JPH01239302A - Catalytic combustion device - Google Patents

Catalytic combustion device

Info

Publication number
JPH01239302A
JPH01239302A JP63064605A JP6460588A JPH01239302A JP H01239302 A JPH01239302 A JP H01239302A JP 63064605 A JP63064605 A JP 63064605A JP 6460588 A JP6460588 A JP 6460588A JP H01239302 A JPH01239302 A JP H01239302A
Authority
JP
Japan
Prior art keywords
gas
combustion
gas flow
length
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63064605A
Other languages
Japanese (ja)
Inventor
Akio Ueda
昭雄 植田
Yasutsune Katsuta
康常 勝田
Hiroyuki Kako
宏行 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63064605A priority Critical patent/JPH01239302A/en
Publication of JPH01239302A publication Critical patent/JPH01239302A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To improve a catalytic combustion device in combustion efficiency and enable a catalytic block to maintain a high degree of activity by making shorter the length of the gas passageways in a boundary part of the catalytic block than in the middle part. CONSTITUTION:There is provided a catalytic block 31 of the parallel flow type which has a plurality of gas passageways 32 in parallel with the flow of gas (fuel mixture) 70 and in which the length L1 of the gas passageways in a boundary part of the catalytic block 31 is shorter than the length L2 of those in the middle part. This structure renders the frictional resistance smaller in the gas passageways in the boundary part of the catalytic block than in the passageways in the middle part, because the length of the former passageways is shorter than that of the latter. As a result, the flow of the gas through the catalytic block is substantially uniform in rate (quantity) and an even distribution of the temperature can be achieved from the combustion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は接触燃焼装置に係り、特に石油精製プラン1〜
のオフガス処理や自動車排気ガスの浄化などに用いられ
る、触媒を介して反応させるに好適な接触燃焼装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a catalytic combustion device, and particularly relates to oil refining plans 1 to 1.
The present invention relates to a catalytic combustion device suitable for causing a reaction via a catalyst, which is used for off-gas treatment of automobiles, purification of automobile exhaust gas, and the like.

〔従来の技術〕[Conventional technology]

近年、触媒を用いる接触燃焼法は、通常の気相燃焼に比
べて低温燃焼が可能で、排ガス中の窒素酸化物および一
酸化炭素等の発生量が少ないことから注目されている。
In recent years, catalytic combustion methods using catalysts have attracted attention because they enable lower temperature combustion and generate less nitrogen oxides, carbon monoxide, etc. in exhaust gas than normal gas phase combustion.

接触燃焼法は、燃料資源の多様化および低公害燃焼の要
求に伴って、石油精製プラン1へ、製鉄所等のオフガス
処理、自動車排気ガスの浄化、加熱装置及びガスタービ
ンなどに利用されている。これらの接触燃焼に用いられ
ている触媒としては、白金、パラジウム及びロジウムな
どの貴金属類、または酸化第二鉄、酸化コバルト及び酸
化ニッケルなどの金属酸化物を担体に担持させたものが
あげられる。
With the diversification of fuel resources and the demand for low-pollution combustion, the catalytic combustion method is being used in oil refining plan 1, off-gas treatment at steel plants, purification of automobile exhaust gas, heating equipment, gas turbines, etc. . Examples of catalysts used in these catalytic combustions include noble metals such as platinum, palladium, and rhodium, or metal oxides such as ferric oxide, cobalt oxide, and nickel oxide supported on a carrier.

