JPH01239749A - Charged particle detector - Google Patents

Charged particle detector

Info

Publication number
JPH01239749A
JPH01239749A JP6347488A JP6347488A JPH01239749A JP H01239749 A JPH01239749 A JP H01239749A JP 6347488 A JP6347488 A JP 6347488A JP 6347488 A JP6347488 A JP 6347488A JP H01239749 A JPH01239749 A JP H01239749A
Authority
JP
Japan
Prior art keywords
electron
taper
channel tubes
channel
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6347488A
Other languages
Japanese (ja)
Inventor
Kiyokazu Kawamura
川村 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6347488A priority Critical patent/JPH01239749A/en
Publication of JPH01239749A publication Critical patent/JPH01239749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To make the assembly and the regulation works easier and to multiply the number of releasing electrons remarkably by binding and composing plural taper-form channel tubes for electron multiplying purpose in an unparallel and tapered form. CONSTITUTION:Since channel tubes 21,... are formed in a taper-form making the diameters smaller as they approach the electron injection side, the distances between passages of the secondary electrons are shortened as the secondary electrons advance inside the channel tubes 21,..., and the striking numbers of them are multiplied indicatively. Furthermore, not only the channel tubes 21,... are formed in a taper-form, but also the whole electron multiplying tube is formed in a so-called taper-form forming unparallel and making the particle incident side higher while the electron output side lower. As a result, the taper- form coefficient is increased, and the numbers of striking of the secondary electrons are increased much more. And since the size of the electron output side is small as a whole even though numerous channel tubes 21,... are bound, the assembly and the regulation works are made much easier.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、中性粒子計n1その他の放射線計測等、核融
合計測技術に好適な荷電粒子検出器に係わり、特に構造
の改良によって組立て、調整等の不具合を除去し、かつ
、電子増幅倍機能を高めた荷電粒子検出器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a charged particle detector suitable for nuclear fusion measurement technology such as neutral particle meter n1 and other radiation measurements, and in particular, This invention relates to a charged particle detector that eliminates problems with assembly, adjustment, etc., and has improved electron amplification function.

(従来の技術) 従来、この種の荷電粒子検出器には、セラトロン検出器
とマイクロチャンネルプレート検出器の2種類がある。
(Prior Art) Conventionally, there are two types of charged particle detectors of this type: a Ceratron detector and a microchannel plate detector.

前者のセラトロン検出器は、第6図および第7図に示す
ように所定長さの平板状絶縁ベース1上の両端部に立設
されたサポートおよび端子機能を持った複数の支持部材
2,2間にウェーブ状またはスパイラル状に成形された
内径21程度、長さ100mm程度のアルミナ管3が設
けられ、そのアルミナ管3の内壁には2次電子放出を起
す酸化薄膜(M g O等)がコーティングされている
。このアルミナ管3の荷電粒子入射口側および電子出射
口側にはそれぞれ加速電極4およびバイアス電極5が設
けられ、これら電極4,5から引出し線が導出されて前
記支持部材2.・・・に固定されている。
The former Ceratron detector, as shown in FIGS. 6 and 7, has a plurality of support members 2, 2 having support and terminal functions installed upright at both ends of a flat insulating base 1 of a predetermined length. An alumina tube 3 having an inner diameter of about 21 mm and a length of about 100 mm formed into a wave or spiral shape is provided in between, and the inner wall of the alumina tube 3 is coated with a thin oxide film (M g O etc.) that causes secondary electron emission. Coated. An accelerating electrode 4 and a bias electrode 5 are provided on the charged particle entrance side and the electron exit side of the alumina tube 3, respectively, and lead wires are led out from these electrodes 4 and 5 to connect the support member 2. It is fixed to...

さらに、前記アルミナ管3の電子出射口側から約0.1
mII程度離れた対向位置にコレクタ6が配置され、電
子出射口からの出力電子がコレクタ6によって電気信号
に変換された後、コンデンサ7を通してプリアンプへ導
入される。8は加速用電源、9はバイアス電源である。
Furthermore, about 0.1 from the electron exit side of the alumina tube 3
A collector 6 is arranged at an opposing position separated by about mII, and after the output electrons from the electron exit are converted into an electric signal by the collector 6, they are introduced into the preamplifier through a capacitor 7. 8 is an acceleration power source, and 9 is a bias power source.

