JPH01239890A - Semiconductor light emitting element - Google Patents
Semiconductor light emitting elementInfo
- Publication number
- JPH01239890A JPH01239890A JP6571188A JP6571188A JPH01239890A JP H01239890 A JPH01239890 A JP H01239890A JP 6571188 A JP6571188 A JP 6571188A JP 6571188 A JP6571188 A JP 6571188A JP H01239890 A JPH01239890 A JP H01239890A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- resin
- active layer
- semiconductor light
- organic insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 239000011347 resin Substances 0.000 claims abstract description 38
- 229920005989 resin Polymers 0.000 claims abstract description 38
- 229920001721 polyimide Polymers 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 239000009719 polyimide resin Substances 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 238000000151 deposition Methods 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000003071 parasitic effect Effects 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005253 cladding Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2213—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on polyimide or resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2214—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/3235—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
- H01S5/32391—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers based on In(Ga)(As)P
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体発光素子に係り、特に高速直接変調に好
適でかつ動作電流を小さな半導体発光素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor light emitting device, and particularly to a semiconductor light emitting device suitable for high-speed direct modulation and having a small operating current.
従来の有機絶縁膜樹脂を用いて埋めこんだ半導体売品素
子は、特開昭62−49687号において論じられてい
る。A semiconductor commercially available device embedded using a conventional organic insulating film resin is discussed in Japanese Patent Application Laid-Open No. 62-49687.
上記従来技術においては、有機絶縁膜樹脂としてポリイ
ミドを用い、その樹脂分の比率は10〜15%と低いも
のを用いていた。それを用いて高さ数μmの凸状ストラ
イプを埋めこむと、ストライプ部の段差を反映して、ポ
リイミド膜の表面には段差が生じる(第3図(a))。In the above conventional technology, polyimide is used as the organic insulating film resin, and the ratio of the resin content is as low as 10 to 15%. When a convex stripe with a height of several micrometers is filled with this, a step is created on the surface of the polyimide film, reflecting the step in the stripe portion (FIG. 3(a)).
この表面段差は、その後の電極プロセス時の電極ぎれ、
パッケージへのボンディング時のひずみ導入等の問題が
あった。このため、ポリイミド膜を数回の重ね塗りによ
り形成し、ある程度の平坦性を確保することができる。This surface step is caused by electrode breakage during the subsequent electrode process.
There were problems such as the introduction of strain during bonding to the package. Therefore, the polyimide film can be formed by overcoating several times to ensure a certain degree of flatness.
しかし、この場合においてもストライブ上部に厚さ数μ
mのポリイミドが形成され、その後の電極プロセス前に
この厚いポリイミドを制御良く除去しなくてはいけない
という困難さがあった。However, even in this case, there is a thickness of several μm on the top of the stripe.
m of polyimide is formed, and the difficulty is that this thick polyimide must be removed in a controlled manner before subsequent electrode processing.
本発明の目的は、表面が平坦になるように有機絶縁樹脂
で埋めこみ、超高速直接変調の可能な半導体発光素子を
実現することにある。An object of the present invention is to realize a semiconductor light-emitting element that is embedded with an organic insulating resin so that the surface is flat and capable of ultra-high-speed direct modulation.
上目的は、樹脂分の多い(約30wt、3以上)有機絶
縁膜樹脂、特にポリイミド膜(樹脂分〉30wt、%)
を用いることにより達成される。The purpose is to produce organic insulating film resins with a high resin content (approximately 30wt, 3 or more), especially polyimide films (resin content>30wt, %).
This is achieved by using
すなわち、樹脂分の多いポリイミド膜により、ストライ
プを埋めこむと第3図(b)の如く、はぼ平坦に埋めこ
むことができる。以下、この理由を説明する。That is, when a stripe is buried using a polyimide film with a high resin content, it can be buried almost flatly as shown in FIG. 3(b). The reason for this will be explained below.
一般にポリイミド膜は塗布後、ベーキングを行い、樹脂
分以外の溶済を蒸発させる。さて、樹脂分の多いポリイ
ミド膜を用いると、蒸発する溶済分が少ないため、ベー
キングを行っても、最初に塗布された形状を保ちやすい
。このため、平坦性の良い表面が得られる。Generally, after coating a polyimide film, baking is performed to evaporate the dissolved material other than the resin. Now, when a polyimide film with a high resin content is used, there is less evaporated dissolved material, so even if baking is performed, it is easier to maintain the shape originally applied. Therefore, a surface with good flatness can be obtained.
