変化を時間とともに不規則に繰り
返すボイリング運動とがある。これらは使用するレーザ
ービームの形状や位置と物体、及び観測位置等の光学系
構成条件によって純粋に並進運動のみ、あるいは逆にボ
イリング運動のみ、あるいは両者の共存状態などが各々
観測される。
Described on pages 37 to 45 of No. 2 (March 1980), and pages 3 to 10 of Volume 8, No. 3 (May 1988) of the same magazine. . According to this theory, speckle motion includes translational motion, which moves in a fixed direction as the object moves, and speckle motion, which causes irregular changes in brightness and darkness of the speckled light intensity distribution at that position over time. There is a boiling motion that repeats. Depending on the configuration of the optical system, such as the shape and position of the laser beam used, the position of the object, and the observation position, pure translational motion, only boiling motion, or a coexistence of both can be observed.

こうしたスペックル速度測定法を生体の血流速度測定に
応用した装置として例えば特開昭80−199430号
、特開昭60−203235号、特開昭60−2032
3δ号や本願の発明者による先願、特開昭62−275
431号、特願昭62−75778号などがあり、最近
特にレーザー工学の生体への応用の1つとして注目され
ている。これらの装置の測定精度、再現性、直線性、速
度依存性といった速度測定装置としての種々の性能を評
価、あるいは較正する場合、ガラス細管内流体等のフロ
ーモデルはより血管に近いモデルという点で好ましいが
、流速の安定性が悪く、不要な管壁散乱や流速分布の影
舌等もあって決して十分ではなく、結局自由に既知法度
を何回でも再現性良くかつ常に安定に、容易に設定でき
る移動光散乱物体として、スリガラスのような拡散板を
用いることが多い。
Examples of devices that apply this speckle velocity measurement method to measuring blood flow velocity in living bodies include JP-A-80-199430, JP-A-60-203235, and JP-A-60-2032.
3δ and the earlier application by the inventor of the present application, JP-A-62-275
No. 431 and Japanese Patent Application No. 62-75778, etc., and has recently attracted attention as one of the applications of laser engineering to living organisms. When evaluating or calibrating the performance of these devices as a velocity measurement device, such as measurement accuracy, reproducibility, linearity, and velocity dependence, flow models such as fluid in glass tubules are useful because they are models that are closer to blood vessels. Although it is preferable, it is never sufficient due to poor stability of flow velocity, unnecessary tube wall scattering, and influence of flow velocity distribution, etc. In the end, it is possible to easily set a known law any number of times with good reproducibility and always stably. A diffuser plate such as ground glass is often used as a moving light scattering object.

[発明が解決しようとする課題] ところが拡散板では、上記のごとく、使用する装置のレ
ーザー照明光学系、受光光学系によって、観測面ではス
ペックルパターンが並進運動であったり、ボイリング運
動であったりする。ところが生体から得られるスペック
ルは一般に照明光学系、受光光学系によらずにボイリン
グ運動する場合がほとんどであるため、拡散板モデルに
よって形成されるスペックルパターンの運動ではスペッ
クル光強度変化の検出信号特性が実際の場合と異なり、
結果として十分なモデル化ができないのが現状であっっ
た。
[Problem to be solved by the invention] However, as mentioned above, with a diffuser plate, depending on the laser illumination optical system and light receiving optical system of the device used, the speckle pattern may be in translational motion or boiling motion on the observation surface. do. However, since speckles obtained from living organisms generally undergo boiling motion regardless of the illumination optical system or light receiving optical system, the movement of the speckle pattern formed by the diffuser plate model is difficult to detect changes in speckle light intensity. The signal characteristics may differ from the actual case,
As a result, the current situation is that sufficient modeling is not possible.

従って、本発明はこのような課題を解決するためになさ
れたもので、照明光学系、受光光学系に依存せずボイリ
ング運動するスペックルパターンを発生することが可能
なスペックルパターン発生方法及び装置を提供すること
を目的とする。
Therefore, the present invention has been made to solve such problems, and provides a speckle pattern generation method and apparatus that can generate a speckle pattern that exhibits boiling motion without depending on the illumination optical system and the light receiving optical system. The purpose is to provide

[課題を解決するための手段] 本発明は、上述したような課題を解決するために、拡散
板を所定の比較的小さな間隔を隔てて配置された2枚の
拡散板から構成し、一方の拡散板を他方の拡散板に対し
て一定速度でその面内において相対8 illさせボイ
リング運動するスペックルパターンを発生させる構成を
採用した。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention comprises two diffusion plates arranged at a predetermined relatively small interval, one of which A configuration was adopted in which a speckle pattern with boiling motion was generated by moving one diffuser plate relative to another diffuser plate at a constant speed within its plane.

