JPH01240802A - Detecting apparatus for horizontal position - Google Patents

Detecting apparatus for horizontal position

Info

Publication number
JPH01240802A
JPH01240802A JP63067518A JP6751888A JPH01240802A JP H01240802 A JPH01240802 A JP H01240802A JP 63067518 A JP63067518 A JP 63067518A JP 6751888 A JP6751888 A JP 6751888A JP H01240802 A JPH01240802 A JP H01240802A
Authority
JP
Japan
Prior art keywords
optical system
horizontal position
exposure area
axis
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63067518A
Other languages
Japanese (ja)
Inventor
Saburo Kamiya
三郎 神谷
Hideo Mizutani
英夫 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63067518A priority Critical patent/JPH01240802A/en
Priority to US07/284,659 priority patent/US4902900A/en
Publication of JPH01240802A publication Critical patent/JPH01240802A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface

Abstract

PURPOSE:To increase detective sensitivity by a method wherein slope angles in the directions of an X-axis and a Y-axis in an exposure area are detected in the directions along the crosslines of the respective photodetectors of two sets of horizontal position detecting systems. CONSTITUTION:Two sets of horizontal position detecting systems composed of irradiation optical systems 10X, 10Y and convergence optical systems 20X, 20Y are provided along the directions of an X-axis and a Y-axis of a coordinate system X-Y. By photodetectors in the convergence optical systems 20X, 20Y of these horizontal position detecting systems, slope angles in the directions of the X-axis and the Y-axis in an exposure area are detected invariably in the directions along the crosslines of the photodetectors, and outputs of these elements are computed by an arithmetic means for calculation of the inclination of the exposure area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、対物レンズの光軸に対して半導体ウェハ面や
被検物体面を垂直位置に正確に設置するための基準位置
検出装置、特に水平位置検出装置に関する。ものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reference position detection device for accurately positioning a semiconductor wafer surface or a test object surface in a perpendicular position with respect to the optical axis of an objective lens. This invention relates to a horizontal position detection device. It is something.

〔従来の技術〕[Conventional technology]

半導体集積回路の製造におけるリソグラフィー工程では
、主にステップ・アンド・リピート方式による縮小投影
型露光装置、所謂ステッパーが用いられ、マスク或いは
レチクル(以下、レチクルと呼ぶ)に形成された回路パ
ターンを、投影対物レンズ(以下、阜に投影レンズと呼
ぶ)を介して順次加工片たるウェハ上に露光する。この
ステッパーには一般に大きな開口数(N、A、)を有す
る投影レンズが用いられるため、許容焦点範囲は非常に
小さい。そこで、ウェハ上の露光領域全体にわたって鮮
明なパターンの露光を行うために、通常オートフォーカ
ス機構を用いて露光領域毎に露光領域の中心或いは周辺
の点を検出し、投影レンズの光軸に対して垂直となるよ
うに露光領域を投影レンズの光軸方向へ移動させている
。しかし、最近ではサブ・ミクロン程度で形成される回
路の最小線幅に対応して、投影レンズの開口数(N。
In the lithography process in the manufacture of semiconductor integrated circuits, a step-and-repeat reduction projection exposure device (so-called stepper) is mainly used to project a circuit pattern formed on a mask or reticle (hereinafter referred to as a reticle). A wafer, which is a work piece, is sequentially exposed to light through an objective lens (hereinafter referred to as a projection lens). Since a projection lens with a large numerical aperture (N, A,) is generally used in this stepper, the permissible focal range is very small. Therefore, in order to expose a clear pattern over the entire exposure area on the wafer, an autofocus mechanism is usually used to detect the center or peripheral points of each exposure area, and align them with respect to the optical axis of the projection lens. The exposure area is moved vertically in the optical axis direction of the projection lens. However, recently, the numerical aperture (N) of the projection lens has increased in response to the minimum line width of circuits formed on the order of sub-microns.

A、)がさらに増大し、オートフォーカス機構による露
光領域上の検出点以外の領域で投影レンズの結像面に対
する傾きが生じ、この傾きによる露光領域内での部分的
な焦点ずれの発生等が問題となっている。このため、露
光領域面を投影レンズの光軸に対して垂直位置、即ち水
平位置に正確に維持する必要がある。この露光領域の水
平位置を検出するための装置としては、例えば本願出願
人が先に出願した特開昭58−113706号公報に開
示されているようなコリメータ型の水平位置検出装置が
ある。この水平位置検出装置を投影レンズの光軸方向か
ら見た時の概略的な配ぽを第6図に示す。この種の装置
において、平行光束を投影レンズの光軸に対して斜め方
向より供給する照射光学系10と、照射光学系10から
供給されウェハW上の露光領域で反射した光束を受光対
物レンズ21を介して4分割受光素子22上に集光する
集光光学系20は、両光学系の光軸10a、20aが投
影レンズの光軸に関して対称となるように配置される。
A) further increases, and the projection lens is tilted with respect to the imaging plane in areas other than the detection point on the exposure area by the autofocus mechanism, and this tilt causes local defocus within the exposure area. This has become a problem. Therefore, it is necessary to accurately maintain the exposure area plane in a vertical position, that is, in a horizontal position, with respect to the optical axis of the projection lens. As a device for detecting the horizontal position of the exposure area, there is a collimator-type horizontal position detecting device as disclosed in, for example, Japanese Patent Laid-Open No. 113706/1983, previously filed by the applicant of the present invention. FIG. 6 shows a schematic layout of this horizontal position detection device when viewed from the optical axis direction of the projection lens. This type of apparatus includes an irradiation optical system 10 that supplies a parallel light beam from a direction oblique to the optical axis of a projection lens, and a light receiving objective lens 21 that receives a light beam that is supplied from the irradiation optical system 10 and reflected on an exposure area on a wafer W. The condensing optical system 20 that condenses light onto the four-part light receiving element 22 via the four-part light receiving element 22 is arranged so that the optical axes 10a and 20a of both optical systems are symmetrical with respect to the optical axis of the projection lens.

ここで、この照射光学系10と集光光学系20から成る
水平位置検出系は、直交座標系XYにおいて投影レンズ
の光軸に関してX軸からψpだけ回転した位置に設けら
れているものとする。尚、照射光学系10の光軸10a
、集光光学系20の光軸20a及び投影レンズの光軸を
含む平面を入射面と呼び、座標系xyにおいて入射面に
沿った方向をP軸方向、入射面と垂直な方向をR軸方向
、また4分割受光素子22の受光面において受光面と入
射面との交線に沿った方向をp方向、この交線(p方向
)と垂直な方向をr方向とする。さて、露光領域が投影
レンズの光軸に対して垂直を保っているならば、露光領
域で反射された光束は4分割受光素子22の中心(p方
向とr方向との交点)に集光され、露光領域が垂直から
αだけ傾いているならば、反射された光束は集光光学系
20の光軸20aに対して2α傾くため、4分割受光素
子22上の中心から外れた位置に集光される。従って、
投影レンズの光軸に対して露光領域を垂直位置に正確に
設定するためには、まず露光領域のP軸、R軸方向の傾
きに応して4分割受光素子22上で集光点は中心から位
置変化するので、この集光点のp方向、r方向への変位
量ΔP、ΔRを検出する。次に、集光点の変位量ΔP、
ΔRから以下の式(1)、(2)を用い、投影レンズの
結像面に対する露光領域のP軸、R軸方向の傾き角θp
、θrを算出する。但し、集光光学系20、即ち受光対
物レンズ21の焦点距離を「、照射光学系10により露
光領域上に供給される平行光束の露光領域面と成す角を
θSとする。
Here, it is assumed that the horizontal position detection system consisting of the irradiation optical system 10 and the condensing optical system 20 is provided at a position rotated by ψp from the X axis with respect to the optical axis of the projection lens in the orthogonal coordinate system XY. Note that the optical axis 10a of the irradiation optical system 10
, the plane containing the optical axis 20a of the condensing optical system 20 and the optical axis of the projection lens is called the incident plane, and in the coordinate system xy, the direction along the incident plane is the P-axis direction, and the direction perpendicular to the incident plane is the R-axis direction. In addition, in the light receiving surface of the four-part light receiving element 22, the direction along the intersection line between the light receiving surface and the incident surface is defined as the p direction, and the direction perpendicular to this intersection line (p direction) is defined as the r direction. Now, if the exposure area is kept perpendicular to the optical axis of the projection lens, the light beam reflected from the exposure area will be focused at the center of the four-divided light receiving element 22 (the intersection of the p direction and the r direction). If the exposure area is tilted by α from the vertical, the reflected light beam is tilted by 2α with respect to the optical axis 20a of the condensing optical system 20, so it is condensed at a position off the center on the 4-split light receiving element 22. be done. Therefore,
In order to accurately set the exposure area perpendicular to the optical axis of the projection lens, first, the light convergence point is set at the center on the 4-split light receiving element 22 according to the inclination of the exposure area in the P-axis and R-axis directions. Since the position changes from , the displacement amounts ΔP and ΔR of this focal point in the p direction and the r direction are detected. Next, the displacement amount ΔP of the focal point,
From ΔR, use the following equations (1) and (2) to calculate the tilt angle θp of the exposure area in the P-axis and R-axis directions with respect to the imaging plane of the projection lens.
, θr is calculated. However, the focal length of the condensing optical system 20, that is, the light-receiving objective lens 21 is assumed to be ``, and the angle formed by the parallel light beam supplied onto the exposure area by the irradiation optical system 10 onto the exposure area surface is θS.

