JPH01239436A - Detection of generation position of in-pipe cavitation - Google Patents

Detection of generation position of in-pipe cavitation

Info

Publication number
JPH01239436A
JPH01239436A JP6482088A JP6482088A JPH01239436A JP H01239436 A JPH01239436 A JP H01239436A JP 6482088 A JP6482088 A JP 6482088A JP 6482088 A JP6482088 A JP 6482088A JP H01239436 A JPH01239436 A JP H01239436A
Authority
JP
Japan
Prior art keywords
cavitation
pipe
tube
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6482088A
Other languages
Japanese (ja)
Inventor
Toshio Koshihara
腰原 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6482088A priority Critical patent/JPH01239436A/en
Priority to US07/229,835 priority patent/US4886370A/en
Priority to EP88113014A priority patent/EP0307619B1/en
Priority to DE8888113014T priority patent/DE3878514T2/en
Priority to CA000574347A priority patent/CA1294018C/en
Publication of JPH01239436A publication Critical patent/JPH01239436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and surely detect the generation position of cavitation from a temp. change on an IR image by heating or cooling a pipe in which liquid flows from the outside surface to apply a temp. change thereto and photographing the outside surface by an IR camera. CONSTITUTION:The point to detect the cavitation of the pipe 1 is heated by a heater 5 consisting of a reflecting plate 3 and an IR heater 4. The heat capacity of the part where the cavitation arises decreases and the quantity of the heat deprived of the pipe wall decreases and, therefore, the temp. of the pipe wall in said part rises, thus generating a temp. difference from the pipe wall of the part where the cavitation does not arise. The outside surface of the pipe wall is, thereupon, photographed by the camera and the generation of the cavitation is detected from the temp. change on the IR image. This effect is obtd. as well by cooling the pipe wall. The generation position of the cavitation is thereby easily and surely detected.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、管内キャビテーションの発生位置検出方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting the position of occurrence of cavitation in a pipe.

〔従来の技術] 管の断面積が狭まるところでは、管内を流れる流体は加
速されて圧力低下をもたらされるので、流体中に吸収さ
れていた空気やガスが放散され、流体中に気泡(キャビ
ティ)を生ずるキャビテーションが発生する。管の断面
積が拡がり流れが回復すると、流体は減速されて圧力が
上昇するので、キャビティが崩壊する。その際、激しい
振動および騒音を生ずる。
[Prior Art] Where the cross-sectional area of a pipe is narrowed, the fluid flowing inside the pipe is accelerated and the pressure is reduced, so air and gas absorbed in the fluid are dissipated, creating air bubbles (cavities) in the fluid. cavitation occurs. When the cross-sectional area of the tube expands and flow resumes, the fluid is decelerated and the pressure increases, causing the cavity to collapse. At that time, severe vibrations and noise are generated.

従来、このようなキャビテーションを実験室レベルで管
内に人工的に発生させ、それを検出する技術はあったが
、設備中の管内に実際に発生しているキャビテーション
の検出については、適当な方法がなかった。
Conventionally, there has been technology to artificially generate and detect cavitation in pipes at the laboratory level, but there is no suitable method for detecting cavitation actually occurring in pipes in equipment. There wasn't.

最近、キャビテーションが発生する特有な騒音を捕える
方法が公表されており(廣津萬里著「水流工学」実数出
版、364頁以下 )、これによれば設備中の管内に発
生しているキャビテーションを検出することが可能とな
る。
Recently, a method has been published to detect the characteristic noise generated by cavitation (Manri Hirotsu, "Water Current Engineering", Jitsugaku Publishing, pp. 364 and below), and according to this method, it is possible to detect cavitation occurring in pipes in equipment. becomes possible.

上記方法は、実験室レベルでの研究成果として報告され
ているもので、水槽中で攪拌捧をモータ駆動により高速
回転してキャビテーションを発生させ、その気泡が崩壊
するときに発生する超音波を水中ホーンで捕捉して、信
号発生装置により制御された可変周波数受信器に受信さ
せ、その受信された超音波の音圧レベルをボルトメータ
で測定することからなっている。これによれば、設備中
の管に適用して、実際に発生しているキャビテーション
を検出することが可能となる。
The above method has been reported as a research result at the laboratory level, in which a stirrer is rotated at high speed by a motor in a water tank to generate cavitation, and the ultrasonic waves generated when the bubbles collapse are transmitted into the water. The ultrasonic wave is captured by a horn, received by a variable frequency receiver controlled by a signal generator, and the sound pressure level of the received ultrasonic wave is measured by a voltmeter. According to this, it becomes possible to detect cavitation actually occurring by applying it to pipes in equipment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記方法は次のような問題点がある。 However, the above method has the following problems.