[作 用] このような構成では、回折領域あるいは像領域のいずれ
にも拡散板移動によるスペックルのボイリング運動を形
成することができ、照明光学系、受光光学系の諸条件に
左右されない標準モデルを形成することができる。
[Function] With this configuration, speckle boiling motion can be formed in either the diffraction region or the image region by the movement of the diffuser plate, and the standard model is not affected by the conditions of the illumination optical system and the light receiving optical system. can be formed.

[実施例コ 第1図に従来知られているレーザースペックルを用いた
移動物体の速度測定装置の原理を示す。
[Example 1] Figure 1 shows the principle of a conventionally known speed measuring device for a moving object using laser speckles.

レーザー光源10から出たレーザービームはレンズ11
で一度収束したのち拡散する状態で測定すべき移動物体
12に照射される。レーザー光は移動物体12によって
ランダムな位相変調を受け、回折領域中の観測面上に運
動するレーザースペックルパターンが観測される。移動
物体12の速度に比例した速さでスペックルパターンが
運動するので、運動に伴なう光強度変化を観測面17上
の検出開口14を介して光検出器15で検出し、信号処
理部16でスペックル信号の相関関数、パワースペクト
ル、零交叉数等、必要に応じた種類の処理を行なって物
体速度を測定するものである。
The laser beam emitted from the laser light source 10 passes through the lens 11
The moving object 12 to be measured is irradiated with the light in a state where it converges once and then diffuses. The laser beam undergoes random phase modulation by the moving object 12, and a moving laser speckle pattern is observed on the observation surface in the diffraction region. Since the speckle pattern moves at a speed proportional to the speed of the moving object 12, the light intensity change due to the movement is detected by the photodetector 15 through the detection aperture 14 on the observation surface 17, and the signal processing section detects the change in light intensity due to the movement. 16, the object speed is measured by performing various types of processing as necessary, such as a correlation function, a power spectrum, a zero crossing number, etc. of the speckle signal.

この原理を生体に応用すると、例えば皮膚下の毛細血管
層や、通常血管内の赤血球など、3次元的に常に散乱体
が不規則に揺らぎながら動いており、かつ方向も一定し
ていなかったり、周辺組織間や散乱体間の多重散乱が生
じることなどによって、もはや第1図の移動物体12の
ように定常な散乱物体とは全く異った刻象物体と考えな
ければならない。その場合は使用するレーザー照射光学
系や受光光学系によらずにボイリング運動として観測さ
れることが多い。
When this principle is applied to living organisms, for example, in the capillary layer under the skin or red blood cells in normal blood vessels, scatterers are constantly moving in a three-dimensional manner with irregular fluctuations, and the direction is not constant. Due to the occurrence of multiple scattering between surrounding tissues and between scatterers, it must be considered as an engraved object that is completely different from a stationary scattering object like the moving object 12 in FIG. In that case, it is often observed as boiling motion, regardless of the laser irradiation optical system or light receiving optical system used.

そこで生体に応用したレーザースペックル血流速度測定
装置の種々の速度測定性能を評価、較正する場合、常に
基準となる対象モデルが必要であって、一般にガラス管
に血液を流す装置が使われる。しかし速度の安定性、再
現性が不十分だし、長期間一定条件で使えないなどの欠
点もあり、結局スリガラスのような簡単に、所望の速度
を設定でき、何回でも安定して使えるものが基準モデル
として好ましくなる。ところがスリガラスのような拡散
板でボイリング運動するスペックルパターンを形成する
には、レーザー照射光学系や受光光学系がいくつかの条
件を満足する場合に限られてしまう。その例を第2図、
第3図に示す。
Therefore, when evaluating and calibrating the various speed measurement performance of a laser speckle blood flow velocity measurement device applied to a living body, a reference target model is always required, and a device that flows blood through a glass tube is generally used. However, it has drawbacks such as insufficient speed stability and reproducibility, and cannot be used under constant conditions for a long period of time.In the end, something like ground glass, which allows you to easily set the desired speed and can be used stably over and over again, was developed. It is preferable as a reference model. However, forming a boiling speckle pattern with a diffuser plate such as ground glass is limited to cases where the laser irradiation optical system and the light receiving optical system satisfy several conditions. An example of this is shown in Figure 2.
It is shown in Figure 3.