ΔP=f−jan(2θp)     ・−−−−−(
1)ΔR=f−tan(2θr)・cos(90’ −
θS)・・・・・・(2) ここで、4分割受光素子22面上での検出方向、つまり
p方向、「方向の開口数NAp、NArと焦点深度FD
p、FDrとを、以下の式(3)〜(6)を用いて算出
することができ、この条件の下で集光点の変位量ΔP、
ΔRは検出される。但し、照射光学系10により供給さ
れる平行光束の円形形状の検出領域Daの半径をa、中
心波長をλとする。
ΔP=f-jan(2θp) ・------(
1) ΔR=f-tan(2θr)・cos(90'-
θS)...(2) Here, the detection direction on the 4-split light receiving element 22 surface, that is, the p direction, the numerical aperture NAp, NAr, and the depth of focus FD in the direction.
p, FDr can be calculated using the following equations (3) to (6), and under this condition, the displacement amount ΔP of the focal point,
ΔR is detected. However, the radius of the circular detection area Da of the parallel light beam supplied by the irradiation optical system 10 is a, and the center wavelength is λ.

NAl)=2 ・s iHθS/f ・・・・・・(3
)NAr=a/f         −(4)2   
(NAp)” 1     λ 2   (NAr)” 上述の式(1)、(2)から算出された傾き角θp、θ
rに基づいて、制御手段は傾き角θp、θrに応じた制
御信号を発生し、駆動装置によりウェハが載置されたス
テージがウェハの露光領域表面の傾きを補正するように
移動され、露光領域が投影レンズの光軸に対して平均的
に正確な垂直位置に自動的に設定される。
NAl)=2 ・s iHθS/f ・・・・・・(3
) NAr=a/f −(4)2
(NAp)" 1 λ 2 (NAr)" Tilt angle θp, θ calculated from the above equations (1) and (2)
Based on r, the control means generates control signals according to the inclination angles θp and θr, and the stage on which the wafer is placed is moved by the drive device so as to correct the inclination of the surface of the exposure area of the wafer. is automatically set to an averagely accurate vertical position with respect to the optical axis of the projection lens.

尚、露光領域の傾き方向は第7図に示すZ軸からの傾き
角θと、XY平面上へ射影した像のX軸からの角度(以
下、方位角と呼ぶ)ψで一意的に決定される法線単位ベ
クトル5で表される。そこで、投影レンズの結像面に対
する露光領域の座標系xyのX軸、Y軸方向の傾き角を
それぞれθX、θyとすると、傾き角θと方位角ψはθ
X=θ・cos ψ、θy=−θ・sin ψなる関係
式で表される。
The direction of inclination of the exposure area is uniquely determined by the inclination angle θ from the Z axis shown in FIG. 7 and the angle ψ from the X axis of the image projected onto the XY plane (hereinafter referred to as azimuth angle). It is expressed as a normal unit vector 5. Therefore, if the inclination angles in the X-axis and Y-axis directions of the coordinate system xy of the exposure area with respect to the imaging plane of the projection lens are θX and θy, respectively, then the inclination angle θ and the azimuth angle ψ are θ
It is expressed by the following relational expressions: X=θ·cos ψ, θy=−θ·sin ψ.

従って、弐(1)、(2)により算出された傾き角θp
、θrから以下の式(7)、(8)を用いて傾き角θX
、θyを算出すれば、方位角ψと傾き角θを決定するこ
とができる。
Therefore, the tilt angle θp calculated by (1) and (2)
, θr, use the following equations (7) and (8) to calculate the tilt angle θX
, θy, the azimuth angle ψ and the inclination angle θ can be determined.

この結果、法線単位ベクトル冨、即ち投影レンズの結像
面に対する露光領域の傾き方向を検出することができる
As a result, it is possible to detect the normal unit vector value, that is, the direction of inclination of the exposure area with respect to the imaging plane of the projection lens.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この種の水平位置検出装置では1組の照
射光学系10と集光光学系20を用い、露光領域の2方
向(P軸、R軸方向)の傾き角θp、θrを検出して、
投影レンズの結像面に対する露光領域の傾きを求めてい
る。このため、上述の式(3)〜(6)から明らかのよ
うに4分割受光素子22においてp方向の開口数NAp
に対してr方向の開口数NArが大きくなり、これに伴
い焦点深度FDpに対して焦点深度FDrが浅くなる0
例えば、このような装置の一般的な設計値、検出領域D
aの半径a=7.5mm、集光光学系20の焦点距離f
=100mm、中心波長λ=800nm、平行光束の露
光領域面と成す角θ5=20°として開口数NAp、N
Arを算出すると、−NAp=0.026、NAr=0
.075となる。
However, this type of horizontal position detection device uses a pair of irradiation optical system 10 and condensing optical system 20 to detect the inclination angles θp and θr of the exposure area in two directions (P-axis and R-axis directions).
The inclination of the exposure area with respect to the imaging plane of the projection lens is determined. Therefore, as is clear from the above equations (3) to (6), the numerical aperture NAp in the p direction in the four-division light receiving element 22 is
The numerical aperture NAr in the r direction increases with respect to 0, and the depth of focus FDr becomes shallower than the depth of focus FDp.
For example, the general design value of such a device, the detection area D
Radius of a = 7.5 mm, focal length f of condensing optical system 20
= 100 mm, center wavelength λ = 800 nm, and angle θ5 = 20° between the parallel light flux and the exposure area surface, and the numerical aperture NAp, N
When calculating Ar, -NAp=0.026, NAr=0
.. It becomes 075.

同様に、焦点深度FDp、FDrはFDI)=±608
μm5FDr′=−±71μmとなる。この結果からも
p方向の焦点深度FDpに比べてr方向の焦点深度FD
rが非常に浅くなることがわかる。
Similarly, depth of focus FDp, FDr is FDI) = ±608
μm5FDr'=−±71 μm. From this result, the depth of focus FD in the r direction is smaller than the depth of focus FDp in the p direction.
It can be seen that r becomes very shallow.

この結果、4分割受光素子22でのr方向の焦点合わせ
が困難となると共に、装置の立ち上げ時等での受光素子
の焦点合わせに時間がかかる。さらに、露光領域上に形
成されている回路パターンによって反射率分布が生じて
いる露光領域の傾き、即ち露光領域のP、R軸方向の傾
き角θp、θrを検出する場合、4分割受光素子22に
焦点ずれが残留していると、4分割受光素子22での光
量分布が変動して検出誤差が生し、露光領域の傾きを高
精度に検出することができないという問題点があった。
As a result, it becomes difficult to focus the four-divided light receiving element 22 in the r direction, and it takes time to focus the light receiving element when starting up the apparatus. Furthermore, when detecting the inclination of the exposure area where the reflectance distribution is caused by the circuit pattern formed on the exposure area, that is, the inclination angles θp and θr of the exposure area in the P and R axis directions, the 4-split light receiving element 22 If defocus remains, the light amount distribution at the four-part light receiving element 22 fluctuates, resulting in a detection error, which poses a problem in that the tilt of the exposure area cannot be detected with high precision.