(1)  検出装置が複雑であり、結果の判断も難しい
(1) The detection device is complicated and the results are difficult to judge.

(2) キャビテーション発生の有無と大体の発生位置
は判るものの、キャビテーションの分布形状までは判ら
ない。
(2) Although it is possible to determine whether cavitation has occurred and its approximate location, the distribution shape of cavitation cannot be determined.

(3)  管の2箇所以上でキャビテーションが発生し
ているような場合には、それらの発生位置の検出が難し
く、多数の水中ホーンが必要となり、それだけ装置も複
雑となり、結果の判断も難しくなる。
(3) When cavitation occurs at two or more locations in a pipe, it is difficult to detect the locations where cavitation occurs, and a large number of underwater horns are required, making the equipment more complex and making it difficult to judge the results. .

(4)  管内に水中ホーンを設置する必要があるため
、流れを阻害し、二次的障害のちととなる虞れもある。
(4) It is necessary to install an underwater horn inside the pipe, which may obstruct the flow and cause secondary problems.

従って、この発明の目的は、上述の現状に鑑み、実験室
レベルで管内に人工的に発生させたキャビテーションに
ついてはもとより、設備中の管内に実際に発生している
キャビテーシヨンについても、その発生位置を管の外部
から容易且つ確実に検出することができる、管内キャビ
テーションの発生位置検出方法を提供することにある。
Therefore, in view of the above-mentioned current situation, the purpose of this invention is to investigate the location of not only cavitation that is artificially generated in pipes at the laboratory level, but also cavitation that actually occurs in pipes in equipment. An object of the present invention is to provide a method for detecting the position of occurrence of cavitation in a pipe, which can be easily and reliably detected from the outside of the pipe.

〔課題を解決するための手段] この発明の検出方法は、液体が流れている管に、その外
面から加熱または冷却により温度変化を付与して、前記
外面を赤外線カメラで撮影し、かくして、前記管内に発
生したキャビテーションの発生位置を、前記外面の赤外
線画像上の温度変化位置として検出することに特徴を有
するものである。
[Means for Solving the Problems] The detection method of the present invention applies a temperature change to a tube through which a liquid is flowing by heating or cooling it from its outer surface, and photographs the outer surface with an infrared camera. The present invention is characterized in that the position of cavitation occurring within the tube is detected as a temperature change position on the infrared image of the outer surface.

以下、この発明の検出方法について詳述する。The detection method of the present invention will be described in detail below.

第1図は、この発明の検出方法の一実施態様を示す説明
図である。
FIG. 1 is an explanatory diagram showing one embodiment of the detection method of the present invention.

第1図において、1は管内キャビテーションの発生位置
の検出対象とした管で、管1は例えばペンチエリ−管と
同様な断面形状を有している。液体は管1内を矢印で示
す如く、左方から右方へ流れている。
In FIG. 1, reference numeral 1 denotes a tube whose position of occurrence of intra-tube cavitation is to be detected, and the tube 1 has a cross-sectional shape similar to, for example, a Pentieri tube. The liquid flows inside the tube 1 from the left to the right as shown by the arrow.

この発明では、先ず、管1のキャビテーションを検出し
ようとする箇所、例えばその狭小断面ののど部周辺を、
外面から加熱して、これに温度上昇を与える。
In this invention, first, the area of the tube 1 where cavitation is to be detected, for example, around the throat of the narrow cross section, is detected.
Heat from the outside to give it a temperature rise.

なお、検出しようとする箇所には温度変化を与えればよ
く、外面から冷却して、これに温度降下を与えてもよい
。これらの温度変化は急激に与えることが好ましく、こ
の意味から、管1が低温配管などの場合には加熱するこ
とが、管1が高温配管などの場合には冷却することが効
果的である。
Note that it is only necessary to apply a temperature change to the location to be detected, and the temperature may be lowered by cooling the location from the outside. It is preferable to make these temperature changes rapidly, and from this point of view, it is effective to heat the pipe 1 when it is a low-temperature pipe, and to cool it when the pipe 1 is a high-temperature pipe.