第2図は照射レーザービームのウェスト位置2゜で物体
を照射する光学系であり、第3図は照射レーザービーム
のウェスト位置2oに対し、レンズ17による共役結像
面に観測面を一致させる光学系である。いずれも観測面
にてボイリング運動が形成される。
Figure 2 shows an optical system that irradiates an object with the waist position of the irradiated laser beam at 2°, and Figure 3 shows an optical system that aligns the observation plane with the conjugate imaging plane formed by the lens 17 with respect to the waist position 2o of the irradiated laser beam. It is a system. In both cases, boiling motion is formed on the observation plane.

しかし、一般にレーザー照射光学系や受光光学系は評価
、較正すべき装置によって異なり、常に第2図、第3図
の例のごとくボイリング運動する条件にあるとは限らな
い。そこで装置側の条件によらずに物体側だけでボイリ
ングを発生させることができ、しかもそれをスリガラス
のような取り扱いの簡単なモデルで実現できることが望
ましい。
However, in general, the laser irradiation optical system and the light receiving optical system differ depending on the equipment to be evaluated and calibrated, and are not always under the conditions of boiling motion as in the examples of FIGS. 2 and 3. Therefore, it is desirable to be able to generate boiling only on the object side, regardless of the conditions on the equipment side, and to be able to achieve this using a model that is easy to handle, such as ground glass.

そこで本発明の実施例では第4図に図示したような構成
を用いるようにしている。すなわち拡散板として所定の
間隔を隔てて配置され光軸にほぼ垂直に配置される2枚
の拡散板12a、12bを用いるようにしている。
Therefore, in the embodiment of the present invention, a configuration as shown in FIG. 4 is used. That is, two diffusion plates 12a and 12b are used as the diffusion plates, which are arranged at a predetermined interval and arranged substantially perpendicular to the optical axis.

同図においてレーザー光源10からのレーザービームは
一度、レンズ11で収束した後、拡散状態で前方の拡散
板12aを照射する。そこでランダムな位相変調を受け
た拡散透過光がさらに後方の第2の拡散板12bを照射
する。こうして拡散板12bを透過した光は回折領域、
あるいは像領域にスペックルパターンを形成する。
In the figure, a laser beam from a laser light source 10 once converges on a lens 11, and then irradiates the front diffuser plate 12a in a diffused state. Thereupon, the diffusely transmitted light that has undergone random phase modulation illuminates the second diffuser plate 12b located further behind. In this way, the light transmitted through the diffuser plate 12b enters the diffraction region,
Alternatively, a speckle pattern is formed in the image area.

ここで例えば拡散板12aを一定速度でその面7 内に
おいて8勅させ、拡散板12bを静止固定させると、拡
散板12aで拡散透過した光は拡散板12aの移゛動に
伴なう速度とその方向に関する情報を有するため、第1
図のように観測面にて並進するスペックルが見られるが
、その後方dだけ離れたところに拡散板12bが静止し
て存在すると、第5図のように拡散板12bの拡散面で
改めてランダムな位相変調を受け、しかも拡散板12a
は移動、拡散板12bは静止しているため、拡散板12
aと12bの位置関係で決まる散乱物体の位相変調関数
は、時々刻々変化することになる。
Here, for example, if the diffuser plate 12a is moved at a constant speed within its surface 7 and the diffuser plate 12b is fixed stationary, the light diffused and transmitted by the diffuser plate 12a will change at a speed that accompanies the movement of the diffuser plate 12a. In order to have information about the direction, the first
As shown in the figure, translating speckles can be seen on the observation surface, but if the diffuser plate 12b is stationary at a distance d behind it, the diffuser surface of the diffuser plate 12b will be randomly generated as shown in Figure 5. phase modulation, and the diffuser plate 12a
is moving, and the diffuser plate 12b is stationary, so the diffuser plate 12b is stationary.
The phase modulation function of the scattering object, which is determined by the positional relationship between a and 12b, changes every moment.