第4図に樹脂分比率の異なるポリイミド膜を段差付基板
上に形成した場合の表面の平坦化率の実験値を示す。基
板にはInPを用い、表面には段差3μm、幅5μmの
凸状ストライプを形成している(第4図(a))。この
基板上に樹脂分比率の異なるポリイミド膜をそれぞれ、
膜厚が約4μmとなるように形成した。平坦化率の度合
は、ポリイミド膜の表面に残っている残存段差を測定ヱ
し超評価した。樹脂分比率と残存段差の関係を第4図(
b)に示す。樹脂分比率の少ないほど、平坦化率は悪く
段差が残りやすい。この理由は、前らである。特に従来
、用いられている樹脂分15wt、%程度のポリイミド
膜は平坦化率に劣るため、重ね塗りをする必要がある。FIG. 4 shows experimental values of the surface flattening rate when polyimide films with different resin content ratios are formed on a stepped substrate. InP is used for the substrate, and convex stripes with a step of 3 μm and a width of 5 μm are formed on the surface (FIG. 4(a)). Polyimide films with different resin content ratios are placed on this substrate.
The film was formed to have a thickness of approximately 4 μm. The degree of planarization was evaluated by measuring the residual level difference remaining on the surface of the polyimide film. The relationship between the resin content ratio and the remaining level difference is shown in Figure 4 (
Shown in b). The lower the resin content ratio, the worse the flattening rate is and the more likely it is that steps will remain. The reason for this is Mae et al. In particular, the polyimide film conventionally used with a resin content of about 15 wt.% has a poor flattening rate, so it is necessary to recoat it.
しかし、樹脂分比率が30wt、3以上になると完全に
平坦化され、段差が残らない秀れた結果が得られた。However, when the resin content ratio was 30 wt, 3 or more, it was completely flattened and excellent results were obtained with no level difference remaining.
以下、本発明の実施例を第1図、第2図を用いて説明す
る。Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.
実施例1 本発明による一実施例の断面図を第1図に示す。Example 1 A sectional view of an embodiment according to the present invention is shown in FIG.
n−InP基板1上に波長1.3μmのInGaAsP
活性層2、p −I n Pクラッド層3、p−InG
aAsPコンタクト層4を多層成長後、活性層2をつき
ぬける幅1〜3μm高さ2〜5μmの凸状ストライプを
形成する。この後、高抵抗InPあるいはp−InPあ
るいはn−InPあるいはアンドープInPの埋めこみ
層5を形成する。この時、埋めこみ層の厚さは;活性層
2の平面内において、はぼ発光波長程度の0.5〜2μ
mとした。この後、Si○2膜6ウエ゛ハ表面の全面に
形成し、樹脂分40wt、%のポリイミド樹脂を塗布し
、350℃でベーキングを行うことにより、厚さ約4μ
mのポリイミド膜を形成した。この後、表面全体を02
プラズマによりさらすことにより、表面のポリイミド膜
を約0.5μmエツチングバックすることにより、スト
ライプを露出させる。さらに、ストライプ直上のSiO
2膜を除去した後、P電極8.n電極9を形成する。InGaAsP with a wavelength of 1.3 μm on the n-InP substrate 1
Active layer 2, p-InP cladding layer 3, p-InG
After growing the aAsP contact layer 4 in multiple layers, convex stripes with a width of 1 to 3 μm and a height of 2 to 5 μm passing through the active layer 2 are formed. Thereafter, a buried layer 5 of high resistance InP, p-InP, n-InP, or undoped InP is formed. At this time, the thickness of the buried layer is; within the plane of the active layer 2, it is about 0.5 to 2μ, which is about the wavelength of light emission.
It was set as m. Thereafter, a Si○2 film 6 is formed on the entire surface of the wafer, coated with polyimide resin with a resin content of 40 wt%, and baked at 350°C to a thickness of about 4 μm.
A polyimide film of m was formed. After this, the entire surface is
By exposing to plasma, the polyimide film on the surface is etched back by about 0.5 μm to expose stripes. Furthermore, the SiO directly above the stripe
After removing the P electrode 8. An n-electrode 9 is formed.