加熱方法、冷却方法はいずれでも可能である。この例で
は、断面「<」の字状の反射板3内に赤外線ヒーター4
を収容してなる加熱器5を用いて、管1を加熱している
Any heating method or cooling method is possible. In this example, an infrared heater 4 is placed inside the reflector 3 whose cross section is shaped like the character "<".
The tube 1 is heated using a heater 5 containing a.

このとき、管1内にキャビテーション2が発生している
と、その発生している部分の液体は、気泡が混在してい
るために、気泡が混在していない液体そのものよりも、
熱容量が小さくなっており、加熱時の管壁からの熱の奪
い方が液体そのものよりも小さい。このため、加熱によ
り温度上昇を付与した際に、キャビテーション2が発生
している部分の液体と接触する管壁部分は、キャビテー
ション2が発生していない部分の液体と接触する管壁部
分よりも、温度上昇の程度が大きく、前者の管壁部分の
外面は後者の管壁部分の外面よりも高い温度を示し、温
度差が付く、逆に、冷却により温度降下を付与した場合
には、キャビテーション2が発生している部分の液体と
接触する管壁部分の外面は、キャビテーション2が発生
していない部分の液体と接触する管壁部分の外面よりも
低い温度を示し、高低が逆であるが同様に温度差が付く
。従って、それらの状態下で管1の外面を赤外線カメラ
6で撮影すれば、キャビテーション2の発生位置を表示
した、当該外面の赤外線画像が得られる。
At this time, if cavitation 2 occurs in the tube 1, the liquid in the part where it occurs is mixed with air bubbles, so it is worse than the liquid itself without air bubbles.
It has a small heat capacity, and the amount of heat absorbed from the tube wall during heating is smaller than from the liquid itself. Therefore, when a temperature increase is applied by heating, the portion of the tube wall that comes into contact with the liquid where cavitation 2 has occurred is lower than the portion of the tube wall that comes into contact with the liquid where cavitation 2 has not occurred. The degree of temperature rise is large, and the outer surface of the former tube wall section exhibits a higher temperature than the outer surface of the latter tube wall section, creating a temperature difference.On the other hand, if a temperature drop is applied by cooling, cavitation 2 The outer surface of the tube wall that comes into contact with the liquid in the area where cavitation 2 is occurring exhibits a lower temperature than the outer surface of the tube wall that comes into contact with the liquid in the area where cavitation 2 does not occur, and the temperature is similar although the height is reversed. There is a temperature difference. Therefore, if the outer surface of the tube 1 is photographed with the infrared camera 6 under these conditions, an infrared image of the outer surface showing the position where cavitation 2 has occurred can be obtained.

そこで、管1を外面から加熱して温度上昇を付与した後
、加熱を停止しまたはそのまま加熱を継続しながら、そ
の外面を赤外線カメラ6により撮影し、モニタ−テレビ
7上等に外面の赤外線画像を得る。
Therefore, after heating the tube 1 from the outside to give it a temperature rise, the outside surface is photographed by an infrared camera 6 while the heating is stopped or continued as it is, and an infrared image of the outside surface is displayed on a monitor, television 7, etc. get.

このとき得られる赤外線画像の一例を第2図に模式的に
示す。第2図において、8はモニター画面、9は管1の
外面の赤外線画像で、外面の赤外線画像9は、最も高い
表示温度t、の色で表示された画像部分9a、その外側
のLx<Lsなる表示温度L2の色で表示された画像部
分9b、その外側の1.<12なる表示温度り、の色で
表示された画像部分9c、その外側の1.<1.なる最
も低い表示温度L0の色で表示された残余の画像部分9
dからなっている。
An example of an infrared image obtained at this time is schematically shown in FIG. In FIG. 2, 8 is a monitor screen, and 9 is an infrared image of the outer surface of the tube 1. The image portion 9b is displayed in the color of the display temperature L2, and the outside portion 1. When the display temperature is <12, the image portion 9c is displayed in the color 1. <1. The remaining image portion 9 displayed in the color of the lowest display temperature L0
It consists of d.