これを具体的に示したものが第6図である。第6図(a
)において、ある光線1は拡散板12a上の点2で散乱
し、散乱光1′となって拡散板12b上の点3に到達し
、さらにここで散乱し、拡散光1′となって4の方向へ
進むとする。
FIG. 6 specifically shows this. Figure 6 (a
), a certain light ray 1 is scattered at a point 2 on the diffuser plate 12a, becomes a scattered light 1', reaches a point 3 on the diffuser plate 12b, is further scattered there, becomes a diffused light 1', and reaches a point 3 on the diffuser plate 12b. Suppose we move in the direction of.

この時第6図(b)のように、拡散板12aが移動した
場合を考える。入射光束内の第6図(a)の場合と同じ
角度で入ってきた光線1は第6図(a)と同様、拡散板
12a上の点2で散乱すれば、散乱光1′となって進む
が今度は拡散板12aと12bの位置関係が第6図(a
)とは異なるため、拡散板12b上の点3ではなく、点
5に到達するので、ここで散乱した光線は散乱光7とな
って6の方向へ進む。しかも6の方向の光軸に対する角
度が拡散板12b上の散乱点の表面形状で決まるため、
時間と共にランダムに変化してしまう。
At this time, consider the case where the diffuser plate 12a moves as shown in FIG. 6(b). If the light ray 1 that enters the incident light flux at the same angle as in Fig. 6(a) is scattered at the point 2 on the diffuser plate 12a, it becomes scattered light 1'. The process continues, but this time the positional relationship between the diffusion plates 12a and 12b is
), the light rays reach the point 5 instead of the point 3 on the diffuser plate 12b, and the light rays scattered here turn into scattered light 7 and travel in the direction of 6. Moreover, since the angle of direction 6 with respect to the optical axis is determined by the surface shape of the scattering points on the diffuser plate 12b,
It changes randomly over time.

偶然にも6の方向が方向6′のごとく、第6図(a)に
おける方向4と平行であフた時は、スペックルが並進す
る可能性も考えられるが、統計的に確率は非常に低く、
結果として拡散板12aと12bの相対する位置関係が
時間と共に常に変化するために、やはり観測面17での
各光線の重なり具合も時々刻々変化して干渉状態が時間
と共にランダムに変わってしまう。これがボイリング運
動を形成することになる。干渉状態の時間的変化が物体
の変化と共に一定方向にシフトしていくのであれば並進
運動となるが、第6図に示したように拡散板12aと1
2bの位置関係で拡散板12bを出た光線の角度がラン
ダムに変わってしまい常に一定に保たれないことから並
進運動がもはや保存されないことがわかる。これによっ
て観測面17では光学系によらずに常にボイリング運動
が形成されることになる。
If by chance the direction of 6 is parallel to direction 4 in Figure 6(a), as in direction 6', there is a possibility that the speckles will translate, but statistically the probability is very low. low,
As a result, since the relative positional relationship between the diffusers 12a and 12b constantly changes over time, the degree of overlapping of each light beam on the observation surface 17 also changes from time to time, and the interference state changes randomly over time. This will form a boiling motion. If the temporal change in the interference state shifts in a fixed direction with the change in the object, it will be a translational movement, but as shown in FIG.
It can be seen that the translational motion is no longer preserved because the angle of the light beam exiting the diffuser plate 12b changes randomly depending on the positional relationship of the diffuser plate 12b and is not always kept constant. As a result, boiling motion is always formed on the observation surface 17 regardless of the optical system.

上記のような原理でボイリング運動を発生させることが
できるため、レーザ照射光学系も第8図のように、ビー
ムの収束位置20だけでなく、その前後の位置21や2
2で物体を照射しても、ボイリング運動を形成できるの
で、極めて好ましい結果が得られる。また2つの拡散板
12a。
Since the boiling motion can be generated based on the principle described above, the laser irradiation optical system also focuses not only on the beam convergence position 20 but also on the positions 21 and 2 before and after it, as shown in Figure 8.
Even if the object is irradiated with 2, very favorable results can be obtained since boiling motion can be formed. Also, two diffusion plates 12a.