試作した半導体発光素子をへき関して共振器長300μ
mの半導体レーザを形成した。しきい電流約10mA、
波長1.3μmで発振した。また、本素子はチップ表面
の平坦性に秀れるため、接合面側を下にしてボンディン
グしても良好な特性及び信頼性が得られた。ネットワー
クアナライザーで測定した寄生容量は、埋めこみ層5の
ドーピングレベルにもよるが、約−R−0,5〜1.5
PFの値が得られた。寄生容量の低減化により、直接変
調の周波数特性を測定すると、3dBダウン周波数とし
て15〜25GHzの値が得られた。The resonator length was 300 μ by separating the prototype semiconductor light emitting device.
A semiconductor laser of m was formed. Threshold current approximately 10mA,
It oscillated at a wavelength of 1.3 μm. Furthermore, since this device has excellent chip surface flatness, good characteristics and reliability were obtained even when bonding was performed with the bonding surface facing down. The parasitic capacitance measured with a network analyzer is approximately -R-0.5 to 1.5, depending on the doping level of the buried layer 5.
The value of PF was obtained. When the frequency characteristics of direct modulation were measured by reducing the parasitic capacitance, a value of 15 to 25 GHz was obtained as a 3 dB down frequency.
実施例2
本発明による別の実施例の断面図を第2図に示す。実施
例1と同様の多層成長をした後、図示の如く、逆メサ状
にストライプを形成した。この時、活性層2のストライ
プ幅は0.5〜3μmとシタ。Embodiment 2 A sectional view of another embodiment according to the present invention is shown in FIG. After the same multilayer growth as in Example 1, stripes were formed in the shape of an inverted mesa as shown in the figure. At this time, the stripe width of the active layer 2 is approximately 0.5 to 3 μm.
この後、直接、高樹脂分のポリイミド樹脂(樹脂分〜3
5%)を塗布し、ベーキングを行ない、ポリイミド膜7
を形成した。この後、ポリイミド膜の表面をス1〜ライ
ブの表面が出るまでエッチバックして、p電極8、n電
極9を設けた後、実施例1と同様に半導体レーザとした
。本実施例では、寄生容量はポリイミド膜7自体になり
、実施例1よりも低容量化が計れて、0.5 P F以
下に低減できた。After this, directly apply polyimide resin with a high resin content (resin content ~ 3
5%) and baked to form a polyimide film 7.
was formed. Thereafter, the surface of the polyimide film was etched back until the surfaces of the slabs 1 to 1 were exposed, and a p-electrode 8 and an n-electrode 9 were provided, and then a semiconductor laser was manufactured in the same manner as in Example 1. In this example, the parasitic capacitance is in the polyimide film 7 itself, and the capacitance can be lowered to 0.5 PF or less than in Example 1.
以上の実施例では、半導体レーザの例を示したが、片側
をへき開面とした端面出射型発光ダイオードでも同様に
低容量化が計れた。In the above embodiments, a semiconductor laser was used as an example, but an edge-emitting type light emitting diode having a cleavage plane on one side could also be used to reduce the capacitance.
また、本発明は、グレーティングのブラッグ反射を用い
たDFBレーザ、DBRレーザに対して適用できること
は言うまでもない。また、上記実施例においてはn型基
板の場合を示したが、2型基板を用いた発光素子におい
ても同様の効果が得られた。本発明はその技術的手段か
ら判断して、室温連続発振ができる全範囲の半導体レー
ザに適用できることは当業者が容易に理解し得るもので
ある。Furthermore, it goes without saying that the present invention can be applied to DFB lasers and DBR lasers that use Bragg reflection of gratings. Further, although the above embodiments show the case of an n-type substrate, similar effects were obtained in a light-emitting element using a 2-type substrate. Judging from its technical means, those skilled in the art can easily understand that the present invention can be applied to a wide range of semiconductor lasers capable of continuous oscillation at room temperature.
本発明によれば、半導体発光素子の活性領域以外の部分
を絶縁性の有機樹脂で埋めこみ、さらに。According to the present invention, a portion of the semiconductor light emitting device other than the active region is filled with an insulating organic resin, and further.