これから、キャビテーション2は画像部分9a〜9cに
亘る範囲の位置で発生しており、そして、その発生程度
は画像部分9aの位置で最も強く、その外側に行くにつ
れて、弱くなって行き、画像部分9cの位置で最も弱く
なっていることが判る。
From this, it can be seen that cavitation 2 occurs in a range of positions ranging from image portions 9a to 9c, and the degree of occurrence is strongest at the position of image portion 9a, and becomes weaker as it goes outside of the image portion 9c. It can be seen that it is the weakest at the position.

なお、前記の画像9が示す表示温度の高低差CtsとL
oの差)およびその表示温度範囲(t。
In addition, the height difference Cts and L of the display temperature shown in the above-mentioned image 9
o) and its indicated temperature range (t.

〜ti)内における表示温度の刻み数(この例では、t
O+  tl +  L t +  ’ 3の4つ)な
どは、管1の加熱時間、加熱方法、管1の仕様、キャビ
テーション2の発生状況、赤外線カメラ6の性能と温度
設定の決め方などによって、決められる。
The number of increments of the displayed temperature within ~ti) (in this example, t
O + tl + L t + ' 3) etc. are determined by the heating time of the tube 1, the heating method, the specifications of the tube 1, the occurrence of cavitation 2, the performance of the infrared camera 6 and how to determine the temperature setting, etc. .

管1を外面から冷却した場合には、第2図に示した赤外
線画像において表示温度の高低を逆にしたような赤外線
画像が得られる。
When the tube 1 is cooled from the outside, an infrared image similar to the infrared image shown in FIG. 2 with the displayed temperature reversed is obtained.

なお、管1の冷却は、LNG等の液化低温ガスやフロン
ガス、あるいはアルコール、アセトン等を管1の外面に
吹き付けることにより、効率良く行なうことができる。
Note that the tube 1 can be efficiently cooled by spraying a liquefied low-temperature gas such as LNG, fluorocarbon gas, alcohol, acetone, or the like onto the outer surface of the tube 1.

〔発明の効果〕〔Effect of the invention〕

この発明の検出方法は以上のように構成されるので、次
のような優れた効果を有する。
Since the detection method of the present invention is configured as described above, it has the following excellent effects.

(1)  管内に発生しているキャビテーションの発生
位置を、管の外部から非接触で容易且つ確実に検出する
ことができる。
(1) The position of cavitation occurring inside the pipe can be easily and reliably detected from outside the pipe without contact.

(2)  検出結果が赤外線画像上の温度変化位置とい
う2次元の情報で表示されるので、結果が判り易い。
(2) Since the detection results are displayed as two-dimensional information of the temperature change position on the infrared image, the results are easy to understand.

(3)  キャビテーションの分布形状まで判る。(3) Even the distribution shape of cavitation can be seen.

(4)  管の2箇所以上でキャビテーションが発生し
ていても、それらの発生位置を容易に検出できる。
(4) Even if cavitation occurs at two or more locations in the pipe, the locations where cavitation occurs can be easily detected.

(5)  管外部からの検出なので、管内の流、れを阻
害することがなく、二次的障害のちととなる虞れがない
(5) Since it is detected from outside the pipe, it does not obstruct the flow inside the pipe and there is no risk of secondary damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の検出方法の一実施態様を示す説明
図、第2図は、第1図の検出方法でキャビテーションの
発生位置を検出した赤外線画像の一例を模式的に示す図
である。図面において、1・・・管、       2
・・・キャビテーション、5・・・加熱器、    6
・・・赤外線カメラ、7・・・モニターテレビ、8・・
・モニター画面、9・・・管外面の赤外線画像、 9a、9b、9c、9d・=画像部分。
FIG. 1 is an explanatory diagram showing one embodiment of the detection method of the present invention, and FIG. 2 is a diagram schematically showing an example of an infrared image in which cavitation occurrence positions are detected by the detection method of FIG. 1. . In the drawings, 1... pipe, 2
... Cavitation, 5... Heater, 6
...Infrared camera, 7...Monitor TV, 8...
・Monitor screen, 9... Infrared image of tube outer surface, 9a, 9b, 9c, 9d=image part.