12bの拡散面の向きは、第5図に図示した例だけでな
く、第7図(a)〜(C)のような構成でもよい。また
拡散板の間隔dは、近接していた方が良く、例えば3m
m以下であると良好であるが、拡散板12aや12bの
光の透過率を考慮して適切に調整してやるとよい。ただ
極端に大きな距離(例えば100m+nとか200mm
以上)に設定すると、スペックルは並進運動となるので
好ましくない。
The direction of the diffusion surface of 12b is not limited to the example shown in FIG. 5, but may also be configured as shown in FIGS. 7(a) to (C). Also, it is better for the distance d between the diffusion plates to be close to each other, for example, 3m.
It is good if it is less than m, but it is better to adjust it appropriately taking into consideration the light transmittance of the diffusion plates 12a and 12b. However, extremely large distances (for example, 100m+n or 200mm)
(above) is not preferable because the speckles will move in translation.

受光光学系は、像面検出でも、回折面検出でもいずれも
ボイリング運動が観測できるので有利である。したがっ
て評価、較正すべき装置の光学系によらずにボイリング
運動が形成でき大変便利である。しかも、ボイリング運
動の光強度変化の速さ自体は、移動物体の速度Vと比例
関係にあるので、直線性の評価等にも有効である。拡散
板の移動速度は、モーターによる制御等で安定に何回で
も任意に既知速度で正確に設定できる。よって大変簡単
で実用的なスペックルパターンの発生方法となり得る。
The light receiving optical system is advantageous because boiling motion can be observed in both image plane detection and diffraction plane detection. Therefore, the boiling motion can be formed without depending on the optical system of the device to be evaluated and calibrated, which is very convenient. Moreover, since the speed of change in light intensity due to boiling motion itself is proportional to the velocity V of the moving object, it is also effective for evaluating linearity. The moving speed of the diffuser plate can be stably and accurately set any number of times at a known speed by controlling a motor or the like. Therefore, this can be a very simple and practical method for generating speckle patterns.

一方第4図で2枚の拡散板12aと12bにおいて、拡
散板12aを固定し、拡散板12bを移動させてもよい
。さらに両者とも各々独立に任意の一定速度で移動させ
てもよい。この時の拡散板の移動方向は、各々の面内に
おいて任意に選ぶことができるが、仮に拡散板12aと
12bの速度が等しい場合に、共に同一方向に移動させ
ると、拡散板12aと12bの相対位置関係は常に一定
で不変となり、全体として一体となった1つの物体と考
えることができる。このような場合は、光学系条件によ
ってはスペックルが並進するので、この例だけはさける
必要がある。
On the other hand, in the two diffusion plates 12a and 12b shown in FIG. 4, the diffusion plate 12a may be fixed and the diffusion plate 12b may be moved. Furthermore, both may be moved independently at any constant speed. The moving direction of the diffuser plates at this time can be arbitrarily selected within each plane, but if the speeds of the diffuser plates 12a and 12b are equal and they are moved in the same direction, the diffusion plates 12a and 12b will move in the same direction. The relative positional relationship is always constant and unchanging, and it can be considered as a single, integrated object. In such a case, speckles may be translated depending on the optical system conditions, so this example should be avoided.

さらに、拡散板は2枚だけでなく3枚以上設定しても同
様の効果は得られるが、不必要な光量ロス、装置の複雑
化等の欠点があるので、2枚で十分実用に供し得る。ま
た本発明は拡散透過領域でのボイリング運動だけでなく
、拡散反射領域におけるボイリング運動を形成すること
もできるので、反射型の評価、較正すべき装置の光学系
でも有効に利用できる。
Furthermore, the same effect can be obtained by setting not only two but three or more diffusers, but there are disadvantages such as unnecessary loss of light quantity and complication of the device, so two diffusers are sufficient for practical use. . Furthermore, since the present invention can form boiling motion not only in the diffuse transmission region but also in the diffuse reflection region, it can be effectively used in the optical system of a reflective type apparatus to be evaluated and calibrated.