その表面を容易に平坦にできるので、信頼性のある低寄
生容量の超高速直接変調が可能な半導体発光素子を提供
できる。Since its surface can be easily made flat, it is possible to provide a semiconductor light-emitting device that is reliable, has low parasitic capacitance, and is capable of ultra-high-speed direct modulation.
第1図、第2図は本発明による実施例の断面図。
第3図(、)は従来の低樹脂分の有機絶縁樹脂で埋めこ
んだ断面図、第3図(b)は本発明の高樹脂分の有機絶
縁樹脂で埋めこんだ断面図、第4図は有機絶縁膜による
平坦化の度合いと樹脂分比率の関係を示す図で、(a)
はその断面説明図で(b)が樹脂分比率を変化させた時
の実験値を示す図である。
符号の説明
1・・・n−InP基板、2・・・活性層、5・・・埋
めこみ層、7・・・高樹脂ポリイミド膜、1o・・・I
nP基板、11・・・低樹脂ポリイミド膜。
Yノ扇
/ n−rnp、@a 7 i+ttJi
rソイミy顛2 そ・属槽
タ ヌ更、ぬごみ/智
第3回
Z へ1rd月旨木″ソイミ■黄
ノθ I−P Xよ(1 and 2 are cross-sectional views of embodiments according to the present invention. Figure 3 (,) is a cross-sectional view of a conventional low-resin content organic insulating resin filled in, Figure 3 (b) is a cross-sectional view of the present invention filled with a high-resin content organic insulating resin, and Figure 4. is a diagram showing the relationship between the degree of planarization by the organic insulating film and the resin content ratio; (a)
is an explanatory cross-sectional view thereof, and (b) is a diagram showing experimental values when the resin content ratio is changed. Explanation of symbols 1...n-InP substrate, 2...active layer, 5...buried layer, 7...high resin polyimide film, 1o...I
nP substrate, 11...low resin polyimide film. Y no Ougi/n-rnp, @a 7 i+ttJi
r Soimi y 2nd 2 So, Genustantan Nu Sara, Nugomi/Tomo 3rd Z To 1st Month Umaki "Soimi ■ Yellow θ I-P X yo (
Claims (1)
光素子において、少なくとも光が発生する活性層をつき
ぬける凸状の発光トライプ以外の領域を樹脂分比率が3
0wt.%以上の有機絶縁膜樹脂で埋めこんだことを特
徴とする半導体発光素子。 2、特許請求の範囲第1項記載の半導体発光素子におい
て、上記有機絶縁膜樹脂と上記発光ストライプ内の活性
層との間に少なくとも発光波長程度の厚さで、かつ、活
性層よりも屈折率の低い半導体層を形成したことを特徴
とする半導体発光素子。 3、特許請求の範囲第1項に記載の半導体発光素子にお
いて、上記有機絶縁膜樹脂がポリイミド樹脂であること
を特徴とする半導体発光素子。[Claims] 1. In a semiconductor light emitting device having a double heterostructure on a semiconductor substrate, at least the area other than the convex light emitting tripe that penetrates the active layer where light is generated has a resin content ratio of 3.