Claims (1)

【特許請求の範囲】[Claims] 液体が流れている管に、その外面から加熱または冷却に
より温度変化を付与して、前記外面を赤外線カメラで撮
影し、かくして、前記管内に発生したキャビテーション
の発生位置を、前記外面の赤外線画像上の温度変化位置
として検出することを特徴とする、管内キャビテーショ
ンの発生位置検出方法。
A temperature change is applied to the tube through which the liquid is flowing by heating or cooling from its outer surface, and the outer surface is photographed with an infrared camera, and the position of cavitation that has occurred inside the tube is thus detected on the infrared image of the outer surface. A method for detecting the position of occurrence of cavitation in a pipe, characterized by detecting the position of temperature change.
JP6482088A 1987-08-25 1988-03-18 Detection of generation position of in-pipe cavitation Pending JPH01239436A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6482088A JPH01239436A (en) 1988-03-18 1988-03-18 Detection of generation position of in-pipe cavitation
US07/229,835 US4886370A (en) 1987-08-25 1988-08-08 Method for detecting a state of substance existing in pipe
EP88113014A EP0307619B1 (en) 1987-08-25 1988-08-10 Method for detecting a state of substance existing in pipe
DE8888113014T DE3878514T2 (en) 1987-08-25 1988-08-10 METHOD FOR DETERMINING THE STATE OF A SUBSTANCE IN A TUBE.
CA000574347A CA1294018C (en) 1987-08-25 1988-08-10 Method for detecting a state of substance existing in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6482088A JPH01239436A (en) 1988-03-18 1988-03-18 Detection of generation position of in-pipe cavitation

Publications (1)

Publication Number Publication Date
JPH01239436A true JPH01239436A (en) 1989-09-25

Family

ID=13269271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6482088A Pending JPH01239436A (en) 1987-08-25 1988-03-18 Detection of generation position of in-pipe cavitation

Country Status (1)

Country Link
JP (1) JPH01239436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112687A (en) * 2020-01-16 2021-08-05 Jfeエンジニアリング株式会社 Method for estimating sediment accumulation in methane fermentation tank

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153554A (en) * 1984-08-23 1986-03-17 Dainippon Printing Co Ltd Detection of bubbles in paper container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153554A (en) * 1984-08-23 1986-03-17 Dainippon Printing Co Ltd Detection of bubbles in paper container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112687A (en) * 2020-01-16 2021-08-05 Jfeエンジニアリング株式会社 Method for estimating sediment accumulation in methane fermentation tank

Similar Documents

Publication Publication Date Title
US4886370A (en) Method for detecting a state of substance existing in pipe
JPH08226989A (en) Device and method for detecting abnormality in volume to be monitored and method for preventing damage caused by abnormality
US4491008A (en) Method of ultrasonic measurement of the ratio of the volume of gas present in an enclosure containing a liquid-gas mixture to the total volume of the enclosure
JPH01239436A (en) Detection of generation position of in-pipe cavitation
CN100405057C (en) Quantitative nondestructive evaluation method for cracking
Floch et al. Self-defocusing in ultrasonic hyperthermia: Experiment and simulation
Zhang et al. A 3D leakage monitoring method for pressure vessel based on region segmentation and time difference estimation
Znamenskaya et al. Time-resolved thermography of impinging water jet
Hilo et al. Study of an air bubble curtain along a wall in water and radiated noise mitigation
Matsuda et al. Buildup of acoustic streaming in focused beams
Richardson Influence of sound upon local heat transfer from a cylinder
Vrebalovich Resonance tubes in a supersonic flow field
JP2003042886A (en) Leak detecting method and leak measuring apparatus
Bolpaire et al. Experimental study of the flow in the suction pipe of a centrifugal impeller: steady conditions compared with fast start-up
Kawachi et al. Prototype of an echo-PIV method for use in underwater nuclear decommissioning inspections
Thungthong et al. Heat transfer enhancement in laminar water flow through a square channel by streamwise ultrasound irradiation
Ammerman et al. Consecutive-photo method to measure vapor volume flow rate during boiling from a wire immersed in saturated liquid
JPH0663990B2 (en) Foreign matter detection method on the inner surface of piping
KR102644672B1 (en) Method And Apparatus for Sensing Leakage Coolant
Choi et al. Gas jet as a waveguide for air-coupled ultrasound
JP2001021440A (en) Method and apparatus for sensing liquid leakage and cooler
JPH07306114A (en) Acoustic-type leakage detecting method and apparatus
Li et al. Experimental investigation of the secondary flow in a rotating smooth channel subjected to thermal boundary conditions
SU1652851A1 (en) Cavitation tunnel
Burleigh Thermographic NDT of graphite epoxy filament-wound structures