JPH01239851A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH01239851A
JPH01239851A JP6686988A JP6686988A JPH01239851A JP H01239851 A JPH01239851 A JP H01239851A JP 6686988 A JP6686988 A JP 6686988A JP 6686988 A JP6686988 A JP 6686988A JP H01239851 A JPH01239851 A JP H01239851A
Authority
JP
Japan
Prior art keywords
film
reaction vessel
plasma
gas
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6686988A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Toshiaki Yoshikawa
俊明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6686988A priority Critical patent/JPH01239851A/en
Publication of JPH01239851A publication Critical patent/JPH01239851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a film having less plasma damage and less internal stress on a base, to form a film having less internal stress to cope with an increase in the diameter of a wafer, and to suppress the mixture amount of hydrogen, by providing means for applying a voltage between a reduced electrode and a reaction vessel to generate a plasma, and means for radiating the base with light. CONSTITUTION:Means for holding one or more bases 3 therein, a reaction vessel 2 having two gas inlets 4a, 4b for introducing gas thereinto, electrodes 1 having 1/10 or less of the area of the inner wall of the vessel 2 and mounted near one inlet 4a, means 5 for generating a plasma in the gas introduced into the vessel 2, and means 6 for radiating the base 3 held in the vessel 1 with ultraviolet, visible or infrared light not absorbed by the introduced gas are provided. For example, the area of the electrode 1 is 200cm<2>, the area of the vessel 2 is 5000cm<2>, and their area ratio is 0.04. A 6-inch Si base is employed as the base 3, and a Xe lamp is employed as a light source 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば、半導体素子の絶縁膜の形成に用いら
れる薄膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film forming apparatus used for forming an insulating film of a semiconductor element, for example.

[従来の技術] 現在、半導体素子、特にLSIの絶縁膜形成のために用
いられる薄膜形成装置としてCVD装置は重要な位置を
占めている。
[Prior Art] Currently, CVD apparatuses occupy an important position as thin film forming apparatuses used for forming insulating films of semiconductor devices, particularly LSIs.

CVD装置としては熱CVD装置が一般的である。A thermal CVD device is commonly used as a CVD device.

熱CVD装置を用いることによるSi3N4膜の形成は
、例えば次のように行われる。反応容器に配置され、7
50〜950℃に加熱した基体上に、モノシランとアン
モニアとの混合ガスを送り込み、数Torrの圧力に保
つ。すると、熱分解による化学反応が基体上で生じ、基
体上にSi、N4膜が堆積・形成させる。なお、Si3
N4@は、選択酸化用マスクやキャパシタ絶縁膜として
用いられている。
Formation of the Si3N4 film using a thermal CVD apparatus is performed, for example, as follows. placed in the reaction vessel, 7
A mixed gas of monosilane and ammonia is fed onto the substrate heated to 50 to 950° C. and maintained at a pressure of several Torr. Then, a chemical reaction due to thermal decomposition occurs on the substrate, and a Si and N4 film is deposited and formed on the substrate. In addition, Si3
N4@ is used as a mask for selective oxidation and a capacitor insulating film.

また、熱CVD装置を用いることによるPSG系膜の形
成は、例えば次のように行われる。反応容器内に配置さ
れ、350〜450℃に加熱した基体上に、モノシラン
と酸素や亜°酸化窒素とにフォスフインのようなドーヒ
゛ングガスを添カロした混合ガスを送り込み、1〜76
0Torrの圧力に保つ。すると、熱分解による化学反
応が基体上で生じ、基体上にPSG系膜が堆積・形成さ
れる。なお、このPSG系膜は層間絶縁膜として用いら
れている。
Further, the formation of a PSG-based film using a thermal CVD apparatus is performed, for example, as follows. A mixed gas of monosilane, oxygen or nitrous oxide, and a doping gas such as phosphine is fed onto a substrate placed in a reaction vessel and heated to 350 to 450°C.
Maintain pressure at 0 Torr. Then, a chemical reaction due to thermal decomposition occurs on the substrate, and a PSG-based film is deposited and formed on the substrate. Note that this PSG-based film is used as an interlayer insulating film.

しかし、AfL配線後のパッシベーション膜の形成など
の用途には低温化が必須であり、熱CVD装置は充分で
はない。そこで、このような用途にはプラズマCVD装
置が用いられている。
However, for applications such as forming a passivation film after AfL wiring, lowering the temperature is essential, and thermal CVD equipment is not sufficient. Therefore, plasma CVD apparatuses are used for such applications.

プラズマCVD装置としては、平行平板型プラズマCV
D装置が知られている。
As a plasma CVD device, a parallel plate plasma CV
D device is known.

この装置を用いたP−3iN膜の形成は、例えば次のよ
うに行われる。モノシランとアンモニアと窒素との混合
ガスを、0.ITorr台の圧力の下で、コンデンサ型
の対称な平行平板電極間に導入し、この電極に高周波電
圧を印加してプラズマを発生させ、これらのガスを励起
分解して励起活性種とし、この励起活性種を、250〜
300℃に加熱した基体上に堆積することによりP−S
iN膜を形成する。P−SiN膜は半導体素子のパッシ
ベーション膜として用いられている。
Formation of a P-3iN film using this apparatus is performed, for example, as follows. A mixed gas of monosilane, ammonia, and nitrogen was heated to 0. Under the pressure of an ITorr table, the gas is introduced between symmetrical parallel plate electrodes of a capacitor type, and a high frequency voltage is applied to these electrodes to generate plasma. These gases are excited and decomposed into excited active species. Active species, 250~
P-S by depositing on a substrate heated to 300°C
Form an iN film. P-SiN films are used as passivation films for semiconductor devices.

[発明が解決しようとする問題点コ しかしながら、上記した平行平板型プラズマCVD装置
にも次のような問題点がある。
[Problems to be Solved by the Invention] However, the above-described parallel plate type plasma CVD apparatus also has the following problems.

■プラズマ中のイオンによるダメージのため、基体上に
形成された膜や素子の電気的特性(例えば、絶縁耐圧、
界面準位密度)が、熱CVD装置を用いて形成した場合
に比べると劣化してしまう。
■Due to damage caused by ions in the plasma, the electrical properties of films and elements formed on the substrate (e.g. dielectric strength,
(interface state density) is deteriorated compared to when formed using a thermal CVD apparatus.

■プラズマCVD装置特有の挿入反応のため膜に内部応
力が生じ、下地Aj2配線の耐マイグレーシヨン特性が
劣化する。特に素子の高集積化に伴って配線幅が微細化
すると、マイグレーションは配線の断線の原因になるこ
とがある。
(2) Internal stress is generated in the film due to the insertion reaction peculiar to the plasma CVD apparatus, and the anti-migration characteristics of the underlying Aj2 wiring are deteriorated. In particular, when the wiring width becomes finer due to higher integration of elements, migration may cause disconnection of the wiring.

■均一な膜厚を得るには、プラズマ密度を均一に保つ必
要があり、そのためウェハの大口径化に伴って非常に困
難になフていく。
■In order to obtain a uniform film thickness, it is necessary to maintain a uniform plasma density, which becomes increasingly difficult as wafer diameters increase.

■膜中に水素が混入しやすく、この水素のゲートへの拡
散により閾値電圧が変動する。
■Hydrogen is easily mixed into the film, and the threshold voltage fluctuates due to the diffusion of this hydrogen to the gate.

[問題点を解決するための手段] 本発明の要旨は、内部に1又は2以上の基体を保持する
ための手段と、内部にガスを導入するための2個のガス
導入口を有する反応容器と;該反応容器の内壁面積の1
/10以下の面積をもち、該導入口の一方の近傍に設置
された電極と; 該反応容器と該電極との間に電圧を印加し、反応容器内
に導入されたガスをプラズマ化させる手段と; 該反応容器内に保持された基体に、導入されたガスに吸
収されない紫外光、可視光又は赤外光を照射する手段と
; を有することを特徴とする薄膜形成装置に存在する。
[Means for Solving the Problems] The gist of the present invention is to provide a reaction vessel having means for holding one or more substrates inside and two gas introduction ports for introducing gas into the inside. and; 1 of the inner wall area of the reaction vessel
/10 or less and an electrode installed near one side of the inlet; means for applying a voltage between the reaction vessel and the electrode to turn the gas introduced into the reaction vessel into plasma; A thin film forming apparatus comprising: a means for irradiating the substrate held in the reaction vessel with ultraviolet light, visible light, or infrared light that is not absorbed by the introduced gas.

[作用] 以下に本発明の構成要件を作用とともに説明する。[Effect] The constituent elements of the present invention will be explained below along with their effects.

本発明の特徴の1つは、電極を、1つのガス導入管の導
入口の近傍に設けることであり、かつ、その電極の面積
を反応容器の内壁面積の1/10以下とした点である。
One of the features of the present invention is that the electrode is provided near the inlet of one gas introduction tube, and the area of the electrode is 1/10 or less of the inner wall area of the reaction vessel. .

本発明者は、従来のプラズマCVD装置を用いて形成さ
れた膜の電気的特性が劣化する原因を探究したところ、
イオン衝撃によるダメージがその原因であろうと考えた
The present inventor investigated the cause of the deterioration of the electrical properties of films formed using conventional plasma CVD equipment, and found that
We thought that damage caused by ion bombardment might be the cause.

このようなイオン衝撃によるダメージが何故生じるのか
につき更なる研究を重ねて探究した。その結果、従来の
プラズマCVD装置では、プラズマ強度が、電極近傍と
基体近傍とで大差なく、そのため、基体近傍でのプラズ
マ強度もかなり強いものとなり、ダメージを膜に与える
のであろうとの知見を得た。
Further research was conducted to find out why such damage caused by ion bombardment occurs. As a result, we obtained the knowledge that in conventional plasma CVD equipment, the plasma intensity does not differ much between the vicinity of the electrode and the vicinity of the substrate, and therefore the plasma intensity near the substrate is also quite strong, causing damage to the film. Ta.

そこで、いかにすればこのダメージを回避し得るかにつ
き鋭意工夫を重ねたところ、電極の面積を反応容器の内
壁面積よりも小さくし、電極と反応容器との間に電圧を
印加すれば、プラズマの強度は電極近傍で強く、基体近
傍でそれより弱くなり、その結果、上記ダメージを回避
し得ることを見出し本発明を成すに到った。
Therefore, we worked hard to find a way to avoid this damage, and found that by making the area of the electrode smaller than the inner wall area of the reaction vessel and applying a voltage between the electrode and the reaction vessel, the plasma could be reduced. The strength is strong near the electrode and becomes weaker near the substrate, and as a result, the above damage can be avoided, and the present invention has been completed.

上記知見に基づき、具体的にはいかなる面積比の場合に
上記ダメージが回避されるのかにつき、探究を行った。
Based on the above knowledge, we investigated specifically what area ratio would avoid the above damage.

その結果、電極の面積/反応容器の内壁面積の値(以下
面積比という)を1/1゜以下とすれば上記ダメージを
回避することが可能となることがわかり、1/10以下
に限定した。
As a result, it was found that it was possible to avoid the above damage by setting the value of electrode area/inner wall area of the reaction vessel (hereinafter referred to as area ratio) to 1/1° or less. .

なお、この面積比は0.02〜0.06が好ましく、よ
り好ましくは0.04〜0.05である。
In addition, this area ratio is preferably 0.02 to 0.06, more preferably 0.04 to 0.05.

また、面積比を1/10以下にすると、挿入反応による
膜内の内部応力が減少し、そのため耐マイグレーション
性が向上する。
Further, when the area ratio is set to 1/10 or less, internal stress within the film due to insertion reaction is reduced, and therefore migration resistance is improved.

また、電極の仕様を変えることなく、反応容器を大型化
するだけで、基体の大口径化に対応することができる。
Furthermore, it is possible to accommodate larger diameter substrates simply by increasing the size of the reaction vessel without changing the specifications of the electrodes.

本発明の他の特徴の一つは、反応容器内に保持された基
体に、導入されたガスに吸収されない紫外光、可視光又
は赤外光を照射する手段を有している点である。この手
段により、基体に紫外光、可視光又は赤外光を照射する
と、水素の脱離が促進され、閾値電圧の変動の原因とな
る水素の混入を抑え、緻密な膜を形成することが可能と
なる。
Another feature of the present invention is that it includes means for irradiating the substrate held within the reaction vessel with ultraviolet light, visible light, or infrared light that is not absorbed by the introduced gas. By this means, when the substrate is irradiated with ultraviolet light, visible light, or infrared light, desorption of hydrogen is promoted, suppressing the incorporation of hydrogen that causes fluctuations in threshold voltage, and making it possible to form a dense film. becomes.