第5図に従来の接触燃焼装置の一般的な構成が示される
。この装置は、燃料供給ライン50および燃焼用空気供
給うイン60に連結された燃料と空気の予熱バーナ10
と、燃料と空気の混合器20と、触媒燃焼器30と、熱
利用機器40とから構成されている。このような構成に
おいて、まず予熱バーナ10に一部の燃料と空気が供給
されて燃焼され、その燃焼ガスにより触媒燃焼器30内
の触媒ブロック31が燃料の着火温度以上に加熱される
。その後、混合器20に燃料供給ライン50から主燃料
51が、および燃焼用空気供給ライン60から主燃料用
空気61がそれぞれ供給され、予熱バーナ10の燃焼ガ
スと混合され、これらの混合ガス70が触媒燃焼器30
に供給されて燃焼が開始される。触媒燃焼器30で発生
した燃焼ガス71は、後段の熱回収装置、加熱炉などの
熱利用機器40で熱を回収された後、排ガス80として
排出される。
FIG. 5 shows a general configuration of a conventional catalytic combustion device. The device includes a fuel and air preheating burner 10 connected to a fuel supply line 50 and a combustion air supply inlet 60.
, a fuel/air mixer 20 , a catalytic combustor 30 , and a heat utilization device 40 . In such a configuration, some fuel and air are first supplied to the preheating burner 10 and burned, and the combustion gas heats the catalyst block 31 in the catalytic combustor 30 to a temperature higher than the ignition temperature of the fuel. After that, the main fuel 51 is supplied from the fuel supply line 50 to the mixer 20, and the main fuel air 61 is supplied from the combustion air supply line 60, respectively, and mixed with the combustion gas of the preheating burner 10, and these mixed gases 70 are Catalytic combustor 30
is supplied to start combustion. The combustion gas 71 generated in the catalytic combustor 30 is discharged as exhaust gas 80 after its heat is recovered by a heat utilization device 40 such as a heat recovery device or a heating furnace in a subsequent stage.

第6図に上記の触媒燃焼器30の詳細と、第7図に触媒
ブロック31が示される。触媒ブロック31としては、
複数のガス流路32の集合体からなるパラレルフロー型
のものが多く用いられており、セラミックスなどの触媒
担体を格子状に押し出し成形したものに触媒成分を担持
させた後、第6図に示されるように触媒燃焼器30内の
混合ガス70の流路に取付けられる。その上流に整流用
の多孔板90が断熱材100に固定され、下流に処理ガ
ス流(燃焼ガス)71が流れる。触媒ブロック31が燃
料の着火温度以上に昇温された後、ガス流路32に燃料
と空気の混合ガス70が導入されると、入口部より燃焼
反応が開始する。このパラレルフロー型触媒ブロック3
1の特徴は、他の粒状または板状形式の触媒に比較して
、流動抵抗が小さく、被処理ガス71を流すための動力
が少なくてすむことにある。そして、触媒燃焼器30が
安定な燃焼を維持すると予熱バーナ10を消火状態にし
、燃焼量を下げた状態で燃焼させる。
FIG. 6 shows details of the catalytic combustor 30, and FIG. 7 shows the catalyst block 31. As the catalyst block 31,
A parallel flow type device consisting of an aggregate of a plurality of gas flow channels 32 is often used, and after the catalyst component is supported on a catalyst carrier such as ceramics extruded into a lattice shape, as shown in FIG. It is attached to the flow path of the mixed gas 70 in the catalytic combustor 30 so that the A perforated plate 90 for rectification is fixed to a heat insulating material 100 upstream thereof, and a process gas flow (combustion gas) 71 flows downstream. When the mixed gas 70 of fuel and air is introduced into the gas flow path 32 after the temperature of the catalyst block 31 is raised to the ignition temperature of the fuel or higher, a combustion reaction starts from the inlet. This parallel flow type catalyst block 3
The feature of No. 1 is that the flow resistance is lower than that of other granular or plate-shaped catalysts, and less power is required to flow the gas 71 to be treated. Then, when the catalytic combustor 30 maintains stable combustion, the preheating burner 10 is put into the extinguished state, and combustion is performed with the combustion amount reduced.

ところで、触媒ブロック31内で安定した燃焼を継続す
るためには、燃焼と空気の混合が均一で、かつその混合
ガス70の流斌分布が均一であると共に着火温度以上の
温度を維持する必要がある。
By the way, in order to continue stable combustion within the catalyst block 31, it is necessary to ensure that the combustion and air are mixed uniformly, that the flow distribution of the mixed gas 70 is uniform, and that the temperature is maintained at or above the ignition temperature. be.

しかしながら、従来のパラレルフロー型触媒ブロックを
用いた接触燃焼装置は、第8図に触媒出口面の温度分布
の一例が示されるように、触媒ブロックの中央付近は外
周周辺に比較し、高温になっている。これは第9図に混
合ガス70の速度7分布が示されるように、外壁(断熱
材)100の冷涼抵抗によってガス流路のガス流速Vが
外壁(断熱材)100近傍で遅く、中央付近では、はぼ
均一であるため外壁近くで単位体積当りに燃焼する燃料
量が中央付近で燃焼する燃料量に比較し少ないことに起
因するものである。従って、下流側の触媒ブロックの中
央付近に燃料量が多く流れて高UHとなり、外壁近(で
は低!Lとなる。この温度差が大きいとき中央付近で担
体がシンタリングを起して表面積が減少し、担持されて
いる触媒成分も誘引されて触媒の活性が失われる他、触
媒成分が酸化され揮散されるため燃焼反応速度が低下し
、燃焼効率が低下する。また、外壁近くでは温度が低い
ため未燃焼物である一酸化炭素(Co)。
However, in a conventional catalytic combustion device using a parallel flow type catalyst block, the temperature near the center of the catalyst block is higher than that around the outer periphery, as shown in Figure 8, which shows an example of the temperature distribution on the catalyst outlet surface. ing. This is because, as shown in the velocity distribution of the mixed gas 70 in FIG. 9, the gas flow velocity V in the gas flow path is slow near the outer wall (insulating material) 100 due to the cooling resistance of the outer wall (insulating material) 100, and near the center. This is because the amount of fuel combusted per unit volume near the outer wall is smaller than the amount of fuel combusted near the center because the surface area is almost uniform. Therefore, a large amount of fuel flows near the center of the catalyst block on the downstream side, resulting in a high UH, and near the outer wall (low! In addition to attracting supported catalyst components and losing catalyst activity, the catalyst components are oxidized and volatilized, reducing the combustion reaction rate and reducing combustion efficiency.In addition, the temperature near the outer wall decreases. Carbon monoxide (Co) is an unburned substance due to its low temperature.

水素(H2)あるいは炭化水素系化合物が生成し、燃焼
効率の低下を招くことになる。
Hydrogen (H2) or hydrocarbon compounds are generated, leading to a decrease in combustion efficiency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の接触燃焼装置にあっては、触媒ブロックの外周周
辺のガス流速が中央付近より低いことに原因して温度が
低く、未燃焼物を生成するとともに燃焼効率が低下し、
触媒ブロックの中央付近は高温になって触媒機能が低下
する問題点があった。
In conventional catalytic combustion devices, the gas flow velocity around the outer periphery of the catalyst block is lower than that around the center, resulting in low temperatures, which generates unburned substances and reduces combustion efficiency.
There was a problem in that the temperature near the center of the catalyst block became high and the catalyst function deteriorated.

本発明の目的は、安定した接触燃焼が維持できて燃焼効
率の高い接触燃焼装置を提供することにある。
An object of the present invention is to provide a catalytic combustion device that can maintain stable catalytic combustion and has high combustion efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため1本発明に係る接触燃焼装置
は、ガスの流れに対して平行に複数のガス流路を有する
パラレルフロー型の触媒ブロックを設置した触媒燃焼装
置において、触媒ブロックの外周周辺のガス流路の長さ
が中央付近のガス流路の長さより短く構成する。
In order to achieve the above object, the present invention provides a catalytic combustion device in which a parallel flow type catalyst block having a plurality of gas flow paths parallel to the gas flow is installed. The length of the peripheral gas flow path is configured to be shorter than the length of the gas flow path near the center.

また、複数個の触媒ブロックを並設した触媒燃焼装置に
おいて、外周周辺に設置した触媒ブロックのガス流路の
長さが中央付近に設置した触媒ブロックのガス流路の長
さより短く構成する。
Further, in a catalytic combustion device in which a plurality of catalyst blocks are arranged side by side, the length of the gas flow path of the catalyst blocks installed around the outer periphery is configured to be shorter than the length of the gas flow path of the catalyst blocks installed near the center.

〔作用〕[Effect]

本発明によれば、接/lll1燃焼装置に設置される触
媒ブロックは、その外周周辺のガス流路の長さが中央付
近の長さより短くガス流路の抵抗が少ない。
According to the present invention, in the catalyst block installed in the direct combustion apparatus, the length of the gas flow path around the outer periphery is shorter than the length around the center, and the resistance of the gas flow path is small.

一方、触媒ブロックに流入する前の上流側の混合ガスの
速度分布は、流路の外壁(断熱材)近傍では遅く中央付
近では早くなってほぼ均一である。
On the other hand, the velocity distribution of the mixed gas on the upstream side before flowing into the catalyst block is slow near the outer wall (insulating material) of the flow path and fast near the center, and is almost uniform.

そこで触媒ブロックに流入する時は、触媒ブロックの外
周周辺の抵抗が少ないために、中央付近のガスが多く流
入し、触媒ブロック内の中央付近のガス量が減少するこ
とにより触媒ブロック内のガスの速度分布はほぼ均一に
なる。
Therefore, when flowing into the catalyst block, since there is less resistance around the outer periphery of the catalyst block, more gas flows in around the center, and the amount of gas around the center inside the catalyst block decreases, causing the gas inside the catalyst block to increase. The velocity distribution becomes almost uniform.

〔実施例〕〔Example〕

本発明の一実施例を第1図〜第4図を参照しながら説明
する。
An embodiment of the present invention will be described with reference to FIGS. 1 to 4.

第1−図に示されるように、ガス(混合ガス)70の流
れに対して平行に複数のガス流路32を有するパラレル
フロー型の触媒ブロック31を設置した触媒燃焼装置に
おいて、触媒ブロック31の外周周辺のガス流路の長さ
し、が中央付近のガス流路の長さL2より短いように構
成されている。
As shown in FIG. 1, in a catalytic combustion apparatus in which a parallel flow type catalyst block 31 having a plurality of gas flow paths 32 is installed in parallel to the flow of a gas (mixed gas) 70, the catalyst block 31 is The length of the gas flow path around the outer periphery is shorter than the length L2 of the gas flow path near the center.

触媒ブロック31は第5図及び第6図に示されるように
、触媒燃焼器30に内蔵され、予熱バーナ10によって
燃料の着火温度以上に加熱された後、燃料51と燃焼用
空気61とが混合器2oで混合した混合ガス70を燃焼
する。
As shown in FIGS. 5 and 6, the catalyst block 31 is built into the catalytic combustor 30, and after being heated to a temperature equal to or higher than the ignition temperature of the fuel by the preheating burner 10, the fuel 51 and combustion air 61 are mixed. The mixed gas 70 mixed in the vessel 2o is combusted.

本実施例による触媒燃焼装置は、外周周辺の触媒ブロッ
ク内ガス流路の長さが短いため、摩擦抵抗は、触媒ブロ
ックの中央付近の摩擦抵抗に比較し小さくなる。一方、
触媒ブロック内に流入するガス上流側の速度分布は、第
9図に示されるように、外壁近傍では遅く、中央付近で
は早くほぼ均一な分布となっている。従って、触媒ブロ
ックに流入するガスとしては、摩擦抵抗が小さい部分に
は−に流側のガス流速が高い部分のガスが、摩擦抵抗が
大きい部分には」二流側のガス流速が低い部分のガスが
流れるようになる。その結果、M媒ブロック内に流入し
たガス流速(ガスj#、)はほぼ均一になり、燃焼によ
る温度分布も一様に均しくなる。
In the catalytic combustion device according to this embodiment, since the length of the gas flow path in the catalyst block around the outer periphery is short, the frictional resistance is smaller than the frictional resistance near the center of the catalyst block. on the other hand,
As shown in FIG. 9, the velocity distribution of the gas flowing into the catalyst block on the upstream side is slow near the outer wall, fast near the center, and has a substantially uniform distribution. Therefore, as for the gas flowing into the catalyst block, the gas from the part where the gas flow velocity on the downstream side is high is in the area where the frictional resistance is small, and the gas in the part where the gas flow rate is low on the downstream side is in the area where the frictional resistance is large. starts to flow. As a result, the gas flow rate (gas j#,) flowing into the M medium block becomes substantially uniform, and the temperature distribution due to combustion also becomes uniform.

そのため、触媒ブロックの中央部も外周周辺も同一の温
度となるため、中央部でシンタリングを起こすこともな
く、融媒成分が揮散されることもない。更に、外周周辺
の温度が上昇できるため、C○等の未燃分の発生もなく
なり燃焼効率を高めることができる。そして均一燃焼で
燃焼速度が低下しないため、触媒ブロックの高い活性を
維持することができる。
Therefore, the temperature at the center and around the outer periphery of the catalyst block is the same, so that sintering does not occur in the center and the melting medium component is not volatilized. Furthermore, since the temperature around the outer periphery can be increased, the generation of unburned substances such as C○ can be eliminated, and the combustion efficiency can be increased. Furthermore, since the combustion rate does not decrease due to uniform combustion, the high activity of the catalyst block can be maintained.

本発明の他の実施例が第2図に示される。本実施例は、
第1図よりも触媒ブロック内のガス流路長さの変化をな
めらかにしたものであり、触媒ブロック内に流入する燃
料と空気の混合ガスの流量分布は第11図よりも更に均
一にすることができる。
Another embodiment of the invention is shown in FIG. In this example,
The change in the length of the gas flow path inside the catalyst block is made smoother than in Figure 1, and the flow rate distribution of the mixed gas of fuel and air flowing into the catalyst block is made more uniform than in Figure 11. Can be done.

さらに、本発明の他の実施例が第3図に示される。大型
の装置では、′fSt数の触媒ブロックを組合せて1ケ
の大きなブロック群を製作するが、その時のブロック群
構成を示すもので、外周周辺に設置された触媒ブロック
のガス流路の長さが中央部分の触媒ブロックに比較し、
短い触媒ブロックで形成されたものである。
Additionally, another embodiment of the invention is shown in FIG. In large-scale equipment, one large block group is manufactured by combining ``fSt number of catalyst blocks. This shows the block group configuration at that time. compared to the central catalyst block,
It is made up of short catalyst blocks.

なお、本実施例では、燃料と空気との混合ガスが流入す
る側で触媒ブロックのガス流路の長さを短くしたもので
あるが、燃焼ガスの出口側にガス流路の長さを短くして
も外周周辺のガス流路の抵抗を小さくする効果は同一で
あるため、本発明の効果は変化しない。
In this example, the length of the gas flow path of the catalyst block is shortened on the side where the mixed gas of fuel and air flows in, but the length of the gas flow path is shortened on the exit side of the combustion gas. However, since the effect of reducing the resistance of the gas flow path around the outer periphery is the same, the effect of the present invention does not change.

また触媒ブロックの担体は一般に熱伝導率の低いセラミ
ックスで製作されるが、このNI媒ジブロックその側面
で支持する場合、一般には触媒ブロックの担体よりも熱
伝導率が高い金属が用いられる。この場合、触媒ブロッ
クの側面より熱伝導によって移動する熱量が大きいため
、触媒ブロックに流入するガス流速が一定であっても、
その側面(外周周辺)の温度は低い。この場合は、第4
図に示されるように、流速分布を均一にするよりはむし
ろ側面部分に多くの燃料を供給する方が未燃分の発生を
抑制し、がっ、全体の温度を均一に低下できるので燃焼
効率を向上することができる。
Further, the carrier of the catalyst block is generally made of ceramic with low thermal conductivity, but when supporting this NI medium diblock on its side, a metal having higher thermal conductivity than the carrier of the catalyst block is generally used. In this case, the amount of heat transferred from the side of the catalyst block by heat conduction is large, so even if the gas flow rate flowing into the catalyst block is constant,
The temperature of the side surface (around the outer periphery) is low. In this case, the fourth
As shown in the figure, rather than making the flow velocity distribution uniform, it is better to supply more fuel to the side portions because it suppresses the generation of unburned particles and lowers the overall temperature uniformly, making combustion more efficient. can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、触媒燃焼装置のMi媒ジブロック外周
周辺のガス流路の長さを中央付近より短かくすることに
よって、触媒ブロックに混合ガスを均−供給できるため
、均一の温度の燃焼ができて燃焼効率が向上するととも
に、触媒ブロックの高い活性を維持できる。
According to the present invention, by making the length of the gas flow path around the outer periphery of the Mi medium diblock of the catalytic combustion device shorter than that near the center, the mixed gas can be uniformly supplied to the catalytic block, resulting in combustion at a uniform temperature. This improves combustion efficiency and maintains high activity of the catalyst block.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図〜第4
図は本発明の他の実施例を示す斜視図、第5図は従来の
技術を示すフローチャート、第6図は従来の技術を示す
断面図、第7図は従来の技術を示す斜視図、第8図及び
第9図は従来の技術の作用を説明する図面である。 31・・触媒ブロック、32・・・ガス流路、70・・
・ガス(混合ガス)、 Ll、 L2・・・ガス流路の長さ。
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIGS.
5 is a flowchart showing a conventional technique, FIG. 6 is a sectional view showing a conventional technique, FIG. 7 is a perspective view showing a conventional technique, and FIG. 8 and 9 are drawings for explaining the operation of the conventional technology. 31... Catalyst block, 32... Gas flow path, 70...
・Gas (mixed gas), Ll, L2... Length of gas flow path.

Claims (1)

【特許請求の範囲】 1、ガスの流れに対して平行に複数のガス流路を有する
パラレルフロー型の触媒ブロックを設置した接触燃焼装
置において、前記触媒ブロックの外周周辺の前記ガス流
路の長さが中央付近の該ガス流路の長さより短いことを
特徴とする接触燃焼装置。 2、ガスの流れに対して平行に複数のガス流路を有する
パラレルフロー型の触媒ブロックを複数個並設した接触
燃焼装置において、外周周辺に設置した前記触媒ブロッ
クの前記ガス流路の長さが中央付近に設置した前記触媒
ブロックのガス流路の長さより短いことを特徴とする接
触燃焼装置。
[Claims] 1. In a catalytic combustion device in which a parallel flow type catalyst block having a plurality of gas flow paths parallel to the gas flow is installed, the length of the gas flow path around the outer periphery of the catalyst block. A catalytic combustion device characterized in that the length of the gas flow path is shorter than the length of the gas flow path near the center. 2. In a catalytic combustion device in which a plurality of parallel flow type catalyst blocks having a plurality of gas flow paths parallel to the gas flow are arranged in parallel, the length of the gas flow path of the catalyst block installed around the outer periphery is shorter than the length of the gas flow path of the catalyst block installed near the center.
JP63064605A 1988-03-17 1988-03-17 Catalytic combustion device Pending JPH01239302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064605A JPH01239302A (en) 1988-03-17 1988-03-17 Catalytic combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064605A JPH01239302A (en) 1988-03-17 1988-03-17 Catalytic combustion device

Publications (1)

Publication Number Publication Date
JPH01239302A true JPH01239302A (en) 1989-09-25

Family

ID=13263056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064605A Pending JPH01239302A (en) 1988-03-17 1988-03-17 Catalytic combustion device

Country Status (1)

Country Link
JP (1) JPH01239302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205712A3 (en) * 2000-11-14 2002-07-24 General Electric Company Catalytic combustor flow conditioner and method for providing uniform gas velocity distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205712A3 (en) * 2000-11-14 2002-07-24 General Electric Company Catalytic combustor flow conditioner and method for providing uniform gas velocity distribution
US6460345B1 (en) 2000-11-14 2002-10-08 General Electric Company Catalytic combustor flow conditioner and method for providing uniform gasvelocity distribution

Similar Documents

Publication Publication Date Title
CA2077190C (en) Catalytic method
Geus et al. Monoliths in catalytic oxidation
JP3401246B2 (en) Method and system for burning hydrocarbon fuel
US5946917A (en) Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine
JPH04273914A (en) Contact combustion
Kolios et al. Heat-integrated reactor concepts for catalytic reforming and automotive exhaust purification
JPH09196307A (en) Contact combustion system by multistage fuel injection
JPH0617734B2 (en) Catalytic combustion device for gas containing carbon monoxide and hydrogen
JPH01239302A (en) Catalytic combustion device
JP2008232061A (en) Exhaust system of diesel engine
JPH01210707A (en) Device and method of catalytic combustion device
JPH01184317A (en) Contact combustion device
JPS583641A (en) Catalyst for catalytic combustion
JPH01127028A (en) Apparatus for denitridation of combustion exhaust gas
JP2002025597A (en) Reforming device for fuel cell and its operating method
RU2796831C1 (en) Device for neutralization of toxic components of flue gases without introduction of external reagent
Kesselring et al. Design criteria for stationary source catalytic combustors
RU2792608C1 (en) Device for neutralization of toxic components of flue gases without introduction of external reagent
JP3521013B2 (en) Catalytic combustion boiler
JPS63290305A (en) Contact combustion apparatus
CN207800762U (en) The quick startup combustion chamber of methanol recapitalization high-temperature fuel cell
JPH1026014A (en) Emission control system for internal combustion engine
JPH0435691Y2 (en)
JPS5833016A (en) Combustion device
JP3087266U (en) Structure of catalytic combustion device