また、P軸、R軸方向への傾き角が等しい露光領域の傾
きの検出を行う場合、式(1)、(2)において平行光
束の露光領域面と成す角θSをθ5=20°とすると、
4分割受光素子22でのp方向とr方向への集光点の変
位量の比は、ΔP:ΔR=1:0.34となる。つまり
、r方向への集光点の変位量ΔRはp方向への変位置Δ
Pと比べて小さく、r方向の検出感度が低いという問題
点もあった。
In addition, when detecting the inclination of an exposure area with equal inclination angles in the P-axis and R-axis directions, if the angle θS formed by the parallel light beam with the exposure area surface is θ5=20° in equations (1) and (2), then ,
The ratio of the displacement amount of the focal point in the p direction and the r direction in the four-division light receiving element 22 is ΔP:ΔR=1:0.34. In other words, the amount of displacement ΔR of the focal point in the r direction is the displacement ΔR in the p direction.
There was also a problem that it was smaller than P and had low detection sensitivity in the r direction.

本発明は以上の点を考慮してなされたもので、集光光学
系の受光素子の焦点合わせを容易に行うことができると
共に検出感度が良く、高精度にウェハ等の被検物体の水
平位置を検出することができる水平位置検出装置を得る
こと目的としている。
The present invention has been made in consideration of the above points, and it is possible to easily focus the light receiving element of the condensing optical system, have good detection sensitivity, and accurately position the horizontal position of a test object such as a wafer. The objective is to obtain a horizontal position detection device that can detect

C課題を解決する為の手段〕 かかる問題点を解決するため本発明においては、投影レ
ンズ1の光軸AXに対して垂直にレベリングステージ2
にiiiされるウェハW上の露光領域Eaへ、第1微小
開口としての絞り13xから発する平行光束を第1視野
絞りとしての視野絞り16xを介して投影レンズ1の光
軸AXに対して斜め方向より供給する第1照射光学系1
0xと、第1照射光学系10xから供給され露光領域E
aで反射される平行光束を第1受光素子としての2分割
受光素子22x上に集光する第1集光光学系20xとを
有し、第1照射光学系10xの光軸10xaと第1集光
光学系20xの光軸20xaとが投影レンズ1の光軸A
Xに関して対称に配置され、基準平面Fに対する露光領
域EaのX軸方向(第1方向)の傾き角θXを検出する
第1水平位置検出系100xと;露光領域Eaへ第2微
小開口としての絞り13yから発する平行光束を第2視
野絞りとしての視野絞り16yを介して投影レンズ1の
光軸AXに対して斜め方向より供給する第2照射光学系
toyと、第2照射光学系LOyから供給され露光領域
Eaで反射される平行光束を第2受光素子としての2分
割受光素子22y上に集光する第2集光光学系20yと
を有し、第2照射光学系10yの光軸10yaと第2集
光光学系20yの光軸20yaとが投影レンズ1の光軸
AXに関して対称に配置され、基準平面Fに対する露光
領域EaOY軸方向(第2方向)の傾き角θyを検出す
る第2水平位置検出系100yと;第1水平位置検出系
100xにより検出されたX軸方向の傾き角θXと、第
2水平位置検出系100yにより検出されたY軸方向の
傾き角θyとに基づいて、基準平面F、即ち投影レンズ
1の結像面IMに対する露光領域Eaの傾きを算出する
演算手段としての制御装置31とを設ける。
Means for Solving Problem C] In order to solve this problem, in the present invention, the leveling stage 2 is arranged perpendicularly to the optical axis AX of the projection lens 1.
The parallel light beam emitted from the diaphragm 13x as the first micro-aperture is transmitted to the exposure area Ea on the wafer W to be iii The first irradiation optical system 1 supplied from
0x and the exposure area E supplied from the first irradiation optical system 10x.
It has a first condensing optical system 20x that condenses the parallel light beam reflected by a onto a two-split light receiving element 22x as a first light receiving element, and the optical axis 10xa of the first irradiation optical system 10x and the first condensing optical system The optical axis 20xa of the light optical system 20x is the optical axis A of the projection lens 1.
a first horizontal position detection system 100x that is arranged symmetrically with respect to X and detects the inclination angle θX of the exposure area Ea in the X-axis direction (first direction) with respect to the reference plane F; A second irradiation optical system toy supplies the parallel light beam emitted from the second irradiation optical system toy from a direction oblique to the optical axis AX of the projection lens 1 via a field diaphragm 16y as a second field diaphragm, and a second irradiation optical system LOy. It has a second focusing optical system 20y that focuses the parallel light flux reflected by the exposure area Ea onto a two-split light receiving element 22y as a second light receiving element, and has an optical axis 10ya of the second irradiation optical system 10y and a second focusing optical system 20y. 2. A second horizontal position where the optical axis 20ya of the condensing optical system 20y is arranged symmetrically with respect to the optical axis AX of the projection lens 1, and the inclination angle θy of the exposure area EaOY axis direction (second direction) with respect to the reference plane F is detected. The detection system 100y; the reference plane is determined based on the inclination angle θX in the X-axis direction detected by the first horizontal position detection system 100x and the inclination angle θy in the Y-axis direction detected by the second horizontal position detection system 100y. F, that is, a control device 31 as a calculation means for calculating the inclination of the exposure area Ea with respect to the imaging plane IM of the projection lens 1 is provided.

〔作用〕 本発明では、集光光学系を構成する受光素子の受光面に
おいて、この受光面と水平位置検出系の入射面との交線
に沿った方向は、この交線と垂直な方向と比べて開口数
が小さくかつ集光点の変位量が大きい、言い換えれば焦
点深度が深くかつ検出感度が高いことを用い、照射光学
系と集光光学系とから成る2組の水平位置検出系を座標
系XYOX軸、Y軸方向に沿って設け、常に露光領域の
X軸、Y軸方向の傾き角を各受光素子の交線に沿った方
向で検出するように構成されている。このため、開口数
が大きい方向(交線と垂直な方向)で受光素子の焦点合
わせを容易に行うことができると共に、受光素子におい
て交線と垂直な方向で露光領域の傾き角を検出すること
がないので、受光素子の検出感度を実質的に高くするこ
とができ、さらに焦点ずれによる検出誤差の発生等を防
止することができる。
[Operation] In the present invention, in the light-receiving surface of the light-receiving element constituting the condensing optical system, the direction along the line of intersection between this light-receiving surface and the incident surface of the horizontal position detection system is the direction perpendicular to this line of intersection. By using the fact that the numerical aperture is smaller and the displacement of the focusing point is larger, in other words, the depth of focus is deeper and the detection sensitivity is higher, two sets of horizontal position detection systems consisting of an irradiation optical system and a focusing optical system are used. A coordinate system is provided along the XYOX and Y axes, and the inclination angle of the exposure area in the X and Y axes is always detected in the direction along the intersection line of each light receiving element. Therefore, the light-receiving element can be easily focused in the direction with a large numerical aperture (direction perpendicular to the intersection line), and the tilt angle of the exposure area can be detected in the light-receiving element in the direction perpendicular to the intersection line. Therefore, the detection sensitivity of the light-receiving element can be substantially increased, and detection errors due to defocus can be prevented.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳述する。第1
図は本発明の第1の実施例による水平位置検出装置を備
えたステッパーの概略的な構成を示す図、第2図はステ
ッパーに設けられた水平位置検出装置の概略的な配置を
示す図である。このステッパーの構成については、例え
ば本願出願人が先に出願した特開昭60−130742
号公報に開示されているので、ここでは簡単に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings. 1st
1 is a diagram showing a schematic configuration of a stepper equipped with a horizontal position detecting device according to a first embodiment of the present invention, and FIG. 2 is a diagram showing a schematic arrangement of a horizontal position detecting device provided in a stepper. be. Regarding the configuration of this stepper, for example, the applicant of the present application has previously applied for Japanese Patent Application Laid-Open No. 60-130742.
Since it is disclosed in the publication, it will be briefly explained here.

尚、従来装置と同じ機能、作用の部材には同じ符号を付
けである。
Incidentally, members having the same functions and actions as those of the conventional device are given the same reference numerals.