0wt. 1. A semiconductor light emitting device characterized in that it is embedded with an organic insulating film resin of % or more. 2. In the semiconductor light emitting device according to claim 1, there is a gap between the organic insulating film resin and the active layer in the light emitting stripe, and the thickness is at least about the same as the emission wavelength, and the refractive index is lower than that of the active layer. 1. A semiconductor light emitting device characterized by forming a semiconductor layer with low . 3. The semiconductor light emitting device according to claim 1, wherein the organic insulating film resin is a polyimide resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6571188A JP2641483B2 (en) | 1988-03-22 | 1988-03-22 | Method for manufacturing semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6571188A JP2641483B2 (en) | 1988-03-22 | 1988-03-22 | Method for manufacturing semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01239890A true JPH01239890A (en) | 1989-09-25 |
JP2641483B2 JP2641483B2 (en) | 1997-08-13 |
Family
ID=13294877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6571188A Expired - Lifetime JP2641483B2 (en) | 1988-03-22 | 1988-03-22 | Method for manufacturing semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2641483B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995020254A1 (en) * | 1994-01-20 | 1995-07-27 | Seiko Epson Corporation | Surface emission type semiconductor laser, method and apparatus for producing the same |
US6200826B1 (en) | 1996-12-30 | 2001-03-13 | Hyundai Electronics Industries Co., Ltd. | Method of fabricating a reverse mesa ridge waveguide type laser diode |
JP2006253635A (en) * | 1994-01-20 | 2006-09-21 | Seiko Epson Corp | Surface-emitting semiconductor laser device and its manufacturing method |
JP2006310443A (en) * | 2005-04-27 | 2006-11-09 | Sharp Corp | Method of manufacturing semiconductor device, semiconductor laser device, optical transmission module and optical disk device |
JP2007150274A (en) * | 2005-10-31 | 2007-06-14 | Furukawa Electric Co Ltd:The | Surface emission laser element |
US8178364B2 (en) | 2005-10-31 | 2012-05-15 | Furukawa Electric Co., Ltd. | Testing method of surface-emitting laser device and testing device thereof |
-
1988
- 1988-03-22 JP JP6571188A patent/JP2641483B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995020254A1 (en) * | 1994-01-20 | 1995-07-27 | Seiko Epson Corporation | Surface emission type semiconductor laser, method and apparatus for producing the same |
JPH08508137A (en) * | 1994-01-20 | 1996-08-27 | セイコーエプソン株式会社 | Surface emitting semiconductor laser device, manufacturing method thereof, and manufacturing apparatus |
US5621750A (en) * | 1994-01-20 | 1997-04-15 | Seiko Epson Corporation | Surface emission type semiconductor laser, method and apparatus for producing the same |
JP2006253635A (en) * | 1994-01-20 | 2006-09-21 | Seiko Epson Corp | Surface-emitting semiconductor laser device and its manufacturing method |
US6200826B1 (en) | 1996-12-30 | 2001-03-13 | Hyundai Electronics Industries Co., Ltd. | Method of fabricating a reverse mesa ridge waveguide type laser diode |
JP2006310443A (en) * | 2005-04-27 | 2006-11-09 | Sharp Corp | Method of manufacturing semiconductor device, semiconductor laser device, optical transmission module and optical disk device |
JP2007150274A (en) * | 2005-10-31 | 2007-06-14 | Furukawa Electric Co Ltd:The | Surface emission laser element |
US8178364B2 (en) | 2005-10-31 | 2012-05-15 | Furukawa Electric Co., Ltd. | Testing method of surface-emitting laser device and testing device thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2641483B2 (en) | 1997-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5053356A (en) | Method for production of a semiconductor laser | |
US4870468A (en) | Semiconductor light-emitting device and method of manufacturing the same | |
JP2002164622A (en) | Semiconductor optical element | |
JP4238508B2 (en) | Optical waveguide device and method for manufacturing the same | |
JPH01239890A (en) | Semiconductor light emitting element | |
US6200826B1 (en) | Method of fabricating a reverse mesa ridge waveguide type laser diode | |
US6509580B2 (en) | Semiconductor device with current confinement structure | |
US9466947B2 (en) | Semiconductor laser diode with shortened cavity length | |
US4791647A (en) | Semiconductor laser | |
US5949808A (en) | Semiconductor laser and method for producing the same | |
US6316280B1 (en) | Method of manufacturing semiconductor devices separated from a wafer | |
US5323412A (en) | Semiconductor laser device | |
JP4164248B2 (en) | Semiconductor element, manufacturing method thereof, and semiconductor optical device | |
KR100584333B1 (en) | Semiconductor laser device and method for fabricating the same | |
KR20000053604A (en) | Method for fabricating a semiconductor optical device | |
JP3192687B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0677583A (en) | Integrated light source with semiconductor laser and optical modulator | |
JPS63288082A (en) | Semiconductor laser device | |
JP2940185B2 (en) | Embedded semiconductor laser | |
JP2935799B2 (en) | Semiconductor light emitting device and method of manufacturing the same | |
KR100237858B1 (en) | Laser diode | |
JPH1140897A (en) | Semiconductor laser element and its manufacture | |
JPH08334657A (en) | Production of semiconductor optical integrated element | |
JPH0730195A (en) | Semiconductor element and its manufacture | |
JPS63129687A (en) | Semiconductor laser and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |