JPH01239399A - Deceptive target - Google Patents

Deceptive target

Info

Publication number
JPH01239399A
JPH01239399A JP63067921A JP6792188A JPH01239399A JP H01239399 A JPH01239399 A JP H01239399A JP 63067921 A JP63067921 A JP 63067921A JP 6792188 A JP6792188 A JP 6792188A JP H01239399 A JPH01239399 A JP H01239399A
Authority
JP
Japan
Prior art keywords
semi
spherical
target
heat source
spherical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63067921A
Other languages
Japanese (ja)
Inventor
Hiromi Jitsumatsu
実松 博己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63067921A priority Critical patent/JPH01239399A/en
Publication of JPH01239399A publication Critical patent/JPH01239399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To permit an infrared rays tracking system missile to track a spherical dummy heat source as a deceptive target, by a method wherein a multitude of small sized dummy heat sources, having a semi-spherical configuration, is arranged along the surface of a sphere to emit infrared rays from semi-spherical section of the semi-sphere. CONSTITUTION:A semi-spherical body 40-1 has the highest refractive index 2<1/2> in a semi-spherical Luneberg lens 31 and is a ceramics semi-spherical body with a radius (r1) while the outermost periphery hollow semi-spherical body 40-n is provided with the radius (nr1) and a refractive index 1. The semi- spherical body has a point heat source 43. The hollow semi-spherical bodies 40-1, 40-5,... 40-(n-1), 40-n, having a thickness (r1) and different refractive indexes, are superposed toward the outward direction of the semi-spherical body in such a manner. According to this constitution, the radiating energy of the point heat source 43 will never become parallel rays and is radiated with a spreading angle like as radial rays 46. A decoy target 21, in which a multitude of Luneberg lenses 31 are arranged along the surface of the spherical body, is towed by a wire 2, connected to a fuselage 1, to protect the fuselage and the like from the missile of infrared ray tracking system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は機体等を赤外線追尾機能を有するミサイルか
ら防護するための欺満目標に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a deceptive target for protecting an aircraft etc. from missiles having an infrared tracking function.

〔従来の技術〕[Conventional technology]

従来、同様の目的のために開発された追尾妨害方法とし
て機体等の赤外線放射を最小限にするためにセラミック
粒子を用いた塗料を機体全面に塗布する方法7エンジン
排気への低音空気の混合により熱放射を低減する方法、
熱片粒や高温物体を欺満目標として機外へ放出する方法
、および目標の熱放射に対し、これをレチクルにてチョ
ッピングする方法により、レチクル中心に対する目標位
置を検出し、追尾誤差信号を得るごとき方式のミサイル
に対しては、上記チョッピング周波数付近にて変調をか
けた欺満的赤外線放射を行なう赤外線放射器を備える方
法などが存在している。
Previously, as a tracking and interfering method developed for the same purpose, in order to minimize infrared radiation from the aircraft body, etc., paint using ceramic particles is applied to the entire surface of the aircraft body. 7. By mixing low-frequency air into the engine exhaust. how to reduce heat radiation,
The target position relative to the center of the reticle is detected and a tracking error signal is obtained by ejecting hot particles or high-temperature objects as deceptive targets to the outside of the machine, and by chopping the target's thermal radiation with a reticle. For missiles of this type, there are methods that include an infrared radiator that emits deceptive infrared radiation modulated around the above-mentioned chopping frequency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の方法によれば2機体等のミサイルに対する防護性
は戦闘状況、妨害装置1作動のタイミング。
According to the above method, protection against missiles such as two aircraft is determined by the combat situation and the timing of the activation of the jamming device 1.

および機体の姿勢に左右される場合が多く、高いとは言
い堆い現状である。さら【変調方式をとる赤外線放射器
の場合は、受動方式をとる相手方ミサイルのうち、レチ
クルを有するミサイルに対してのみ、有効であシ、レチ
クルを有さない方式のミサイル、すなわち、赤外線画像
処理により目標の熱画像を追尾する完全受動方式ミサイ
ルに対しては無効である。換言すれば赤外線画像処理方
式のミサイルから機体を防護する決め手は今の所。
In many cases, it depends on the attitude of the aircraft and the attitude of the aircraft, so it is difficult to say that it is high at present. Furthermore, in the case of an infrared radiator that uses a modulation method, it is effective only against missiles that have a reticle among the opposing missiles that use a passive method; It is ineffective against completely passive missiles that track the target's thermal image. In other words, the key to protecting the aircraft from infrared image processing missiles is currently in place.

存在していない。Doesn't exist.

この発明はかかる課題を解決するためになされたもので
あり、妨害装置作動のタイミング、機体姿勢および赤外
線利用の相手方ミサイルがとる押押方式による制限を受
けない欺満目標を得ることを目的とする。
This invention was made to solve this problem, and aims to obtain a deceptive target that is not limited by the timing of jamming device activation, the aircraft attitude, or the pushing method used by the opponent's missile using infrared rays. .

〔課融を解決するための手段〕[Means for resolving billing issues]

この発明に係る欺満目標は前述した赤外線追尾方式のミ
サイルから2機体等を防護するために機体とは熱放射的
に形状が類似し、その赤外線放射強度が機体を数倍上ま
わる欺満目標を機体後部から放出し、約200 nt程
度の係留ワイヤを介して擬似熱源を曳航しつつ、飛行し
ようとするものである。
The deceptive target according to this invention is a deceptive target whose shape is similar to the aircraft in terms of thermal radiation and whose infrared radiation intensity is several times higher than that of the aircraft in order to protect two aircraft etc. from the above-mentioned infrared tracking missile. The aircraft attempts to fly while towing a pseudo heat source via a mooring wire of approximately 200 nt.

〔作用〕[Effect]

この発明は飛行中の機体から擬似熱源を放出し。 This invention emits a pseudo heat source from the aircraft during flight.

約200mの係留ワイヤを介してこの擬似熱源を曳航す
るものである。この慶似熱源は全体がほぼ球体形状を取
っており、この球体の表面に沿って。
This pseudo heat source is towed via a mooring wire of about 200 m. This Keiji heat source has an almost spherical shape as a whole, and along the surface of this sphere.

半球体形状を有する小型の擬似熱源を多数配置している
。この小型の擬似熱源はそれぞれ機体から係留ワイヤを
介して、半球体の一点に”1力を供給することによる点
熱源を有しており、半球体の半球断面から外部へ赤外線
を放出する。上記のごとき方法によって赤外線追尾方式
のミサイルに球体形状の擬似熱源を欺満目標として追尾
させようとするものである。
A large number of small pseudo heat sources with a hemispherical shape are arranged. Each of these small-sized pseudo heat sources has a point heat source by supplying "one force" from the aircraft body to one point of the hemisphere via a mooring wire, and emits infrared rays to the outside from the hemispherical cross section of the hemisphere. This method attempts to make an infrared tracking missile track a spherical pseudo heat source as a deceptive target.

運用的には機体側にて、自機に向かうミサイルを早期に
検知しく目標検知装置などの別の手段による)、その脅
威判定によシ欺満目標を放出する。
Operationally, the aircraft side detects missiles heading towards the aircraft at an early stage (using other means such as target detection equipment), and releases a target based on the threat assessment.

約200mの離隔距離は、想定される赤外線応用ミサイ
ルの射程内で、ミサイルのもつ視野と目標−背景間の温
度分解能を見定め、決定されるもので。
The separation distance of approximately 200 meters was determined by determining the missile's field of view and the temperature resolution between the target and the background, within the expected range of the infrared missile.

もちろん1機体防護を第一にするが、飛行中も可変であ
る。
Of course, the priority is to protect one aircraft, but this can also be changed during flight.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図を用いて説明する。 An embodiment of the present invention will be described below with reference to FIG.

図中、(1)は機体、(2)は欺満目標Qυと機体とを
連結する係留ワイヤであり、内部に給電用電力線を有す
る。Gυは半球型ルーネベルグレンズであり、前記電力
線からエネルギーを受け、外部に熱放射するもので球形
状の表面に多数配置され。
In the figure, (1) is the aircraft body, and (2) is a mooring wire that connects the deception target Qυ and the aircraft body, and has a power supply line inside. Gυ is a hemispherical Luneberg lens that receives energy from the power line and radiates heat to the outside, and is arranged in large numbers on a spherical surface.

全体として欺満目標Qυを形成している。欺満目標Qυ
の熱放射エネルギーは機体(1)を上回り、かつ熱放射
形状が機体(1)に相似するように、半球型ルーネベル
グレンズ0υへのエネルギー供給を機体側からコントロ
ールすることができる。
As a whole, they form the goal of deception Qυ. Deceptive goal Qυ
The energy supply to the hemispherical Luneberg lens 0υ can be controlled from the fuselage side so that the thermal radiation energy exceeds that of the fuselage (1) and the heat radiation shape resembles the fuselage (1).

このような構成の欺満目標C21)と機体(1)とを遠
距離から見た場合、その見込み角は第2図のようになる
。第2図は欺満月凛と機体との離隔距離を200mにし
た場合を示す。距離20/aでは10ミル、10−では
20ミル、2脂では100ミルである。遠距離における
ミサイル側の捜索性能においては広視界2例えば数十度
を取らざるを得す2つの類似目標の識別分離は非常に難
しい。ミサイルが2つの目標に近接するにつれ、2目標
を識別できることとなるが、形状が相似しており、かつ
欺満目標CBの放射強度が機体(11よp数倍上回るた
め。
When the deceptive target C21) having such a configuration and the aircraft (1) are viewed from a long distance, the angle of view is as shown in FIG. Figure 2 shows the case where the separation distance between Demangetsu Rin and the aircraft is 200m. The distance is 10 mils for 20/a, 20 mils for 10-a, and 100 mils for 2 fats. In terms of search performance on the missile side at long distances, it is very difficult to identify and separate two similar targets, which requires a wide field of view, for example, several tens of degrees. As the missile approaches the two targets, it becomes possible to distinguish between the two targets, but because their shapes are similar and the radiation intensity of the deceptive target CB is several times higher than that of the aircraft (11).

現存するミサイルシーカでは形状認識能力を有すると言
えども徐々に欺満目標に誘導されていくこととなる。ミ
サイルは通常、目標に近接し、その視界中にしめる目標
幅が、視界の50チ程度に達した時に誘導制御を打切り
、惰性にて目標へ直進する。例えば、この発明による欺
満目標の直径を2mとすると、2脂2m−4m(すなわ
ち、視界中の目標が50チをしめる長さ)が画角いっば
いになる距離は、狭視野画角を20ミルと仮定すると4
 m / i o o o −200m  となる。す
なわち、ミサイルの誘導制御を打切る瞬間の目標までの
距離程度に欺満月凛と機体とを離隔しておけば機体は安
全である。
Even though existing missile seekers have shape recognition capabilities, they are gradually guided to deceptive targets. Normally, when a missile approaches its target and the width of the target within its field of view reaches about 50 inches, guidance control is discontinued and the missile moves straight toward the target by inertia. For example, if the diameter of the deceptive target according to the present invention is 2 m, the distance at which the angle of view is 2 m - 4 m (i.e., the length that the target in the field of view is less than 50 inches) is the narrow field of view. Assuming 20 mils, 4
m/i o o o -200 m. In other words, the aircraft will be safe if it is kept as far away from the aircraft as the distance to the target at the moment when missile guidance control is terminated.

前記欺満目標QDを構成するルーネベルグレンズについ
て説明する。
The Luneberg lens constituting the deceptive target QD will be explained.

第3図はルーネベルグレンズを表わしており。Figure 3 shows the Luneberg lens.

−船釣にはレーダ技術分野にて周知である。図において
、(4υはルーネベルグレンズであり9球対称に製作さ
れ、入射波(43は球面上の一点に集束され。
- Boat fishing is well known in the field of radar technology. In the figure, (4υ is a Luneberg lens manufactured with nine-sphere symmetry, and the incident wave (43) is focused at one point on the spherical surface.

逆に球面上に点熱源(43がある場合には点熱源から放
射された赤外線はレンズを通過する間に平行光線(槌と
して外部へ放射される。ルーネベルグレンズは球対称で
あるから、この集束性は入射波の方向には無関係である
。よって一般に、広い角度にわたっての入射波の検出あ
るめは点熱源を球面上で動かすことによる放射方向の走
査か可能である。
On the other hand, if there is a point heat source (43) on the spherical surface, the infrared rays emitted from the point heat source will be radiated to the outside as parallel rays (hammers) while passing through the lens.Since the Luneberg lens is spherically symmetric, this Focusing is independent of the direction of the incident wave, so in general detection of the incident wave over a wide angle is possible by radial scanning by moving a point source over a spherical surface.

ルーネベルグレンズは屈折率μ1球体の半径r0および
レンズの半径方向の距離rとの間につぎの1関係がある
The Luneberg lens has the following relationship between the radius r0 of the refractive index μ1 sphere and the radial distance r of the lens.

・=β零7 屈折率は球の中心○で最大で汀であシ、rとともに減少
し0周辺で1となる。このように屈折率が連続的に変化
する材料は製作が困雅なので。
・= β zero 7 The refractive index is maximum at the center of the sphere at the bottom, decreases with r, and becomes 1 around 0. Materials whose refractive index changes continuously like this are difficult to manufacture.

実際には球の中心から段階的に屈折率を分けて製作し、
連続的な変化に近似させようとするものである。なおレ
ンズの材料は、セラミック、ゲルマニウム、硫化亜鉛、
ぶつ化マグネシウム、シリコン等のうち、安価で機構構
造の要求を満たすものから選定する。
In reality, it is manufactured by dividing the refractive index in stages from the center of the sphere.
It attempts to approximate continuous change. The lens materials are ceramic, germanium, zinc sulfide,
Select from magnesium carbide, silicon, etc., which are inexpensive and meet the requirements of the mechanical structure.

第4図(a)はこの発明の一実施例を示すもので。FIG. 4(a) shows an embodiment of the present invention.

CDは第3図のルーネベルグレンズ(41)を半球形状
に切断した半球型ルーネベルグレンズ(このように呼称
するものとする)であり2点熱源C3の放射エネルギー
は平行光線とはならず、放射状光線(1fPのごとく、
ある拡が多角をもって外部へ放射される。
CD is a hemispherical Luneberg lens (so called) obtained by cutting the Luneberg lens (41) in Fig. 3 into a hemispherical shape, and the radiant energy of the two-point heat source C3 does not form parallel rays. Radial rays (like 1 fP,
A certain expansion is radiated outward from multiple angles.

第4図(b)は第4図(a)の半球型ルーネベルグレン
ズを実際に構成するだめの構成図である。図において、
  (40−1)は最も高い屈折率aを有し、 その半
径はrlのセラミックス半球体である。(40−2)は
屈折率136.半径2r1.厚さrlのセラミックスで
あり、前記(4o−1)の半球面外部を囲む形で構成さ
れている。(40−3)は屈折率?、31.半径3r1
゜厚さrlのセラミックスであり、前記(40−2)の
半球面を囲む形で構成されている。このように、半球体
の外部方向に向って屈折率の異なる。厚さrlの中空半
球体(40−4) 、 (40−5)・・・・・・(4
0(n−4)) 、 (40−n)を重ねていく。最外
周中空半球体(40−n)の半径はnr1、屈折率は1
とする。03は点熱源であり、第4図(a)と同じであ
る。上記のように構成することで、実際的な半球型ルー
ネベルグレンズを形成することができる。
FIG. 4(b) is a diagram showing the actual structure of the hemispherical Luneberg lens shown in FIG. 4(a). In the figure,
(40-1) has the highest refractive index a and is a ceramic hemisphere with radius rl. (40-2) has a refractive index of 136. Radius 2r1. It is made of ceramic with a thickness rl, and is configured to surround the outside of the hemispherical surface of (4o-1). Is (40-3) a refractive index? , 31. radius 3r1
It is made of ceramic with a thickness rl, and is configured to surround the hemispherical surface of (40-2). Thus, the refractive index differs toward the outside of the hemisphere. Hollow hemisphere of thickness rl (40-4), (40-5)...(4
0(n-4)) and (40-n). The radius of the outermost hollow hemisphere (40-n) is nr1, and the refractive index is 1
shall be. 03 is a point heat source, which is the same as in FIG. 4(a). By configuring as described above, a practical hemispherical Luneberg lens can be formed.

第5図(a)は第4図(a)の半球型ルーネベルグレン
ズGυを球形状の表面に沿って多数配置した欺満目標C
υを示し、第1図にて説明したものと同じである。
Figure 5(a) shows a deceptive target C in which a large number of hemispherical Luneberg lenses Gυ of Figure 4(a) are arranged along a spherical surface.
υ, which is the same as that explained in FIG.

第5図(1))は実用的欺溝目標を模式的に表わしたも
ので、 (51)は実用欺満目標であシ、内部を円筒形
にくり抜いてあり、曳航に適合化させるとともに、半球
型ルーネベルグレンズGυに付属する点熱源(43を冷
却することを兼ねるものである。(52)は係留ワイヤ
(2)を実用欺満目標(51)に接ぎ止めるための索で
ある。
Figure 5 (1)) is a schematic representation of a practical target. (51) is a practical target with a hollowed-out cylindrical interior to make it suitable for towing. It also serves to cool the point heat source (43) attached to the hemispherical Luneberg lens Gυ. (52) is a cable for anchoring the mooring wire (2) to the practical target (51).

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、赤外線を利用したあら
ゆる種類のミサイルに対し、欺満目標方向に誤誘導させ
、高確度に機体を防護できる効果がある。
As explained above, this invention has the effect of making it possible to deceive all kinds of missiles that utilize infrared rays and misdirect them to the target direction, thereby protecting the aircraft with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は欺満目標を機体が曳航する図、第2図は欺満目
標と機体とのなす見込み角を示す図、第3図はルーネベ
ルグレンズを説明するための図。 第4図(a)は半球型ルーネベルグレンズを示す図。 第4図(b)は半球型ルーネベルグレンズの構成図。 第5図(a)は欺満目標を示す図、第5図(b)は実用
欺満目標を示す図である。 図弓おいて、(1)は機体、(2)は係留ワイヤ、CD
は欺満目標、0υは半球型ルーネベルグレンズ。 (40−1)はセラミックス半球体、  (40−2)
は半径2r1のセラミックス中空半球体、  (40−
3)は半径3r1のセラミックス中空半球体、  (4
0−n)は最外周中空半球体、 G13は点熱源、 (
51)は実用欺満目標である。 なお、各図中、同一符号は同一または相当部分を示すも
のとする。 第 31!1 第4図 (cl) 図 (b)
Fig. 1 is a diagram showing the aircraft towing a deceptive target, Fig. 2 is a diagram showing the angle of view between the deceptive target and the aircraft, and Fig. 3 is a diagram for explaining the Luneberg lens. FIG. 4(a) is a diagram showing a hemispherical Luneberg lens. FIG. 4(b) is a configuration diagram of a hemispherical Luneberg lens. FIG. 5(a) is a diagram showing a deceptive goal, and FIG. 5(b) is a diagram showing a practical deceptive goal. In the figure, (1) is the fuselage, (2) is the mooring wire, and CD
is a deceptive target, and 0υ is a hemispherical Luneberg lens. (40-1) is a ceramic hemisphere, (40-2)
is a ceramic hollow hemisphere with radius 2r1, (40-
3) is a ceramic hollow hemisphere with radius 3r1, (4
0-n) is the outermost hollow hemisphere, G13 is a point heat source, (
51) is a pragmatic deception goal. In each figure, the same reference numerals indicate the same or corresponding parts. 31!1 Figure 4 (cl) Figure (b)

Claims (1)

【特許請求の範囲】[Claims] 屈折率√2、半径r_1の第1の半球体、半径2r_1
にて上記第1の半球体を囲む厚さr_1の中空の第2の
半球体、半径3r_1にて上記第2の半球体を囲む厚さ
r_1の中空の第3の半球体、上記同手順にて中空半球
体を重ね合せていき最外周に設けられる半径nr_1、
厚さr_1、屈折率1.0の中空の第nの半球体とを有
し、上記第1の半球体の屈折率√2から最外周の第nの
半球体の屈折率1.0までを段階的に変化させてあり、
内部に点熱源を有する半球型ルーネベルグレンズと、表
面に上記半球型ルーネベルグレンズを配置した球体と、
上記球体を機体に係留するためのワイヤと、上記点熱源
に電力を供給するための電力線とを具備したことを特徴
とする欺満目標。
First hemisphere with refractive index √2, radius r_1, radius 2r_1
a hollow second hemisphere of thickness r_1 surrounding said first hemisphere at 3r_1, a hollow third hemisphere of thickness r_1 surrounding said second hemisphere at radius 3r_1; The radius nr_1 provided at the outermost circumference by overlapping the hollow hemispheres
It has a hollow n-th hemisphere with a thickness r_1 and a refractive index of 1.0, and the refractive index of the first hemisphere is from √2 to the refractive index of the outermost n-th hemisphere of 1.0. It has been changed in stages,
a hemispherical Luneberg lens having a point heat source inside; a sphere with the hemispherical Luneberg lens arranged on its surface;
A deception target characterized by comprising a wire for mooring the sphere to the aircraft body and a power line for supplying electric power to the point heat source.
JP63067921A 1988-03-22 1988-03-22 Deceptive target Pending JPH01239399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067921A JPH01239399A (en) 1988-03-22 1988-03-22 Deceptive target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067921A JPH01239399A (en) 1988-03-22 1988-03-22 Deceptive target

Publications (1)

Publication Number Publication Date
JPH01239399A true JPH01239399A (en) 1989-09-25

Family

ID=13358859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067921A Pending JPH01239399A (en) 1988-03-22 1988-03-22 Deceptive target

Country Status (1)

Country Link
JP (1) JPH01239399A (en)

Similar Documents

Publication Publication Date Title
US5268680A (en) Combined infrared-radar detection system
US5669581A (en) Spin-stabilized guided projectile
US6825791B2 (en) Deceptive signature broadcast system for aircraft
US8207481B2 (en) Projectile guidance system including a compact semi-active laser seeker
EP2491332B1 (en) Projectile guidance system including a compact semi-active laser seeker with immersed filter stack and field lens
US7236122B2 (en) Self-protecting device for an object
KR100301633B1 (en) Short and medium range laser defense against chemical and biological weapons
US20130082183A1 (en) Directed infra-red countermeasure system
US5348249A (en) Retro reflection guidance and control apparatus and method
US4384759A (en) Holographic corrector element
US4269121A (en) Semi-active optical fuzing
JPH01239399A (en) Deceptive target
US20220342119A1 (en) Metamaterial devices for optical absorption, dispersion and directional sensing
JPH01203899A (en) Fake target
US11614312B2 (en) Aerodynamic solid nose cone formed with an afocal axicon lens and method of imaging
RU2147722C1 (en) Universal air target simulator
US7781721B1 (en) Active electro-optic missile warning system
RU2701605C1 (en) High-speed aircraft destruction method at low altitudes
GB2194391A (en) Passive radar target
US7880870B1 (en) Linear array sensors for target detection including hydrocarbon events such as gun, mortar, RPG missile and artillery firings
RU2301957C1 (en) High-explosive warhead
JP2671628B2 (en) Composite sensor and missile guidance method
RU2819940C1 (en) Method of protecting aircraft from guided missiles with optical homing heads and system for its implementation
JP2519856B2 (en) Laser guidance system
RU2805094C1 (en) Aircraft laser protection method