第1図、第2図において、不図示の照明光学系により発
生されたレジストを感光するような波長(露光波長)の
照明光は、レチクルRのパターン領域Paを均一な照度
で照明する。ウェハWのXY移動平面(座標系XY)に
対して垂直な光軸AXを有する両側若しくは片側テレセ
ンドリンクな投影レンズ1は、レチクルRに形成された
パターンの像を115或いは1/10に縮小し、この投
影像を投影レンズ1の結像面IMに形成する。この結像
面IMは予め定められた基準平面F(座標系XYと平行
)と−敗している。尚、本実施例で用いる投影レンズ1
はレチクルR1ウェハW側共にテレセンドリンクな光学
系である。さて、露光すべきウェハWは基準平面Fに対
して任意方向に傾斜可能なティルティングステージ(以
下、レベリングステージと呼ぶ)2上に不図示のウェハ
・ホルダー(θテーブル)を介して保持される。ここで
、レベリングステージ2の構成等については、例えば本
願出願人が先に出願した特開昭62−274201号公
報に開示されているので説明は省略するが、レベリング
ステージの複数点(例えば3−)の動作点)のそれぞれ
をZ方向に駆動する手段によって、レベリングステージ
を基準平面Fに対して任意の方向に傾斜させる。そして
、この駆動手段の駆動点が所定のニュートラル状態(例
えば、3つの動作点がX方向の移動ストロークの中心に
ある状態)の時、動作点が略基準平面F内に位置するよ
うに構成され、ウェハWを傾斜させた時のウェハWの横
ずれ量を実用上無視し得る程度に小さくできるものであ
る。尚、第2図にレベリングステージ2のウェハ載置中
心に関して約120°の角度でZステージ3上に配置さ
れた駆動部32 a、 32 b、 32 cと、ウェ
ハ載置中心から一定距離の円周CC上に位置する各駆動
部32a、32b、32cの動作点OA、OB、Ocの
みを示している。また、駆動部32a、32b、32C
を以下まとめて駆動装置と呼び、第1図では駆動装置3
2として示しである。このレベリングステージ2はZス
テージ3上に設けられ、Zステージ3は基準平面Fに沿
ってX、Y方向に移動するX−Yステージ4上に設けら
れている。Zステージ3はX−Yステージ4に対してX
方向(光軸AX方向)にのみ移動するように構成され、
このZステージ3の端部にはX−Yステージ4のX方向
の位置(X座標値)の検出を行う光波干渉測長器(以下
、レーザ干渉計と呼ぶ)5用の平面鏡6Xが設けられて
いる。また、同様にX−Yステージ4のY方向の位置(
Y座標値)の検出を行うレーザ干渉計及び平面鏡も設け
られているが、平面鏡6yのみを第2図に示しておく、
このレーザ干渉計によって計測されたX−Yステージ4
のX、Y座標値は中央演算処理装置7に送られる。中央
演算処理装置7には、ウェハWの径、ウェハW上の露光
領域Eaの配列マツプ等の必要なデータが予め設定され
ており、ウェハW上での露光領域Eaの位置等から適当
な視野絞りを選択し、その情報を制御装置8へ出力する
In FIGS. 1 and 2, illumination light of a wavelength (exposure wavelength) that exposes the resist, which is generated by an illumination optical system (not shown), illuminates the pattern area Pa of the reticle R with uniform illuminance. A projection lens 1 having an optical axis AX perpendicular to the XY movement plane (coordinate system XY) of the wafer W and having a telescopic link on both sides or on one side reduces the image of the pattern formed on the reticle R by 115 or 1/10. , this projected image is formed on the imaging plane IM of the projection lens 1. This imaging plane IM is different from a predetermined reference plane F (parallel to the coordinate system XY). Note that the projection lens 1 used in this example
Both the reticle R1 and the wafer W side are telescend link optical systems. Now, the wafer W to be exposed is held on a tilting stage (hereinafter referred to as a leveling stage) 2 which can be tilted in any direction with respect to a reference plane F via a wafer holder (θ table) not shown. . Here, the structure of the leveling stage 2 is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 62-274201, which was previously filed by the applicant of the present application, so the explanation will be omitted. The leveling stage is tilted in an arbitrary direction with respect to the reference plane F by means of driving each of the operating points ) in the Z direction. When the driving point of this driving means is in a predetermined neutral state (for example, a state in which the three operating points are at the center of the movement stroke in the X direction), the operating point is configured to be located approximately within the reference plane F. , the amount of lateral shift of the wafer W when the wafer W is tilted can be reduced to a practically negligible extent. In addition, FIG. 2 shows driving parts 32 a, 32 b, and 32 c arranged on the Z stage 3 at an angle of about 120° with respect to the wafer mounting center of the leveling stage 2, and a circle at a certain distance from the wafer mounting center. Only the operating points OA, OB, and Oc of each drive unit 32a, 32b, and 32c located on the circumference CC are shown. In addition, drive parts 32a, 32b, 32C
are hereinafter collectively referred to as the drive device, and in Fig. 1, the drive device 3
It is shown as 2. This leveling stage 2 is provided on a Z stage 3, and the Z stage 3 is provided on an XY stage 4 that moves in the X and Y directions along a reference plane F. Z stage 3 is X-Y stage 4
It is configured to move only in the direction (optical axis AX direction),
At the end of this Z stage 3, a plane mirror 6X is provided for a light wave interference length measuring device (hereinafter referred to as a laser interferometer) 5 that detects the position (X coordinate value) of the X-Y stage 4 in the X direction. ing. Similarly, the position of the X-Y stage 4 in the Y direction (
Although a laser interferometer and a plane mirror for detecting the Y coordinate value) are also provided, only the plane mirror 6y is shown in FIG.
X-Y stage 4 measured by this laser interferometer
The X and Y coordinate values of are sent to the central processing unit 7. Necessary data such as the diameter of the wafer W and the arrangement map of the exposure area Ea on the wafer W are set in advance in the central processing unit 7, and an appropriate field of view is set based on the position of the exposure area Ea on the wafer W. The aperture is selected and the information is output to the control device 8.

さて、第2図中に示した照射光学系10xと集光光学系
20xから成るコリメータ型の第1水平位置検出系10
0xは、両光学系の光軸10xa、20xaが投影レン
ズlの光軸AXに関して対称に配置され、かつ水平位置
検出系100xの入射面Px(光軸10xa、zoXa
、AXを含む平面)が座標系XYOX軸と平行となるよ
うに設けられている。第1図に示すように照射光学系1
0Xは、光源11x、コンデンサ−レンズ12x1微小
円形開口を有する絞り13x、ミラー14x、第1リレ
ーレンズ15x、検出領域Daの形状を任意に設定する
視野絞り16x1第2リレーレンズ17x及び照射対物
レンズ18xから構成されている。この照射光学系fo
xにおいて、光源11xの像はコンデンサーレンズ12
xにより絞り13X上に形成され、さらに絞り13x上
に焦点を有する第1リレーレンズ15xによって平行光
束が視野絞り16xに供給される。ここで、ミラー14
xは光路方向を変更する役割を果たし、光学系の横方向
の大きさを小さくするために設けられたものである。ま
た、視野絞り16xとしては形状が異なる複数の視野絞
りを備えている視野絞り仮、或いは液晶シャッターの原
理を応用した可変絞り等が用いられ、露光領域Eaの形
状等に応じて視野絞り16xの形状を変え、検出領域D
aの形状を任意に設定することができるように構成され
ている。尚、本実施例においては制御装置8からの制御
信号に基づいて、駆動手段が視野絞り板(不図示)を回
転させ、露光領域Eaの形状に応じた最適な視野絞り1
6xを絞り位置に回転位置決めするものとする。第2リ
レーレンズ17Xと照射対物レンズ18xは、第2リレ
ーレンズ17xの後側焦点と照射対物レンズ18xの前
側焦点とが一致するような位置にそれぞれ配置され、ウ
ェハW上にも平行光束が供給されるようになっている。
Now, a collimator type first horizontal position detection system 10 consisting of an irradiation optical system 10x and a condensing optical system 20x shown in FIG.
0x is such that the optical axes 10xa and 20xa of both optical systems are arranged symmetrically with respect to the optical axis AX of the projection lens l, and the entrance plane Px of the horizontal position detection system 100x (optical axes 10xa and zoXa
, AX) is provided so that it is parallel to the XYOX axis of the coordinate system. As shown in Figure 1, the irradiation optical system 1
0X indicates a light source 11x, a condenser lens 12x1, an aperture 13x having a minute circular aperture, a mirror 14x, a first relay lens 15x, a field diaphragm 16x1 for arbitrarily setting the shape of the detection area Da, a second relay lens 17x, and an irradiation objective lens 18x. It consists of This irradiation optical system fo
At x, the image of the light source 11x is the condenser lens 12
x is formed on the aperture 13X, and a parallel light beam is supplied to the field aperture 16x by the first relay lens 15x having a focal point on the aperture 13x. Here, mirror 14
x plays the role of changing the optical path direction and is provided to reduce the lateral size of the optical system. Further, as the field diaphragm 16x, a temporary field diaphragm having a plurality of field diaphragms with different shapes or a variable diaphragm that applies the principle of a liquid crystal shutter is used, and the field diaphragm 16x can be changed depending on the shape of the exposure area Ea, etc. Change the shape and detect area D
The configuration is such that the shape of a can be arbitrarily set. In this embodiment, the driving means rotates the field diaphragm plate (not shown) based on the control signal from the control device 8, and sets the field diaphragm 1 to an optimum value according to the shape of the exposure area Ea.
6x is rotationally positioned at the aperture position. The second relay lens 17X and the irradiation objective lens 18x are arranged at positions such that the rear focus of the second relay lens 17x and the front focus of the irradiation objective lens 18x match, and a parallel light beam is also supplied onto the wafer W. It is now possible to do so.