また第5図や第6図に示すような2枚の拡散板による散
乱現象は、散乱されたスペックル光の高次変調(2重、
3重に散乱が重なって変調が行なわれる)になるため、
観測面でのボイリング運動の光強度変化の速さは通常の
場合である第2図や第3図のボイリング運動と比べて一
般に速くなるので、例えば物体速度Vと検出されたスペ
ックル信号の相関関数が1 / aに減衰する時間であ
る相関時間τCの逆数との関係をプロットすると、第9
図のようになる。同図において直線aは、第2図や第3
図のような通常の1つの散乱物体によるボイリング運動
の場合、直線すが本発明実施例の場合である。すなわち
速度Vに対する1/τCの変化率が直線すの方が大きい
ことから、本発明によれば移動物体の速度測定の速度分
解能の向上という大きな効果もあることがわかる。これ
は評価や較正を行なうという本発明の応用例において大
変大ぎな効果になっている。
In addition, the scattering phenomenon caused by two diffuser plates as shown in Figures 5 and 6 is caused by higher-order modulation (double,
(modulation occurs due to triple scattering),
The speed of light intensity change due to boiling motion on the observation plane is generally faster than the boiling motion shown in Figures 2 and 3, which is the normal case, so for example, the correlation between the object speed V and the detected speckle signal Plotting the relationship with the reciprocal of the correlation time τ, which is the time for the function to decay to 1/a, we get the 9th
It will look like the figure. In the same figure, straight line a is
In the case of boiling motion caused by a single scattering object as shown in the figure, a straight line is the case in the embodiment of the present invention. That is, since the rate of change of 1/τC with respect to the velocity V is greater in the straight line, it can be seen that the present invention has the great effect of improving the velocity resolution in measuring the velocity of a moving object. This is a very significant effect in the application of the present invention to evaluation and calibration.

一方、スペックルパターンの運動を一点の検出開口で検
出するのではなく、第10図のように微小な複数の開口
25a、25bなどのパターンで構成される複数検出間
ロバターン25を用いて検出する場合、スペックル24
が並進運動すると、隣接する2開口25a、25b間を
時間遅れを伴なって1つのスペックルが移動していくよ
うな状況が生じ、出力信号の相関関数は第11図に示す
ように本来ボイリング運動であれば、曲線26のように
なるデータが上記による相互相関成分を含んでしまう結
果直線27のごとくなり、正しい評価ができなくなる。
On the other hand, the movement of the speckle pattern is not detected using a detection aperture at a single point, but is detected using a plurality of inter-detection robot patterns 25 made up of patterns such as a plurality of minute apertures 25a and 25b as shown in FIG. If speckle 24
When the speckle moves in translation, a situation occurs in which one speckle moves between two adjacent apertures 25a and 25b with a time delay, and the correlation function of the output signal is originally boiling as shown in FIG. In the case of motion, data such as the curve 26 includes the above-mentioned cross-correlation components, resulting in a straight line 27, making it impossible to perform accurate evaluation.

そこで複数検出間ロバターンを用いたスペックル利用装
置の評価、較正にはボイリング運動するスペックルが欠
かせなくなりこの点においても、本発明が大変有効かつ
必要不可欠であることがわかる。
Therefore, speckles that undergo boiling motion are indispensable for the evaluation and calibration of a speckle utilization device using a multiple-detection robot pattern, and it can be seen that the present invention is very effective and indispensable in this respect as well.