しかして、以上のようなセラトロン検出器は、加速用電
源8およびバイアス電源9を印加した状態で入射口側か
ら荷電粒子aを入射すると、この荷電粒子aは電子増倍
機能を持つアルミナ管3内壁の酸化薄膜に衝突してそれ
ぞれ複数個の2次電子すを放出する。このアルミナ管3
の内壁で放出された2次電子すは加速用電源8による電
界で加速され、放物線軌道を描きながら再び内壁に衝突
して2次電子すを放出し、アルミナ管3にそって□前記
電子放出動作を多数回繰り返すことにより増倍された多
数の2次電子を放出する。
Therefore, in the Ceratron detector as described above, when a charged particle a is incident from the entrance side with the acceleration power source 8 and the bias power source 9 applied, the charged particle a passes through the alumina tube 3 which has an electron multiplication function. They collide with the oxide thin film on the inner wall and emit a plurality of secondary electrons. This alumina tube 3
The secondary electrons emitted on the inner wall of By repeating the operation many times, a large number of multiplied secondary electrons are emitted.

一方、後者のマイクロチャンネルプレート検出器は、第
8図および’MS9図に示すように酸化薄膜をコーティ
ングしてなる内径12μm程度の多数の鉛ガラスのチャ
ンネルプレート11を一様に傾けることにより、全チャ
ンネルプレート11゜・・・を平行に束ねた平板状とし
た構成である。12はアルミナ、13はねじである。
On the other hand, the latter microchannel plate detector is constructed by uniformly tilting a large number of lead glass channel plates 11 coated with a thin oxide film and having an inner diameter of about 12 μm, as shown in FIG. 8 and 'MS9. It has a flat plate configuration in which channel plates 11°... are bundled in parallel. 12 is alumina, and 13 is a screw.

このマイクロチャンネルプレート検出器は、各チャンネ
ルプレート11.・・・がそれぞれ独立した2次電子増
倍機能を持っており、かつ、2次電子放出率を上げるた
めにプレート製作後に水素還元を行っている。
This microchannel plate detector includes each channel plate 11. Each has an independent secondary electron multiplication function, and hydrogen reduction is performed after plate production to increase the secondary electron emission rate.

このマイクロチャンネル検出器もセラトロン検出器と同
様な動作を行ってプレート内壁で放出された2次電子を
増倍しながら多数の電子を放出する。
This microchannel detector also operates in the same way as the Ceratron detector, emitting a large number of electrons while multiplying the secondary electrons emitted from the inner wall of the plate.

(発明を解決しようとする課題) しかしながら、以上のような検出器は、全体の構造が複
雑なうえ、検出性能を高めるために次のような問題があ
った。
(Problems to be Solved by the Invention) However, the above-mentioned detector has a complicated overall structure and has the following problems in order to improve detection performance.

■、マイクロチャンネルプレート検出器では、各チャン
ネルプレート11の内径が10μm程度であるので、製
作コストが高いばかりか、製作過程のバラツキが直接製
品のバラツキとなって現われるために歩留りが非常に悪
い。
(2) In the microchannel plate detector, since the inner diameter of each channel plate 11 is about 10 μm, not only is the production cost high, but also the yield is very poor because variations in the production process directly result in variations in the product.

■、また、各検出器の電子出射口とコレクタ6のギャッ
プは0.1mmを保持して平行に設定しなければならず
、その組立ておよび調整作業が長時間を必要とする。
(2) Furthermore, the gap between the electron exit port of each detector and the collector 6 must be maintained at 0.1 mm and set parallel to each other, which requires a long time to assemble and adjust.

■、また、アルミナ管3およびチャンネルプレー111
.・・・の内径が非常に細く空気が内部に溜っている場
合があるので、使用前にエージングを行う必要がある。
■ Also, alumina tube 3 and channel play 111
.. The inner diameter of ... may be very small and air may be trapped inside, so it is necessary to age it before use.

■、さらに、■と同様な理由から高真空領域例えば1O
−6to、lの環境には使用しにくい。
■, Furthermore, for the same reason as ■, high vacuum region, for example 1O
- Difficult to use in 6to, 1 environment.

本発明は以上のような問題点を改善するためになされた
もので、組立ておよび調整作業が容易であり、2次電子
の増倍機能を飛躍的に高めうる荷電粒子検出器を提供す
ることを目的とする。
The present invention has been made in order to improve the above-mentioned problems, and aims to provide a charged particle detector that is easy to assemble and adjust, and can dramatically improve the secondary electron multiplication function. purpose.

〔発明の構成] (課題を達成するための手段) 本発明は、2次電子放出材をコーティングした複数個の
ティパー状の電子増倍用チャンネル管を非平行で、かつ
、ティパーを有する様に束ねて構成1、た荷電粒子検出
器である。
[Structure of the Invention] (Means for Achieving the Object) The present invention includes a plurality of tipper-shaped electron multiplier channel tubes coated with a secondary electron emitting material so as to be non-parallel and have a tipper. The bundled configuration 1 is a charged particle detector.

(作用) 従って、本発明は以上のような手段とすることにより、
荷電粒子入射口から入射された荷電粒子は各チャンネル
管の内壁に衝突して2次電子を放出するが、それぞれの
チャンネル管は電子出射口に向かって絞られており、か
つ、複数のチャンネル管を束ねたものは非平行でティパ
ー状に構成されているので、電子出射口側に近付くにし
たがって電子の衝突回数が増加し、それに伴って放出電
子を指数的に増加させることができる。
(Function) Therefore, the present invention has the above-mentioned means.
Charged particles incident from the charged particle entrance collide with the inner wall of each channel tube and emit secondary electrons, but each channel tube is converged toward the electron exit hole, and multiple channel tubes Since the bundle is non-parallel and has a tipper-like structure, the number of electron collisions increases as it approaches the electron exit side, and the number of emitted electrons can be increased exponentially.

(実施例) 以下、本発明に係わる荷電粒子検出器の一実施例につい
て第1図および第2図を参照して説明する。これらの図
において21は荷電粒子入射口側の口径を大きく、かつ
、電子出射口側の口径を小さくした。いわゆるティパー
状に形成された断面円形状の電子増倍用チャンネル管で
あって、これは石英ガラス、アルミナあるいはセラミッ
ク等で形成され、その内表面には適宜な抵抗値を持つ2
次電子放出材料例えば酸化マグネシューム(MgO)等
がコーティングされている。ところで、電子増倍管は、
以上のような複数個の電子増倍用チャンネル管21.・
・・を非平行で、かつ、ティパー状を有する様に束ねて
構成され、しかも。
(Example) An example of a charged particle detector according to the present invention will be described below with reference to FIGS. 1 and 2. In these figures, 21 has a large aperture on the charged particle entrance side and a small aperture on the electron exit side. It is an electron multiplier channel tube with a circular cross section formed in a so-called tipper shape, and is made of quartz glass, alumina, ceramic, etc., and its inner surface has a 2-layer tube with an appropriate resistance value.
It is coated with a secondary electron emitting material such as magnesium oxide (MgO). By the way, the electron multiplier tube is
A plurality of electron multiplier channel tubes 21 as described above.・
It is composed of bundles of... in a non-parallel manner and has a tipper shape.

各チャンネル管21.・・・の荷電粒子入射面、電子出
射面は同一面位置に設定される。なお、実際の製作に当
たっては複数のチャンネル管21.・・・を非平行かつ
ティパー状に束ねて各端部を同一面となる様に切断すれ
ばよい。これら所定個数のチャンネル管21.・・・に
よって構成された電子増倍管の荷電粒子入射端側外周に
は多数のチャンネル管21、・・・を結束する如くリン
グ状の加速電極22が設けられ、また他端側外周には同
様に多数のチャンネル管21.・・・を結束する如くリ
ング状のバイアス電極23が設けられている。
Each channel tube 21. The charged particle incident surface and electron exit surface of ... are set at the same surface position. In addition, in actual manufacturing, a plurality of channel pipes 21. . . . are bundled non-parallelly in a tipper shape and cut so that each end becomes the same plane. A predetermined number of these channel pipes 21. A ring-shaped accelerating electrode 22 is provided on the outer periphery of the charged particle incident end side of the electron multiplier tube configured by . . . so as to bind a large number of channel tubes 21, . Similarly, a large number of channel pipes 21. A ring-shaped bias electrode 23 is provided to bind the...