ここで、投影レンズ1の結像面IMと視野絞り16xと
は共役な位置にあり、具体的には視野絞り16xは第2
リレーレンズ17xの前側焦点位置に配置されると共に
、照射対物レンズ18xはその後側焦点位置が結像面I
Mと一致するように配置される。この場合、第2リレー
レンズ17x及び照射対物レンズ18xを同一焦点距離
のものとすると、視野絞り16xの像は結像面1M上に
1:1で結像されることになる。尚、照射光学系10x
から供給される光はウェハW上のレジストを感光させな
いために露光光とは異なる波長分布の光であり、本実施
例では特にレジストによる薄膜干渉を低減させるために
多色光を用いるものとする。集光光学系20xは、受光
対物レンズ21xと2分割受光素子或いは1次元の位置
検出素子(PSD)等の受光素子22xから構成されて
いる。照射光学系10xから供給された光束はウェハW
上の露光領域Eaで反射され、受光対物レンズ21xに
より受光対物レンズ21xの焦点面上に設けられた2分
割受光素子22x上に集光される。この2分割受光素子
22xは投影レンズ1によるレチクルRの結像面TMの
傾きとウェハW上面の傾きとが一致した時に、照射光学
系10xからの光束が2分割受光素子22xの中心位置
に集光されるような位置に予め設けられている。
Here, the imaging plane IM of the projection lens 1 and the field aperture 16x are in a conjugate position, and specifically, the field aperture 16x is located at the second
The irradiation objective lens 18x is arranged at the front focal position of the relay lens 17x, and the rear focal position of the irradiation objective lens 18x is located at the imaging plane I.
It is arranged to match M. In this case, if the second relay lens 17x and the irradiation objective lens 18x have the same focal length, the image of the field stop 16x will be formed on the imaging plane 1M at a ratio of 1:1. In addition, the irradiation optical system 10x
The light supplied from the wafer W has a wavelength distribution different from that of the exposure light in order not to expose the resist on the wafer W, and in this embodiment, polychromatic light is used to particularly reduce thin film interference caused by the resist. The condensing optical system 20x includes a light-receiving objective lens 21x and a light-receiving element 22x such as a two-part light-receiving element or a one-dimensional position detection element (PSD). The light flux supplied from the irradiation optical system 10x is applied to the wafer W.
The light is reflected by the upper exposure area Ea, and is focused by the light-receiving objective lens 21x onto a two-split light-receiving element 22x provided on the focal plane of the light-receiving objective lens 21x. When the inclination of the imaging plane TM of the reticle R formed by the projection lens 1 and the inclination of the upper surface of the wafer W match, the light beam from the irradiation optical system 10x is focused on the center position of the two-divided light-receiving element 22x. It is set in advance at a position where it will be illuminated.

尚、ウェハW上に形成される回路パターンには微細な矩
形パターンがある程度の規則性を持って形成されている
ため、照射光束の直接反射光に加えて回折光が発生し得
る。そこで、本実施例では特に図示していないが、回折
光を除去して2分割受光素子22xでのノイズの発生を
低減させるために、受光対物レンズ21xと2分割受光
素子22Xとの間に開口絞りとコンデンサーレンズとを
設けても良い。
Note that since the circuit pattern formed on the wafer W includes fine rectangular patterns formed with a certain degree of regularity, diffracted light may be generated in addition to the directly reflected light of the irradiation light beam. Therefore, although not particularly shown in this embodiment, in order to remove the diffracted light and reduce noise generation in the two-split light receiving element 22x, an opening is provided between the light receiving objective lens 21x and the two-split light receiving element 22X. An aperture and a condenser lens may be provided.

また、第2図に示すように第2水平位置検出系100y
は照射光学系10yと集光光学系20yから成り、両光
学系の光軸10ya、20yaが投影レンズ1の光軸A
Xに関して対称に配置され、この水平位置検出系100
yの入射面Py(光軸10ya、20ya、AXを含む
平面)が座標系XYのY軸と平行となるように設けられ
ている。
In addition, as shown in FIG. 2, a second horizontal position detection system 100y
consists of an irradiation optical system 10y and a condensing optical system 20y, and the optical axes 10ya and 20ya of both optical systems are the optical axis A of the projection lens 1.
This horizontal position detection system 100 is arranged symmetrically with respect to X.
The y-incident plane Py (a plane including the optical axes 10ya, 20ya, and AX) is provided so as to be parallel to the Y-axis of the coordinate system XY.

尚、照射光学系toyと集光光学系20yは、それぞれ
上述した照射光学系10xと集光光学系20xと同一の
構成であるので説明は省略する。
Note that the irradiation optical system toy and the condensing optical system 20y have the same configuration as the above-described irradiation optical system 10x and condensing optical system 20x, respectively, so the explanation thereof will be omitted.

次に、本実施例のように構成された装置の動作について
説明する。第1図において、まず中央演算処理装置7は
レーザ干渉計5により露光ずべき露光領域Eaのウェハ
W上でのX方向の位置を検出する。同様に、不図示のレ
ーザ干渉計からY方向の位置も検出し、このX、Y座標
値と予め入力されている露光領域Eaの配列マツプ等の
情報に基づいて露光領域Eaの形状を判断し、露光領域
Eaの形状に応じた第」、第2水平位置検出系100x
、100yの最適な視野絞り16x、16yを選択する
。次に、中央演算処理装置7はこの情報を制御装置Bに
出力し、制御装置8は駆動装置9xに制御信号を出力す
る。駆動装置9xは制御信号に基づいて視野絞り板(不
図示)を回転させ、選択した視野絞り16xを絞り位置
に回転位置決めする。同様に、第2水平位置検出系10
0yにおいても制御装置8からの制御信号に基づいて、
選択した視野絞り16yが絞り位置に回転位置決めされ
る。この最適な視野絞り16x、16yの設定終了後、
第1、第2水平位置検出系100x、100yはそれぞ
れ露光領域Ea上に平行光束を照射し、この露光領域E
aから反射した平行光束を2分割受光素子22x、22
yで受光する。そして、2分割受光素子22X、22y
は露光領域Eaの傾きに応じた2分割受光素子22x、
22y上での集光点の変位方向及び量の情報をそれぞれ
制御装置31に出力する。制御装置31はこの情報に基
づいて結像面IMに対する露光領域EaのX軸方向、Y
軸方向の傾き角θX、θyを検出する。つまり、制御装
置31は2分割受光素子22x、22yにより検出され
た集光点の変位置へX、ΔYから、上述した弐(1)を
用いて傾き角θX、θyを算出する。次に、制御装置3
1は傾き角θX、θyに対応する制御信号を発生し、駆
動装置32に出力する。駆動装置32はこの制御装置3
1からの制御信号、即ち駆動装置32を構成するレベリ
ングステージ2の各駆動部5.6.7のX方向への駆動
量に応じてレベリングステージ2をX方向(光軸AX方
向)に移動させ、レベリングステージ2上に載置された
ウェハW上の露光領域Ea裏表面結像面IMに対する傾
きを補正する。これより、露光領域Ea裏表面投影レン
ズ1の結像面IM(基準平面F)と正確に一致し、焦点
ずれ等が防止されて露光領域Ea内の全面で精度良((
高解像に)露光を行うことができる。
Next, the operation of the apparatus configured as in this embodiment will be explained. In FIG. 1, first, the central processing unit 7 uses the laser interferometer 5 to detect the position of the exposure area Ea to be exposed on the wafer W in the X direction. Similarly, the position in the Y direction is also detected from a laser interferometer (not shown), and the shape of the exposure area Ea is determined based on the X and Y coordinate values and information such as the array map of the exposure area Ea that has been input in advance. , a second horizontal position detection system 100x according to the shape of the exposure area Ea.
, 100y, and select the optimum field apertures 16x, 16y. Next, the central processing unit 7 outputs this information to the control device B, and the control device 8 outputs a control signal to the drive device 9x. The drive device 9x rotates a field diaphragm plate (not shown) based on the control signal, and rotationally positions the selected field diaphragm 16x at the aperture position. Similarly, the second horizontal position detection system 10
Even at 0y, based on the control signal from the control device 8,
The selected field stop 16y is rotationally positioned at the aperture position. After setting the optimal field apertures of 16x and 16y,
The first and second horizontal position detection systems 100x and 100y each irradiate a parallel light beam onto the exposure area Ea, and
The parallel light beam reflected from a is divided into two light receiving elements 22x, 22
Receive light at y. Then, the two-split light receiving elements 22X, 22y
is a two-divided light receiving element 22x according to the inclination of the exposure area Ea,
Information on the displacement direction and amount of the focal point on 22y is output to the control device 31, respectively. Based on this information, the control device 31 adjusts the X-axis direction and Y-axis direction of the exposure area Ea with respect to the imaging plane IM.
The axial tilt angles θX and θy are detected. That is, the control device 31 calculates the tilt angles θX and θy using the above-mentioned 2(1) from the displacement position X and ΔY of the focal point detected by the two-split light receiving elements 22x and 22y. Next, the control device 3
1 generates control signals corresponding to the tilt angles θX and θy and outputs them to the drive device 32. The drive device 32 is connected to this control device 3.
The leveling stage 2 is moved in the X direction (optical axis AX direction) according to the control signal from 1, that is, the drive amount in the X direction of each drive unit 5.6.7 of the leveling stage 2 constituting the drive device 32. , the inclination of the exposure area Ea on the wafer W placed on the leveling stage 2 with respect to the back surface imaging plane IM is corrected. As a result, the exposure area Ea accurately matches the imaging plane IM (reference plane F) of the back surface projection lens 1, preventing defocus, etc., and achieving high precision throughout the entire exposure area Ea ((
high resolution) exposure can be performed.