[発明の効果コ 以上説明したように、本発明によれば2枚の拡散板を比
較的短い所定間隔で平行配設するだけの物体によって、
評価、較正すべき装置のレーザー照明光学系、受光光学
系の諸条件によらずに常にスペックルのボイリング運動
を回折領域あるいは像領域いずれにも形成することがで
き、かつボイリング運動の速さは物体速度に比例するの
で、容易に希望する速度の制御が行なえる。
[Effects of the Invention] As explained above, according to the present invention, by simply arranging two diffuser plates in parallel at a relatively short predetermined interval,
It is possible to always form speckle boiling motion in either the diffraction region or the image region, regardless of the conditions of the laser illumination optical system and light receiving optical system of the equipment to be evaluated and calibrated, and the speed of the boiling motion is Since it is proportional to the object speed, the desired speed can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図はそれぞれスペックルパターンを形成
する原理を説明した説明図、第4図は本発明によるスペ
ックルパターンを形成する方法を説明した説明図、第5
図は2枚の拡散板による光の拡散状態を説明した説明図
、第6図(a)。 (b)はそれぞれ2枚の拡散板の相対移動によって生ず
る光線の変化を説明した説明図、第7図(a)〜(c)
はそれぞれ拡散板の変形化を示した断面図、第8図は拡
散板を照明する位置を示した説明図、第9図は物体の速
度と遅れの関係を示した線図、第10図は複数検出間ロ
バターンによるスペックルの検出状態を示した説明図、
第11図は遅れ時間と相関関数の関係を示す線図である
。 10・・・レーザー光源 12a、12b・・・拡散板
14・・・検出開口   15・・・光検出器16・・
・信号処理部  17・・・観測面第8図 第9図
1 to 3 are explanatory diagrams explaining the principle of forming a speckle pattern, FIG. 4 is an explanatory diagram explaining a method of forming a speckle pattern according to the present invention, and FIG.
The figure is an explanatory diagram illustrating the state of light diffusion by two diffusion plates, FIG. 6(a). (b) is an explanatory diagram illustrating changes in light rays caused by relative movement of two diffuser plates, and Figures 7 (a) to (c)
8 is an explanatory diagram showing the position of illuminating the diffuser plate, FIG. 9 is a diagram showing the relationship between the velocity and delay of an object, and FIG. 10 is a cross-sectional view showing the deformation of the diffuser plate. An explanatory diagram showing the state of speckle detection using a robot pattern between multiple detections,
FIG. 11 is a diagram showing the relationship between delay time and correlation function. 10... Laser light source 12a, 12b... Diffusion plate 14... Detection aperture 15... Photodetector 16...
・Signal processing unit 17...Observation surface Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】 1)移動する拡散板にレーザー光を照射し、透過あるい
は反射拡散したレーザー光によって光の回折領域あるい
は像領域にボイリング運動するスペックルパターンを発
生させるスペックルパターン発生方法において、前記拡
散板を所定の比較的小さな間隔を隔てて配置された2枚
の拡散板から構成し、これらの2枚の拡散板の一方を他
方に対して一定速度でその面内において相対移動させる
ことによりボイリング運動するスペックルパターンを発
生させることを特徴とするスペックルパターン発生方法
。 2)前記2枚の拡散板の一方を静止させ、他方をその面
内で一定速度で移動させるようにした特許請求の範囲第
1項に記載の方法。 3)前記スペックルのパターン運動を複数の微小開口を
有する複数検出開口パターンを介して検出するようにし
た特許請求の範囲第1項又は第2項に記載の方法。 4)レーザー光を発生するレーザー光源と、レーザー光
源からのレーザー光を投光する光学系と、 前記光学系の光軸にほぼ垂直に所定の比較的小さな間隔
を隔てて配置された2枚の拡散板とを設け、 前記拡散板にレーザー光を照射し、2枚の拡散板の一方
を他方に対して一定速度でその面内において相対移動さ
せることにより光の回折領域あるいは像領域にボイリン
グ運動するスペックルパターンを発生させることを特徴
とするスペックルパターン発生装置。
[Claims] 1) A speckle pattern generation method in which a moving diffuser plate is irradiated with a laser beam, and the transmitted or reflected and diffused laser beam generates a speckle pattern with boiling movement in a light diffraction area or an image area. , the diffusion plate is composed of two diffusion plates arranged at a predetermined relatively small interval, and one of these two diffusion plates is moved relative to the other at a constant speed within its plane. A speckle pattern generation method characterized by generating a speckle pattern that undergoes boiling motion. 2) The method according to claim 1, wherein one of the two diffusion plates is kept stationary, and the other is moved within its plane at a constant speed. 3) The method according to claim 1 or 2, wherein the pattern movement of the speckles is detected through a multiple detection aperture pattern having a plurality of microscopic apertures. 4) a laser light source that generates a laser beam; an optical system that projects the laser beam from the laser light source; A diffuser plate is provided, the laser beam is irradiated to the diffuser plate, and one of the two diffusers is moved relative to the other within its plane at a constant speed to produce boiling motion in the light diffraction area or image area. A speckle pattern generating device is characterized in that it generates a speckle pattern.
JP63067266A 1988-03-23 1988-03-23 Method and apparatus for generating speckle pattern Pending JPH01240863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067266A JPH01240863A (en) 1988-03-23 1988-03-23 Method and apparatus for generating speckle pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067266A JPH01240863A (en) 1988-03-23 1988-03-23 Method and apparatus for generating speckle pattern

Publications (1)

Publication Number Publication Date
JPH01240863A true JPH01240863A (en) 1989-09-26

Family

ID=13339987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067266A Pending JPH01240863A (en) 1988-03-23 1988-03-23 Method and apparatus for generating speckle pattern

Country Status (1)