そして、束ねられた後数個のチャンネル管21゜・・・
の荷電粒子入射口側は平板状絶縁ベース24の一端側に
立設された加速電極給電板25の円形孔部25aに挿入
されて固定され、一方、電子出射口側は支持部材26に
より前記荷電粒子入射口側よりも十分に低い位置に設置
され、あるいは絶縁ベース24上に直接設置される。こ
の支持部材26はバイアス電源の給電端子の機能も兼ね
備えている。27は電子増倍管の電子出射口から出射さ
れる電子を収集する金属性コレクタであって、電子出射
口から僅か離れた位置に対向配置されている。28は絶
縁ベース24に立設されてmlレクタ27を固定し、か
つ、コレクタ27からの信号取出端子29の機能を持つ
絶縁支柱である。
Then, after being bundled, several channel pipes 21°...
The charged particle entrance side is inserted and fixed into the circular hole 25a of the accelerating electrode power supply plate 25 erected on one end side of the flat insulating base 24, while the electron exit side is fixed by the supporting member 26. It is installed at a position sufficiently lower than the particle entrance side, or it is installed directly on the insulating base 24. This support member 26 also has the function of a power supply terminal for a bias power supply. A metallic collector 27 collects electrons emitted from the electron exit aperture of the electron multiplier tube, and is disposed opposite to the electron exit aperture at a position slightly away from the electron exit aperture. Reference numeral 28 denotes an insulating support post that is erected on the insulating base 24, fixes the ml collector 27, and has the function of a signal output terminal 29 from the collector 27.

そして、以上のような荷電粒子検出器において加速用電
極22とバイアス電極23間に例えば5000Vの加速
電源31が印加され、またバイアス電極23とコレクタ
17間に100〜150程度のバイアス電源32が印加
され、またコレクタ27はコンデンサ33を介してプリ
アンプ34に接続されている。図中、35は出力電子流
である。
In the above charged particle detector, an acceleration power source 31 of, for example, 5000 V is applied between the acceleration electrode 22 and the bias electrode 23, and a bias power source 32 of about 100 to 150 V is applied between the bias electrode 23 and the collector 17. The collector 27 is also connected to a preamplifier 34 via a capacitor 33. In the figure, 35 is the output electron flow.

次に、以上のように構成された機器の動作を説明する。Next, the operation of the device configured as above will be explained.

先ず、電極22−23間、電極23−コレクタ27間に
所定の電圧を印加した後、荷電粒子36が各チャンネル
管21の内壁に衝突する角度をもって電子増倍管の入射
口側へ入射する。ここで、各チャンネル管21内に入射
された荷電粒子36は管内壁に衝突して2次電子37を
放出するが、この放出された2次電子は加速用電Fi、
31の電位勾配によって加速され、かつ、入射荷電粒子
36の初速により決定される放物線軌跡を描きながら加
速進行し、常に反対側の内壁に衝突しながら2次電子の
放出を繰返す。
First, after applying a predetermined voltage between the electrodes 22 and 23 and between the electrode 23 and the collector 27, the charged particles 36 enter the entrance side of the electron multiplier tube at an angle at which they collide with the inner wall of each channel tube 21. Here, the charged particles 36 that have entered into each channel tube 21 collide with the inner wall of the tube and emit secondary electrons 37, but these emitted secondary electrons are
The charged particles 31 are accelerated by the potential gradient of the incident charged particles 31, and progress while drawing a parabolic trajectory determined by the initial velocity of the incident charged particles 36, and emit secondary electrons while constantly colliding with the inner wall on the opposite side.

しかして、本発明機器においては、各チャンネル管21
.・・・が電子出射口側に近ずく程その口径が小さくな
るようにティパー状に形成されているので、2次電子が
各チャンネル管21.・・・の内部に進行して行くにつ
れてその軌道距離が短くなり、それに伴って衝突回数が
指数的に増倍されていき、結果的には次の式で表すよう
な放出電子数が得られる。すなわち、従来のものはその
放出電子数がnm個となるが、本発明機器では(nll
)K個となり、従来のものに比較して放出電子数の増倍
の相乗効果が顕著に出てくる。なお、上式においてnは
入射荷電粒子数、1は衝突回数、kはティパー状係数(
k<1)である。
Therefore, in the device of the present invention, each channel pipe 21
.. . . are formed in a tipper shape so that the closer they get to the electron exit side, the smaller the diameter of the channel tubes 21 . As it progresses into the interior of ..., its orbital distance becomes shorter, and the number of collisions increases exponentially, resulting in the number of emitted electrons expressed by the following formula: . That is, in the conventional device, the number of emitted electrons is nm, but in the device of the present invention, it is (nlll
)K, and the synergistic effect of multiplying the number of emitted electrons is more pronounced than in the conventional case. In the above equation, n is the number of incident charged particles, 1 is the number of collisions, and k is the tipper coefficient (
k<1).

しかも、本機器は、各チャンネル管21.・・・をティ
パー状としただけでなく、電子増倍管全体としても非平
行、かつ、例えば粒子入射口側を高くし電子出射口側を
低くする。いわゆるティパー状に形成しているので、テ
ィパー状係数が大きくなり2次電子の衝突回数が益々増
加する。また、従来のように内径が小さく、かつ、均−
太さのものを必要とせず、粒子入射口側が電子出射口側
よりも大きくすればよいので、製作上のバラツキがそれ
程問題になることはなく歩留りの問題を解決できる。ま
た、電子出射口側は多数のチャンネル管21、・・・を
束ねても全体として小さいので、従来のマイクロチャン
ネルプレート検出器のように出射口全体とコレクタとの
ギャップを0.1+nm程度で平行にするものに比べて
、その組立て、調整作業が非常に容易である。さらに、
各チャンネル管21の荷電粒子入射口側の口径が大きい
ので、使用前のエージングが不必要であり、使用真空領
域も10”’tゆ1.以下と広くなる。
Moreover, this device has each channel tube 21. Not only are the electron multipliers tipper-shaped, but the electron multiplier tube as a whole is also non-parallel, and, for example, the particle entrance side is made higher and the electron exit side is made lower. Since it is formed in a so-called tipper shape, the tipper shape coefficient increases and the number of collisions of secondary electrons increases. In addition, the inner diameter is smaller and more uniform than before.
There is no need for a thicker one, and the particle entrance side only needs to be made larger than the electron exit side, so manufacturing variations do not become such a problem and the problem of yield can be solved. In addition, since the electron exit side is small as a whole even if a large number of channel tubes 21, etc. are bundled, the entire exit exit and the collector are parallel with a gap of about 0.1+nm, as in a conventional microchannel plate detector. It is very easy to assemble and adjust compared to other products. moreover,
Since the aperture of each channel tube 21 on the side of the charged particle entrance is large, aging before use is unnecessary, and the usable vacuum area is as wide as 10"'t or less.

なお、本発明は上記実施例に限定されるものではない、
すなわち、第1図のものは断面円形状のチャンネル管2
1を用い、かつ、電子増倍管全体の断面も円形としたが
、例えば第3図および第4図に示すように断面長方形ま
たは断面正四角形の各チャンネル管21a、・・・を弓
状に成形し、これらを多数重ね合せた多層構造の四角錐
の形態のものを用いてもよい。また、電子増倍管として
は、第5図(a)のように三角形型、同図(b)のよう
な半球型あるいは同図(C)のような多角形型のものを
用いてもよい。これら第3図、第5図のものは、第1図
のものと同様に全体として非平行、かつ、ティパー状に
形成されていることは言うまでもない。その他、本発明
はその要旨を逸脱しない範囲で種々変形して実施できる
Note that the present invention is not limited to the above embodiments.
That is, the one in FIG. 1 has a channel pipe 2 with a circular cross section.
1 was used, and the cross section of the entire electron multiplier tube was also circular. However, as shown in FIGS. 3 and 4, for example, each channel tube 21a, . It is also possible to use a quadrangular pyramid-like structure having a multilayer structure in which a large number of them are formed and stacked one on top of the other. Further, as the electron multiplier tube, a triangular type as shown in Fig. 5(a), a hemispherical type as shown in Fig. 5(b), or a polygonal type as shown in Fig. 5(C) may be used. . It goes without saying that the structures shown in FIGS. 3 and 5 are non-parallel and tipper-shaped as a whole, similar to the structure shown in FIG. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果〕 以上詳記したように本発明によれば、ティパー状の多数
のチャンネル管を非平行、かつ、ティパー状になるよう
に束ねたことにより、組立て調整作業が容易であり、2
次電子の衝突回数が多くなって従来のものに比べて放出
電子数を格段に増倍でき、また使用真空領域を拡大でき
る荷電粒子検出器を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, by bundling a large number of tipper-shaped channel pipes in a non-parallel and tipper-shaped manner, assembly and adjustment work is easy;
It is possible to provide a charged particle detector that can greatly increase the number of emitted electrons by increasing the number of collisions of secondary electrons, and can greatly increase the number of emitted electrons compared to conventional ones, and can also expand the usable vacuum region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図およば第2図は本発明に係わる荷電粒子検出器の
一実施例を説明するために示したもので、第1図は一部
切り欠いて示す外観斜視図、第2図は電圧印加状態およ
び2次電子放出状態を示す図、第3図および第4図は本
発明機器の他の実施例であって、第3図は外観斜視図、
第4図はそ21・・・チャンネル管、22・・・加速電
極、23・・・バイアス電極、25・・・加速電極給電
板、26・・・給電端子、27・・・コレクタ、28・
・・絶縁支柱、31・・・加速用電源、32・・・バイ
アス電源、35・・・出力電子流、36・・・荷電粒子
、37・・・2次電子。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図   第4図 第5図 (a) (b) 第6図 第8図
Figures 1 and 2 are shown to explain one embodiment of a charged particle detector according to the present invention. Figure 1 is a partially cutaway external perspective view, and Figure 2 is a diagram showing a state in which a voltage is applied. 3 and 4 show other embodiments of the device of the present invention, and FIG. 3 is an external perspective view,
Fig. 4 shows 21... Channel tube, 22... Accelerating electrode, 23... Bias electrode, 25... Accelerating electrode power supply plate, 26... Power supply terminal, 27... Collector, 28...
...Insulating pillar, 31...Acceleration power source, 32...Bias power source, 35...Output electron flow, 36...Charged particle, 37...Secondary electron. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 (a) (b) Figure 6 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 2次電子放出材をコーティングした複数個のティパー状
の電子増倍用チャンネル管を非平行で、かつ、ティパー
を有する様に束ねて構成したことを特徴とする荷電粒子
検出器。
A charged particle detector characterized in that a plurality of tipper-shaped electron multiplier channel tubes coated with a secondary electron emitting material are bundled in a non-parallel manner so as to have a tipper.
JP6347488A 1988-03-18 1988-03-18 Charged particle detector Pending JPH01239749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6347488A JPH01239749A (en) 1988-03-18 1988-03-18 Charged particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6347488A JPH01239749A (en) 1988-03-18 1988-03-18 Charged particle detector