ここで、上述の実施例では結像面IMに対する露光領域
Eaの傾き角θX、θyに対応する制御信号を用い、露
光領域Eaの傾きを補正していた。
Here, in the above embodiment, the tilt of the exposure area Ea is corrected using control signals corresponding to the tilt angles θX and θy of the exposure area Ea with respect to the imaging plane IM.

しかし、集光点の変位量ΔX、ΔYから弐(1)を用い
て算出した傾き角θχ、θyと、θX−θ’ cos 
ψ、θy=θ・sin ψなる関係式から方位角ψと角
度θを求めれば、第7図に示したような露光領域Eaの
傾き方向を表す法線単位ベクトル5、即ち露光領域Ea
の傾き方向を検出することができる。
However, the tilt angles θχ, θy calculated from the displacements ΔX, ΔY of the focal point using 2(1), and θX−θ' cos
If the azimuth angle ψ and the angle θ are determined from the relational expression ψ, θy=θ・sin ψ, the normal unit vector 5 representing the inclination direction of the exposure area Ea as shown in FIG. 7, that is, the exposure area Ea
The direction of inclination can be detected.

かくして本実施例によれば、第1、第2水平位置検出系
100x、1003’は、共に2分割受光素子22x、
22yにおいて受光面と入射面との交線に沿った方向で
のみ集光点の変位量を検出し、露光領域EaOX軸、Y
軸方向の傾き角θX、θyを算出するように構成されて
いるため、2分割受光素子22x、22yの焦点合わせ
を容易に行うことができ、焦点ずれによる検出誤差の発
生等が防止され、高精度に結像面IM(基準子面F)に
対する露光領域Baの傾きを補正することができる。
Thus, according to this embodiment, both the first and second horizontal position detection systems 100x and 1003' include the two-split light receiving element 22x,
22y, the amount of displacement of the focal point is detected only in the direction along the intersection line of the light receiving surface and the incident surface, and the exposure area EaOX axis, Y
Since it is configured to calculate the tilt angles θX and θy in the axial direction, it is possible to easily focus the two-split light-receiving elements 22x and 22y, preventing detection errors due to defocus, and increasing the It is possible to accurately correct the inclination of the exposure area Ba with respect to the imaging plane IM (reference element plane F).

以上の通り本発明の一実施例においては、第1水平位置
検出系100x、第2水平位置検出系100yをそれぞ
れ座標系XYOX軸、Y軸方向に沿って設け、露光領域
Eaの傾き角θX、θyを算出するように構成していた
が、本実施例で用いる水平位置検出装置は上述の構成に
限られるものではな(、第1水平位置検出系100xの
入射面Pxに沿った方向と第2水平位置検出系100y
の入射面pyに沿った方向とが互いに異なり、かつその
交点を投影レンズ1の光軸AXが通るように2組の水平
位置検出系を配置すれば良い。例えば、第3図に示すよ
うに第1水平位置検出系100xと第2水平位置検出系
100yを、X軸からそれぞれψ電、ψ之だけ回転させ
た位置に配置するものとする。尚、ここでは座標系XY
において入射面Pxに沿った方向をP、軸方向、入射面
Py方向に沿った方向をP2軸方向と呼ぶ。この場合、
露光領域EaのP、軸方向、P2軸方向の傾きに応じて
2分割受光素子22x、22y上で集光点はそれぞれ中
心から位置ずれする。そこで、まず上述と同様の動作で
2分割受光素子22x、22yは、受光面と入射面との
交線に沿った方向への集光点の変位量へP1、八P2を
検出する。
As described above, in one embodiment of the present invention, the first horizontal position detection system 100x and the second horizontal position detection system 100y are provided along the coordinate system XYOX axis and Y axis direction, respectively, and the inclination angle θX of the exposure area Ea, Although the horizontal position detecting device used in this embodiment is configured to calculate θy, the horizontal position detecting device used in this embodiment is not limited to the above-described structure. 2 horizontal position detection system 100y
Two sets of horizontal position detection systems may be arranged so that the directions along the entrance plane py are different from each other and the optical axis AX of the projection lens 1 passes through the intersection thereof. For example, as shown in FIG. 3, it is assumed that the first horizontal position detection system 100x and the second horizontal position detection system 100y are arranged at positions rotated by ψ and ψ from the X axis, respectively. In addition, here the coordinate system XY
The direction along the incident plane Px is called the P axis direction, and the direction along the incident plane Py direction is called the P2 axis direction. in this case,
The light condensing points on the two-divided light receiving elements 22x and 22y are shifted from the center depending on the inclination of the exposure area Ea in the P, axial direction, and P2 axial direction. First, in the same operation as described above, the two-split light receiving elements 22x and 22y detect P1 and 8P2 as the displacement amount of the light converging point in the direction along the intersection line between the light receiving surface and the incident surface.

そして、露光領域EaのP1軸、P2軸方向の傾き角θ
I、θ2を算出し、露光領域EaのX軸、Y軸方向の傾
き角θX、θyを傾き角θ1、θ2から以下の式(9)
、(10)を用いて求める。
Then, the inclination angle θ of the exposure area Ea in the P1 axis and P2 axis directions
I, θ2 are calculated, and the inclination angles θX, θy in the X-axis and Y-axis directions of the exposure area Ea are calculated from the inclination angles θ1, θ2 using the following formula (9).
, (10).

次に、この傾き角θx1θyに基づいてレベリングステ
ージ2を投影レンズ1の光軸AX方向に駆動させれば、
上述の実施例と同様に投影レンズ1の結像面IMに対す
る露光領域Eaの傾きを補正することができる。或いは
、式(9)、(10)から求めた傾き角θX、θyとθ
X=θ・cos ψ、θy−θ・sinψなる関係式か
ら、第7図に示した露光領域Eaの傾き方向を一意的に
表す法線単位ベクトル百の方位角ψとZ軸からの傾き角
θを算出すれば、露光領域Eaの傾き方向を検出するこ
とができる。従って、2mの水平位置検出系をX軸、Y
軸方向に沿って、或いは互いに直交するように配置しな
くとも、上述と同様の効果を得ることができるのは明ら
かである。
Next, if the leveling stage 2 is driven in the direction of the optical axis AX of the projection lens 1 based on this tilt angle θx1θy,
Similarly to the embodiments described above, the inclination of the exposure area Ea with respect to the imaging plane IM of the projection lens 1 can be corrected. Alternatively, the inclination angles θX, θy and θ obtained from equations (9) and (10)
From the relational expression: By calculating θ, the direction of inclination of the exposure area Ea can be detected. Therefore, the 2m horizontal position detection system is
It is clear that the same effect as described above can be obtained without arranging them along the axis or perpendicularly to each other.

さらに、第1、第2水平位置検出系100x、100y
を任意の角度ψ1、ψ之だけX軸から回転させた位置に
配置する場合には、X軸、Y軸方向の傾き角θX、θy
を傾き角θ1、θ2から式(9)、(10)を用いて算
出していた。しかし、例えば第3図に示したように第1
水平位置検出系100Xを配置した位置、即ちP、軸方
向(入射面Px)のX軸からの角度βx (=ψ1)に
応じて、第4図に示す2分割受光素子22xの受光面2
2x′の分割方向(S方向)と、受光面22x′と入射
面Pxとの交線に沿った方向(T方向)との相対的な位
置関係を変化(回転)させる。このように角度βXに応
じてS方向とT方向との相対的な位置関係を調整すれば
、傾き角θ1からX軸方向の傾き角θXを算出すること
なく、直接2分割受光素子の出力情報から傾き角θXを
検出することも可能である。同様に、第2水平位置検出
系100yにおいてもP2方向く入射面Py)のY軸か
らの角度βy <=ψ2 90’)に応じて2分割受光
素子の受光面での分割方向と、受光面と入射面pyとの
交線に沿った方向との相対的な位置関係を変化(回転)
させれば、傾き角θ2を算出することなく傾き角θyを
検出することができる。
Furthermore, the first and second horizontal position detection systems 100x, 100y
When placing the
was calculated from the inclination angles θ1 and θ2 using equations (9) and (10). However, for example, as shown in Figure 3, the first
The light receiving surface 2 of the two-split light receiving element 22x shown in FIG.
The relative positional relationship between the dividing direction (S direction) of 2x' and the direction (T direction) along the line of intersection between the light receiving surface 22x' and the incident surface Px is changed (rotated). In this way, by adjusting the relative positional relationship between the S direction and the T direction according to the angle βX, the output information of the two-split light receiving element can be directly obtained without calculating the tilt angle θX in the X-axis direction from the tilt angle θ1. It is also possible to detect the tilt angle θX from . Similarly, in the second horizontal position detection system 100y, the dividing direction on the light receiving surface of the two-split light receiving element and the light receiving surface Change the relative positional relationship (rotation) with the direction along the intersection line between and the plane of incidence py
By doing so, the tilt angle θy can be detected without calculating the tilt angle θ2.

また、本実施例では集光光学系の受光素子として2分割
受光素子を用いていたが、この2分割受光素子の代わり
に4分割受光素子を用いることによって受光素子の焦点
合わせを行い、受光素子での焦点ずれを防止して露光領
域Eaの傾き、即ち露光領域Eaの傾き角θX、θyの
検出精度を向上させることができる。そこで、第5図(
a)、(b)を用いて第1水平位置検出系100xの4
分割受光素子22x1の焦点合わせについて簡単に述べ
る。例えば、第5図(a)に示すようにウェハW上にY
方向に高反射率領域40aと低反射率領域40bとを備
えた被検物体40を設ける。
In addition, in this embodiment, a two-split light receiving element was used as the light receiving element of the condensing optical system, but by using a four-split light receiving element instead of this two-split light receiving element, the focusing of the light receiving element is performed. It is possible to prevent the focus shift in the exposure area Ea and improve the detection accuracy of the inclination of the exposure area Ea, that is, the inclination angles θX and θy of the exposure area Ea. Therefore, Figure 5 (
4 of the first horizontal position detection system 100x using a) and (b)
Focusing of the divided light receiving elements 22x1 will be briefly described. For example, as shown in FIG. 5(a), Y
A test object 40 is provided which includes a high reflectance region 40a and a low reflectance region 40b in the direction.

そして、高反射率領域40aと低反射率領域40bとを
照射光学系10Xからの平行光束が順次照射するように
、ウェハWを入射面Pxと垂直な方向、つまり図中の矢
印方向(Y方向)へ移動させる。焦点ずれが生している
場合、4分割受光素子22x1からの受光面と入射面P
xとの交線に垂直な方向の出力信号S1は、第5図(b
)に示すような変化が生じた波形となる。従って、この
出力信号S1が第5図(C)に示すような変化が生じた
波形(出力信号S2)となるまで4分割受光素子22x
1の位置を調整することにより、高精度に4分割受光素
子22x1の焦点合わせを行うことが可能となる。尚、
4分割受光素子22x1の受光面と入射面Pxとの交線
に沿った方向では、上述の実施例と同様に露光領域Ea
OX軸方向の 、傾き角θXの検出を行う。また、第2
水平位置検出系100yにおいても入射面pyと垂直な
方向(X方向)ヘウエハW上のX方向に高反射率領域4
0aと低反射率領域40bとを備えた被検物体40を移
動させ、4分割受光素子面での交線と垂直な方向の出力
信号に基づいて、4分割受光素子の位置を調整すれば、
同様に、高精度に4分割受光素子の焦点合わせを行うこ
とが可能である。尚、ここでは第5図(a)中に示した
ような反射率が異なる2つの領域40a、40bを備え
た被検物体40を用いて焦点合わせを行っていたが、特
にこの種の被検物体40を用いずとも、例えばウェハW
上に−様な反射率の領域があれば、この領域とその近傍
とを用いて同様の動作で4分割受光素子の焦点合わせ行
うことができるのは明らかである。
Then, the wafer W is moved in a direction perpendicular to the incident plane Px, that is, in the direction of the arrow in the figure (Y direction ). If there is a focus shift, the light receiving surface from the 4-split light receiving element 22x1 and the incident surface P
The output signal S1 in the direction perpendicular to the line of intersection with
) will result in a waveform with changes as shown in the figure. Therefore, until this output signal S1 becomes a waveform (output signal S2) with a change as shown in FIG.
By adjusting the position of 1, it becomes possible to focus the 4-split light receiving element 22x1 with high precision. still,
In the direction along the intersection line between the light receiving surface of the 4-divided light receiving element 22x1 and the incident surface Px, the exposure area Ea is similar to the above embodiment.
The tilt angle θX in the OX axis direction is detected. Also, the second
In the horizontal position detection system 100y, there is also a high reflectivity area 4 in the direction (X direction) perpendicular to the incident plane py on the wafer W.
0a and the low reflectance area 40b is moved, and the position of the four-division light-receiving element is adjusted based on the output signal in the direction perpendicular to the line of intersection on the four-division light-receiving element surface.
Similarly, it is possible to focus the four-split light receiving element with high precision. Here, focusing was carried out using a test object 40 having two regions 40a and 40b with different reflectances as shown in FIG. 5(a), but this type of test object For example, a wafer W can be used without using the object 40.
It is clear that if there is a region with a -like reflectance above, this region and its vicinity can be used to focus the four-division light-receiving element in a similar manner.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、集光光学系の受光素子の
焦点合わせを容易に行って集光光学系の調整時間を短縮
することができ、また受光素子において受光面と入射面
との交線と垂直な方向で露光領域の傾きを検出せずに、
常に交線に沿った方向で検出を行うので、受光素子の検
出感度を実質的に高くすることができ、焦点でわによる
検出誤差の発生等が防止される。さらに、投影レンズ周
辺のスペースに応じて2組の水平位置検出系を任意の位
置関係で配置しても、検出精度等を低下させることなく
露光領域の傾きを検出することができ、高精度にウェハ
等の被検物体の水平位置を検出することができる水平位
置検出装置を実現し得る。
As described above, according to the present invention, it is possible to easily focus the light-receiving element of the light-condensing optical system, thereby shortening the adjustment time of the light-collecting optical system. Without detecting the tilt of the exposure area in the direction perpendicular to the intersection line,
Since detection is always performed in the direction along the intersection line, the detection sensitivity of the light receiving element can be substantially increased, and detection errors due to focal points can be prevented. Furthermore, even if two sets of horizontal position detection systems are arranged in an arbitrary positional relationship depending on the space around the projection lens, the tilt of the exposure area can be detected without reducing detection accuracy, resulting in high precision. A horizontal position detection device capable of detecting the horizontal position of a test object such as a wafer can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例による水平位置検出装置
を備えたステフパーの概略的な構成を示す図、第2図は
水平位置検出装置の概略的な配置を示す図、第3図は任
意の位置関係で配置した2組の水平位置検出系による水
平位置の検出動作の説明に供する図、第4図は2分割受
光素子の概略的な構成を示す図、第5図<a>は水平位
置検出装置の焦点合わせの動作の説明に供する図、第5
図(b)は焦点合わせを行う際に受光素子から得られる
出力信号の波形を示す図、第5図(C)は焦点が合った
時に受光素子から得られる出力信号の波形を示す図、第
6図は従来の水平位置検出袋置の説明に供する概略図、
第7図は露光領域の傾き方向の検出動作の説明に供する
図である。 1・・・投影レンズ、2・・・レベリングステージ、3
・・・Zステージ、4・・・x−yステージ、10x、
10y・・・照射光学系、20x、20y・・・集光光
学系、31・・・制御装置、32・・・駆動装置出願人
  日本光学工業株式会社 代理人 弁理士 渡 辺 隆 男 第1図 5°Y 第2図 第3図 (L ×
FIG. 1 is a diagram showing a schematic configuration of a stepper equipped with a horizontal position detecting device according to a first embodiment of the present invention, FIG. 2 is a diagram showing a schematic arrangement of the horizontal position detecting device, and FIG. 4 is a diagram illustrating the horizontal position detection operation by two sets of horizontal position detection systems arranged in an arbitrary positional relationship, FIG. 4 is a diagram showing a schematic configuration of a two-split light receiving element, and FIG. 5 is a diagram used to explain the focusing operation of the horizontal position detection device.
Figure 5 (b) is a diagram showing the waveform of the output signal obtained from the light receiving element when focusing is performed, Figure 5 (C) is a diagram showing the waveform of the output signal obtained from the light receiving element when the focus is adjusted, Figure 6 is a schematic diagram for explaining the conventional horizontal position detection bag holder.
FIG. 7 is a diagram for explaining the operation of detecting the inclination direction of the exposure area. 1... Projection lens, 2... Leveling stage, 3
...Z stage, 4...x-y stage, 10x,
10y...Irradiation optical system, 20x, 20y...Condensing optical system, 31...Control device, 32...Drive device Applicant: Nippon Kogaku Kogyo Co., Ltd. Agent, Patent Attorney Takao Watanabe Figure 1 5°Y Figure 2 Figure 3 (L ×

Claims (1)

【特許請求の範囲】  主対物レンズの光軸に対して略垂直に配置される加工
片上の所定領域へ、第1微小開口から発する略平行光束
を第1視野絞りを介して前記主対物レンズの光軸に対し
て斜め方向より供給する第1照射光学系と、該第1照射
光学系から供給され前記所定領域で反射される平行光束
を第1受光素子上に集光する第1集光光学系とを有し、
前記第1照射光学系の光軸と前記第1集光光学系の光軸
とが前記主対物レンズの光軸に関して対称に配置され、
前記所定領域の基準平面に対する傾きを所定の第1方向
に関して検出する第1水平位置検出系と; 前記所定領域へ第2微小開口から発する略平行光束を第
2視野絞りを介して前記主対物レンズの光軸に対して斜
め方向より供給する第2照射光学系と、該第2照射光学
系から供給され前記所定領域で反射される平行光束を第
2受光素子上に集光する第2集光光学系とを有し、前記
第2照射光学系の光軸と前記第2集光光学系の光軸とが
前記主対物レンズの光軸に関して対称に配置され、前記
所定領域の前記基準平面に対する傾きを、前記第1方向
と異なる所定の第2方向に関して検出する第2水平位置
検出系と; 前記第1方向の傾きと前記第2方向の傾きとに基づいて
、前記基準平面に対する前記所定領域の水平位置を算出
する演算手段とを備えたことを特徴とする水平位置検出
装置。
[Scope of Claims] A substantially parallel beam of light emitted from a first micro-aperture is directed to a predetermined area on a workpiece disposed substantially perpendicularly to the optical axis of the main objective lens through a first field stop. a first irradiation optical system that supplies light from an oblique direction with respect to the optical axis; and a first condensing optical system that focuses a parallel light beam supplied from the first irradiation optical system and reflected at the predetermined area onto a first light receiving element. system,
The optical axis of the first irradiation optical system and the optical axis of the first condensing optical system are arranged symmetrically with respect to the optical axis of the main objective lens,
a first horizontal position detection system that detects an inclination of the predetermined area with respect to a reference plane in a predetermined first direction; and a substantially parallel light beam emitted from a second minute aperture to the predetermined area through a second field diaphragm to the main objective lens. a second irradiation optical system that supplies the light from an oblique direction with respect to the optical axis of the second irradiation optical system; and a second condenser that condenses a parallel light beam supplied from the second irradiation optical system and reflected at the predetermined area onto a second light receiving element. an optical system, the optical axis of the second irradiation optical system and the optical axis of the second condensing optical system are arranged symmetrically with respect to the optical axis of the main objective lens, and a second horizontal position detection system that detects an inclination in a predetermined second direction different from the first direction; based on the inclination in the first direction and the inclination in the second direction; 1. A horizontal position detection device, comprising: arithmetic means for calculating the horizontal position of the
JP63067518A 1987-12-21 1988-03-22 Detecting apparatus for horizontal position Pending JPH01240802A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63067518A JPH01240802A (en) 1988-03-22 1988-03-22 Detecting apparatus for horizontal position
US07/284,659 US4902900A (en) 1987-12-21 1988-12-15 Device for detecting the levelling of the surface of an object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067518A JPH01240802A (en) 1988-03-22 1988-03-22 Detecting apparatus for horizontal position

Publications (1)

Publication Number Publication Date
JPH01240802A true JPH01240802A (en) 1989-09-26

Family

ID=13347281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067518A Pending JPH01240802A (en) 1987-12-21 1988-03-22 Detecting apparatus for horizontal position

Country Status (1)

Country Link
JP (1) JPH01240802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153670A (en) * 1993-12-01 1995-06-16 Nec Corp Projection aligner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153670A (en) * 1993-12-01 1995-06-16 Nec Corp Projection aligner

Similar Documents

Publication Publication Date Title
US4902900A (en) Device for detecting the levelling of the surface of an object
US4952815A (en) Focusing device for projection exposure apparatus
EP0906590B1 (en) Lithographic projection apparatus with off-axis alignment unit
US4558949A (en) Horizontal position detecting device
US5985495A (en) Methods for measuring image-formation characteristics of a projection-optical system
US5015866A (en) Stage apparatus in exposing apparatus
US4699515A (en) Process of transfer of mask pattern onto substrate and apparatus for alignment therebetween
US5138176A (en) Projection optical apparatus using plural wavelengths of light
US4636626A (en) Apparatus for aligning mask and wafer used in semiconductor circuit element fabrication
US5218415A (en) Device for optically detecting inclination of a surface
US5347356A (en) Substrate aligning device using interference light generated by two beams irradiating diffraction grating
WO1999039374A1 (en) Exposure method and device
US4801208A (en) Projection type exposing apparatus
JP2681649B2 (en) Surface position detection device
US5717492A (en) Position detecting apparatus and a method for manufacturing semiconductor devices using the apparatus
JP2676933B2 (en) Position detection device
JP2000012445A (en) Position detecting method and apparatus, and aligner equipped with the apparatus
USRE36799E (en) Projection optical apparatus using plural wavelengths of light
JPH01240802A (en) Detecting apparatus for horizontal position
JP2626076B2 (en) Position detection device
JP3351051B2 (en) Horizontal detector and exposure apparatus using the same
JP3381740B2 (en) Exposure method and projection exposure apparatus
JP2897085B2 (en) Horizontal position detecting apparatus and exposure apparatus having the same
JP3003990B2 (en) Projection exposure method, projection exposure apparatus and circuit manufacturing method
JP2569713B2 (en) Projection exposure equipment