Country Link
JP (1) JPH01240863A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530604A (en) * 2006-03-14 2009-08-27 プライム センス リミティド Light field that changes depth for 3D detection
US8150142B2 (en) 2007-04-02 2012-04-03 Prime Sense Ltd. Depth mapping using projected patterns
US8982182B2 (en) 2010-03-01 2015-03-17 Apple Inc. Non-uniform spatial resource allocation for depth mapping
US9030528B2 (en) 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
US9066087B2 (en) 2010-11-19 2015-06-23 Apple Inc. Depth mapping using time-coded illumination
US9098931B2 (en) 2010-08-11 2015-08-04 Apple Inc. Scanning projectors and image capture modules for 3D mapping
US9131136B2 (en) 2010-12-06 2015-09-08 Apple Inc. Lens arrays for pattern projection and imaging
US9157790B2 (en) 2012-02-15 2015-10-13 Apple Inc. Integrated optoelectronic modules with transmitter, receiver and beam-combining optics for aligning a beam axis with a collection axis
US9582889B2 (en) 2009-07-30 2017-02-28 Apple Inc. Depth mapping based on pattern matching and stereoscopic information
WO2023248953A1 (en) * 2022-06-22 2023-12-28 シーシーエス株式会社 Inspection device and light irradiation device for inspection

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530604A (en) * 2006-03-14 2009-08-27 プライム センス リミティド Light field that changes depth for 3D detection
US8150142B2 (en) 2007-04-02 2012-04-03 Prime Sense Ltd. Depth mapping using projected patterns
US9582889B2 (en) 2009-07-30 2017-02-28 Apple Inc. Depth mapping based on pattern matching and stereoscopic information
US8982182B2 (en) 2010-03-01 2015-03-17 Apple Inc. Non-uniform spatial resource allocation for depth mapping
US9098931B2 (en) 2010-08-11 2015-08-04 Apple Inc. Scanning projectors and image capture modules for 3D mapping
US9215449B2 (en) 2010-11-19 2015-12-15 Apple Inc. Imaging and processing using dual clocks
US9066087B2 (en) 2010-11-19 2015-06-23 Apple Inc. Depth mapping using time-coded illumination
US9131136B2 (en) 2010-12-06 2015-09-08 Apple Inc. Lens arrays for pattern projection and imaging
US9167138B2 (en) 2010-12-06 2015-10-20 Apple Inc. Pattern projection and imaging using lens arrays
US9030528B2 (en) 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
US9157790B2 (en) 2012-02-15 2015-10-13 Apple Inc. Integrated optoelectronic modules with transmitter, receiver and beam-combining optics for aligning a beam axis with a collection axis
US9651417B2 (en) 2012-02-15 2017-05-16 Apple Inc. Scanning depth engine
WO2023248953A1 (en) * 2022-06-22 2023-12-28 シーシーエス株式会社 Inspection device and light irradiation device for inspection

Similar Documents

Publication Publication Date Title
Tan et al. A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium
JPS5923390B2 (en) Method for measuring the speed of a moving object using speckles
US7460218B2 (en) Device and method for determining the properties of surfaces
EP1645842A3 (en) Apparatus for imaging three-dimentional structures
DE69306399D1 (en) Validation of the optical distance measurement of a target surface in a disturbed environment
JPH01240863A (en) Method and apparatus for generating speckle pattern
JPH06185979A (en) Three-dimensional image measuring instrument
JP3689278B2 (en) Particle size distribution measuring apparatus and particle size distribution measuring method
GB2306825A (en) Laser ranging using time correlated single photon counting
JPS6326555A (en) Three-dimensional measuring instrument for body internal structure using light
Upatnieks et al. A kilohertz frame rate cinemagraphic PIV system for laboratory-scale turbulent and unsteady flows
JPH0577259B2 (en)
KR20040076251A (en) Method and device for detecting the shape of a three-dimensional object
JP3265549B2 (en) Distance measuring device
JPS6125011A (en) Optical distance measuring device
US3822940A (en) Velocimeter
KR100337368B1 (en) Method For measuring 3 Dimensional Wind Direction/Wind Velocity Using Lidar System having Optical Fiber Receiving Optical Meter
JPS57148207A (en) Device for measuring straightness
RU2032180C1 (en) Velocity field determination method
Maekynen et al. Laser-radar-based three-dimensional sensor for teaching robot paths
JPH07103714A (en) Laser distance measuring method
JPS62156563A (en) Measuring device for speed and distance
JPH01235854A (en) Flow rate measuring instrument
JP3410318B2 (en) Three-dimensional measurement method and apparatus using hologram display
Grun et al. Turbulence in Very-High Mach Number, Laser-Accelerated Material