Publications (1)

Publication Number Publication Date
JPH01239749A true JPH01239749A (en) 1989-09-25

Family

ID=13230266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6347488A Pending JPH01239749A (en) 1988-03-18 1988-03-18 Charged particle detector

Country Status (1)

Country Link
JP (1) JPH01239749A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520798A (en) * 1998-07-16 2002-07-09 パーキンエルマー オプトエレクトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Photodetector and manufacturing method thereof
WO2004049382A3 (en) * 2002-11-26 2004-10-07 Itt Mfg Enterprises Inc Microchannel plate having microchannels with deep funneled and/or step funneled openings and method of manufacturing same
JP2007234595A (en) * 2006-02-27 2007-09-13 Itt Mfg Enterp Inc Tandem continuous channel electron multiplier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520798A (en) * 1998-07-16 2002-07-09 パーキンエルマー オプトエレクトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Photodetector and manufacturing method thereof
WO2004049382A3 (en) * 2002-11-26 2004-10-07 Itt Mfg Enterprises Inc Microchannel plate having microchannels with deep funneled and/or step funneled openings and method of manufacturing same
US6876802B2 (en) 2002-11-26 2005-04-05 Itt Manufacturing Enterprises, Inc. Microchannel plate having microchannels with deep funneled and/or step funneled openings and method of manufacturing same
JP2007234595A (en) * 2006-02-27 2007-09-13 Itt Mfg Enterp Inc Tandem continuous channel electron multiplier

Similar Documents

Publication Publication Date Title
US7141785B2 (en) Ion detector
US8319175B2 (en) Nano-tips based gas ionization chamber for neutron detection
US3374380A (en) Apparatus for suppression of ion feedback in electron multipliers
WO2012142859A1 (en) Neutron detector coated with boron and method for manufacture thereof
US6198105B1 (en) Miniature ionization gauge utilizing multiple ion collectors
JPH02177244A (en) Electronic multiplier
US6906318B2 (en) Ion detector
WO2004113890A1 (en) Time resolution measurement device and position detection electron multiplier
US3976905A (en) Channel electron multipliers
JPH01239749A (en) Charged particle detector
US3240931A (en) Spatial discriminator for particle beams
KR102036259B1 (en) Ion guide for mass spectrometer and ion source using the same
US3946227A (en) Mass spectrographs and ion collector systems therefor
US20110006206A1 (en) Neutron Detection
US10121642B2 (en) Digital electron amplifier with anode readout devices and methods of fabrication
Fowler et al. Composite charged particle detectors with logarithmic energy response for large dynamic range energy measurements
JP2017027939A (en) Miniature quadrupole arrays using electron multiplication detectors
CA2457522C (en) Ion detector
US4006376A (en) Phototube having improved electron collection efficiency
US6642637B1 (en) Parallel plate electron multiplier
JPH0676786A (en) Particle detector
JPS6196645A (en) Multichannel-type detector
Wollnik et al. Time-of-flight mass spectrometers
JPS6245423Y2 (en)
Mcgee et al. An electron image multiplier