かかる光の光源としては、例えば、Hgランプ、Xe等
、Xe−Hg等、W等、ハロゲンランプ、あるいは、N
2レーザ、Arレーザ、YAGレーザ、C02レーザの
エキシマレーザがあげられる。もちろんこれらのレーザ
以外でも原料ガスに吸収されないものならばよい。
Examples of such light sources include Hg lamps, Xe, etc., Xe-Hg, etc., W, etc., halogen lamps, or N.
Eximer lasers include 2 laser, Ar laser, YAG laser, and C02 laser. Of course, any laser other than these may be used as long as it is not absorbed by the source gas.

なお、本発明において、薄膜を形成し得る基体としては
、例えば、シリコン基体、GaAsなとの化合物半導体
基体、AJ2203などの誘電体基体、AILなどの金
属基体等が挙げられる。
In the present invention, examples of substrates on which a thin film can be formed include silicon substrates, compound semiconductor substrates such as GaAs, dielectric substrates such as AJ2203, and metal substrates such as AIL.

また、形成する薄膜としては、例えば、02又はN20
とS i H4、5f2H6、S i H2Cl12又
はSiF4などを用いたSiO膜、H2又は希ガスとS
iH,,5t2Ha 、5iH2Cλ2又はS i H
4などを用いたa−St(アモルファスシリコン)膜、
p−5i(多結晶シリコン)膜、c−5i(単結晶シリ
コン)膜、水素又は希ガスと金属原子を含む気体を用い
た金属窒化物膜、酸化物膜が挙げられる。
In addition, the thin film to be formed is, for example, 02 or N20.
and SiO film using S i H4, 5f2H6, S i H2Cl12 or SiF4, H2 or rare gas and S
iH,,5t2Ha,5iH2Cλ2 or S i H
a-St (amorphous silicon) film using 4 etc.,
Examples include a p-5i (polycrystalline silicon) film, a c-5i (single-crystalline silicon) film, a metal nitride film using a gas containing hydrogen or a rare gas, and metal atoms, and an oxide film.

プラズマ発生手段は、高周波、マイクロ波、マグネット
あるいはこれらの併用でもよい。
The plasma generating means may be a high frequency, a microwave, a magnet, or a combination thereof.

[実施例] 以下に本発明の一実施例を第1図に基づいて説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

第1図において、1は電極であり、その面積は200c
rn’とした。2は反応容器であり、この反応容器は接
地されている。反応容器の面積は5000cm’とした
。従って、面積比は0.04となる。3は基体であり本
例では6インチのシリコン基体を用いた。4a、4bは
ガス導入口であり、4aは反応容器2の上部で、電極1
の近傍に設けである。5は、反応容器2と電極1との間
に電圧を印加し、プラズマを発生させるための手段であ
る。6は光源であり、本例ではXeランプを用いた。
In Figure 1, 1 is an electrode whose area is 200c
It was set as rn'. 2 is a reaction container, and this reaction container is grounded. The area of the reaction vessel was 5000 cm'. Therefore, the area ratio is 0.04. 3 is a substrate, and in this example, a 6-inch silicon substrate was used. 4a and 4b are gas inlet ports, 4a is the upper part of the reaction vessel 2, and the electrode 1
It is installed near the. 5 is a means for applying a voltage between the reaction vessel 2 and the electrode 1 to generate plasma. 6 is a light source, and in this example a Xe lamp was used.

以下にこの装置を用いて薄膜を形成した例を説明し、本
発明の実施例をより具体的に説明する。
An example of forming a thin film using this apparatus will be described below, and examples of the present invention will be explained in more detail.

原料ガスとして、窒素を240secmガス導入口4a
から、モノシランを40secmガス導入口4bから流
した。操作圧は10”Torrに保った。
240sec of nitrogen gas inlet 4a as raw material gas
Then, monosilane was flowed for 40 seconds from the gas inlet 4b. The operating pressure was maintained at 10'' Torr.

プラズマは13.56MHzの高周波電圧を容量結合型
電極1と反応容器2との間にlkw印加することにより
発生させた。このときの電子密度は濃いプラズマ中(電
極近傍に存在していた)でI X 10 ”/ crd
、基体3上で5×1o9/crn″であった。
Plasma was generated by applying a high frequency voltage of 13.56 MHz at lkw between the capacitively coupled electrode 1 and the reaction vessel 2. At this time, the electron density in the dense plasma (existing near the electrode) was I x 10''/crd
, 5×1o9/crn'' on substrate 3.

一方、光源6からは0.6W/cm’の光を基体1に照
射した。なお、この照射により基体表面温度を300℃
に保った。
On the other hand, the light source 6 irradiated the substrate 1 with light of 0.6 W/cm'. Note that this irradiation increases the substrate surface temperature to 300°C.
I kept it.

以上の条件化で5分間堆積を行ったところ、5500±
150人厚のSiN膜が形成された。
When deposited for 5 minutes under the above conditions, 5500±
A 150-layer thick SiN film was formed.

つまり、膜厚のバラツキは約±2.5%と小さかった。In other words, the variation in film thickness was as small as about ±2.5%.

以上のようにして形成された膜の評価を行った。The film formed as described above was evaluated.

■電気的特性 絶縁耐圧:10MV/cm 界面準位密度:1×1011/Cm2 ■内部応力 内部応力は4x 10−8dyn/crr? [引張応
カコであった。
■Electrical characteristics Dielectric strength voltage: 10MV/cm Interface state density: 1 x 1011/Cm2 ■Internal stress Internal stress is 4x 10-8 dyn/crr? [It was a tensile stress.

■その他 膜の密度は3.1g/am”と大きく、そのため緩衝フ
ッ酸によるエツチング速度は10人/ m i nと良
好であった。なお、水素含有率は5moJZ%であった
(2) Others The density of the film was as high as 3.1 g/am'', so the etching rate with buffered hydrofluoric acid was as good as 10 persons/min.The hydrogen content was 5 moJZ%.

〔比較例] 従来の平行平板型プラズマCVD装置を用い、以下に示
す最も特性の良いS i N@が得られる条件で成膜を
行、った。
[Comparative Example] Using a conventional parallel plate type plasma CVD apparatus, film formation was carried out under the following conditions to obtain SiN@ with the best characteristics.

成膜条件 SiH4:6secm NH,:30secm 操作圧  :0.57Torr RFパワー:100W ■電気的特性 絶縁耐圧:6MV/cm 界面準位密度:5×1011/Cm2 ■内部応力 実施例と同様の方法で内部応力を評価したところ、内部
応力は1〜ax 109dyn/cm’[圧縮応力]で
あった。
Film-forming conditions SiH4:6secm NH,:30secm Operating pressure: 0.57Torr RF power: 100W ■Electrical characteristics Dielectric strength voltage: 6MV/cm Interface state density: 5×1011/Cm2 ■In the same method as the internal stress example When the internal stress was evaluated, the internal stress was 1 to ax 109 dyn/cm' [compressive stress].

■その他 密度は2.6g/crn’、緩衝フッ酸によるエツチン
グ速度は300人/min、水素含有率は30mo1%
であった。
■Other density is 2.6g/crn', etching speed with buffered hydrofluoric acid is 300 people/min, hydrogen content is 30mo1%
Met.

すなわち、本発明の薄膜に比較して比較例は明らかに膜
質は良くなかった。
That is, compared to the thin film of the present invention, the film quality of the comparative example was clearly not good.

[発明の効果コ 上述したように、本発明によれば下記の効果が得られる
[Effects of the Invention] As described above, according to the present invention, the following effects can be obtained.

■基体がプラズマ最強部から離れるので、基体へのプラ
ズマダメージが少なく、電気的特性に優れた膜を形成す
ることができる。
(2) Since the substrate is separated from the strongest part of the plasma, there is less plasma damage to the substrate and a film with excellent electrical properties can be formed.

■内部応力の少ない膜の形成でき、そのため、高集積化
に際し、AJ2配線の断線の少ない半導体素子の作製が
可能となる。
(2) A film with low internal stress can be formed, and therefore, it is possible to fabricate a semiconductor element with fewer disconnections in the AJ2 wiring when increasing integration.

■反応容器を大きくするだけでウェハの大口径化に対応
できる。
■It is possible to accommodate larger diameter wafers simply by increasing the size of the reaction vessel.

■水素の混入量を抑えることができ、閾値電圧の変動を
抑えらえる。。
■The amount of hydrogen mixed in can be suppressed, suppressing fluctuations in threshold voltage. .

■緻密な膜の形成が可能となる。■It is possible to form a dense film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る装置を示す概念構成図で
ある。 1・・・電極、2・・・反応容器、3・・・基体、4a
。 4b・・・ガス導入口、5・・・プラズマ発生手段、6
・・・光源。
FIG. 1 is a conceptual configuration diagram showing an apparatus according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Electrode, 2... Reaction container, 3... Substrate, 4a
. 4b... Gas introduction port, 5... Plasma generation means, 6
···light source.

Claims (1)

【特許請求の範囲】  内部に1又は2以上の基体を保持するための手段と、
内部にガスを導入するための2個のガス導入口を有する
反応容器と; 該反応容器の内壁面積の1/10以下の面積をもち、該
導入口の一方の近傍に設置された電極と; 該反応容器と該電極との間に電圧を印加し、反応容器内
に導入されたガスをプラズマ化させる手段と; 該反応容器内に保持された基体に、導入されたガスに吸
収されない紫外光、可視光又は赤外光を照射する手段と
; を有することを特徴とする薄膜形成装置。
[Claims] Means for holding one or more substrates therein;
a reaction vessel having two gas introduction ports for introducing gas into the interior; an electrode having an area of 1/10 or less of the inner wall area of the reaction vessel and installed near one of the introduction ports; means for applying a voltage between the reaction vessel and the electrode to turn the gas introduced into the reaction vessel into plasma; A thin film forming apparatus comprising: a means for irradiating visible light or infrared light; and a means for irradiating visible light or infrared light.
JP6686988A 1988-03-18 1988-03-18 Thin film forming device Pending JPH01239851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6686988A JPH01239851A (en) 1988-03-18 1988-03-18 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6686988A JPH01239851A (en) 1988-03-18 1988-03-18 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH01239851A true JPH01239851A (en) 1989-09-25

Family

ID=13328303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6686988A Pending JPH01239851A (en) 1988-03-18 1988-03-18 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH01239851A (en)

Similar Documents

Publication Publication Date Title
US6930041B2 (en) Photo-assisted method for semiconductor fabrication
US6576564B2 (en) Photo-assisted remote plasma apparatus and method
KR0160958B1 (en) Method of fabricating integrated circuit deposited silicon dioxide
JP3866694B2 (en) LSI device etching method and apparatus
US6734518B2 (en) Surface treatment of DARC films to reduce defects in subsequent cap layers
JP2004508709A (en) Oxide selective etching method
JPH03173130A (en) Adhesion of high quality silicon dioxide by means of plasma reinforced chemical vapor adhesion method
JP2003158127A (en) Method and device for forming film and semiconductor device
KR100727205B1 (en) Plasma deposition method and system
JPH0133931B2 (en)
KR100374885B1 (en) Process for producing insulating film
JPH04221822A (en) Formation of deposited film
JPH098032A (en) Formation of insulation film
JPH11279773A (en) Formation of film
JPH11340211A (en) Treatment method and apparatus for substrate
US5336361A (en) Method of manufacturing an MIS-type semiconductor device
JPH0766186A (en) Anisotropic depositing method of dielectric
US5045346A (en) Method of depositing fluorinated silicon nitride
TW200805498A (en) Semiconductor device and manufacturing method therefor
JP2004363558A (en) Manufacturing method of semiconductor device, and cleaning method of plasma etching device
JP4058669B2 (en) Method for forming conductive silicide layer on silicon substrate and method for forming conductive silicide contact
US8609552B2 (en) Method for controlling dangling bonds in fluorocarbon films
US6734119B2 (en) Electro-optical apparatus and method for fabricating a film, semiconductor device and memory device at near atmospheric pressure
JPH01239851A (en) Thin film forming device
JP3440714B2 (en) Method for forming silicon compound based insulating film