JPH01239029A - Plunger for glass forming - Google Patents

Plunger for glass forming

Info

Publication number
JPH01239029A
JPH01239029A JP6403788A JP6403788A JPH01239029A JP H01239029 A JPH01239029 A JP H01239029A JP 6403788 A JP6403788 A JP 6403788A JP 6403788 A JP6403788 A JP 6403788A JP H01239029 A JPH01239029 A JP H01239029A
Authority
JP
Japan
Prior art keywords
plunger
coating layer
glass
ceramic coating
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6403788A
Other languages
Japanese (ja)
Other versions
JPH07121812B2 (en
Inventor
Mitsuru Nozawa
野沢 充
Akihiko Takahane
高羽 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP63064037A priority Critical patent/JPH07121812B2/en
Publication of JPH01239029A publication Critical patent/JPH01239029A/en
Publication of JPH07121812B2 publication Critical patent/JPH07121812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/48Use of materials for the moulds

Abstract

PURPOSE:To obtain the title plunger improved in surface hardness and wear and heat resistances, by forming ceramic coating layer(s) on the surface of a specific plunger matrix. CONSTITUTION:The surface of a plunger matrix with a surface roughness of <=1.0mum, consisting of steel material containing 0.3-1.0wt.% of carbon is subjected to chemical vapor deposition with ceramic coating layer(s) consisting of TiN, TiC, TiCN, TiB2, SiC etc. 2-10mum in thickness exposed on said surface. Alternatively, said surface is subjected to physical vapor deposition in such a way that an inert gas is introduced into a cathode gun in an ion plating unit under a vacuum of ca. 10<-4>Torr in which said plunger matrix has been put, to emit plasma electron beams to ionize metals such as Ti and/or Si while melting and vaporizing them (it) and allow to react with reaction gas(es) such as N2, C2, and/or H2 introduced externally, thus providing the surface with ceramic coating layer(s) 2-10mum in thickness exposed on said surface.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、衝撃強度の大きいガラス壜を成形するのに好
適なガラス成形用プランジャに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a glass molding plunger suitable for molding glass bottles with high impact strength.

(従来の技術) ガラス成形用プランジャは一般に鋳鉄、耐熱鋼等を母材
とし、この外表面にNi系、Cr系の自溶性合金を杓0
.5mm程度肉盛り溶射して製作されており、これによ
ってプランジャ外表面が1000℃を超す高温のガラス
と接触した際に耐摩耗性、耐熱性、耐酸化性等を発揮す
るよう改良が加えられていた。しかしNi系、Cr系の
自溶性合金は耐酸化性が余り優れていないため、これら
の酸化スケールがプランジャから剥離してガラス壜内表
面に付着し場内表面を汚染することがあった。
(Prior art) Plungers for glass forming generally use cast iron, heat-resistant steel, etc. as a base material, and the outer surface of the plunger is coated with Ni-based and Cr-based self-fusing alloys.
.. It is manufactured by thermal spraying with a thickness of about 5 mm, and has been improved so that it exhibits wear resistance, heat resistance, oxidation resistance, etc. when the outer surface of the plunger comes into contact with glass at a temperature exceeding 1000℃. Ta. However, since Ni-based and Cr-based self-fluxing alloys do not have very good oxidation resistance, these oxide scales sometimes peel off from the plunger and adhere to the inner surface of the glass bottle, contaminating the inner surface of the glass bottle.

又Ni系、Cr系の自溶性合金は溶射によってプランジ
ャ表面にコーティングされているために、ピンホールの
発生が避けられず高温のガラスと接触した場合に摩耗、
酸化等が促進されるばかりでなく、使用中にピンホール
内に汚れがたまりやすくこれらが場内表面を汚染してい
た。そして、前記の場内表面に付着した種々の汚染物が
結果的にはガラス壜の衝撃強度を低下させる原因となっ
ていた。
In addition, since Ni-based and Cr-based self-fluxing alloys are coated on the plunger surface by thermal spraying, pinholes are unavoidable, causing wear and tear when they come into contact with high-temperature glass.
Not only was oxidation accelerated, but dirt also tended to accumulate in the pinholes during use, contaminating the surfaces inside the plant. The various contaminants adhering to the surfaces of the glass bottles eventually caused a decrease in the impact strength of the glass bottles.

従って、衝撃強度の大きいガラス壜を成形するのに好適
なガラス成形用プランジャの開発が強く求められていた
Therefore, there has been a strong demand for the development of a plunger for glass molding suitable for molding glass bottles with high impact strength.

(発明が解決しようとする課題) 本発明は上記のような従来の問題点を解決して、高温の
ガラスと接触しても酸化、摩耗による酸化スケールの発
生を防止し、更にはピンホールによる汚染物の発生を防
止して、ガラス内表面への汚染物の付着をなくすことに
よりガラス環の衝撃強度を著しく向上させることができ
るガラス成形用プランジャを目的として完成されたもの
である。
(Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, prevents the formation of oxide scale due to oxidation and wear even when it comes into contact with high-temperature glass, and furthermore prevents the formation of oxide scale due to pinholes. It was completed with the aim of creating a plunger for glass forming that can significantly improve the impact strength of the glass ring by preventing the generation of contaminants and eliminating the adhesion of contaminants to the inner surface of the glass.

(課題を解決するための手段〉 本発明は、表面粗さが1.0μm以下であるプランジャ
母材表面に、化学蒸着法又は物理蒸着法によるTiN 
、%TiCXT1CN、TiB2、SiC等のセラミッ
クコーティング層を表面に露出させて形成したことを特
徴とするものである。
(Means for Solving the Problems) The present invention provides TiN coating by chemical vapor deposition or physical vapor deposition on the surface of a plunger base material having a surface roughness of 1.0 μm or less.
, %TiCXT1CN, TiB2, SiC, etc., is formed by exposing it to the surface.

本発明において用いられるプランジャ母材としては、C
含有率が0.3〜1.0%の鋼材が好ましく、その代表
的なものとしては5KD−11、MH−85、HPM−
38等を挙げることができる。T iCN T i C
N 、、S I C中のC成分は鋼材に由来するもので
あるので、含有率が0.3%未満ではT i C、T 
i CN 、 S i C等の形成が不十分となり、1
.0%を越えるとTi、Siとの反応性が低下するとと
もに表面が粗(なる。又、後述するようにプランジャ外
表面に形成するセラミックコーティング層は2〜10μ
m程度と非常に薄いために、プランジャ母材の表面粗さ
は1.0μm以下にしておく必要がある。即ち、プラン
ジャ外表面粗さに与える影響が大きいからである。
The plunger base material used in the present invention is C
Steel materials with a content of 0.3 to 1.0% are preferred, and typical examples include 5KD-11, MH-85, and HPM-
38 etc. can be mentioned. T iCN T i C
Since the C component in N, S I C is derived from steel, if the content is less than 0.3%, T i C, T
The formation of i CN , S i C, etc. becomes insufficient, and 1
.. If it exceeds 0%, the reactivity with Ti and Si will decrease and the surface will become rough.Also, as will be described later, the ceramic coating layer formed on the outer surface of the plunger has a thickness of 2 to 10 μm.
Since the plunger base material is extremely thin, the surface roughness of the plunger base material must be 1.0 μm or less. That is, this is because the influence on the outer surface roughness of the plunger is large.

本発明においてはこのようなプランジャ母材の表面にセ
ラミックコーティング層が厚さ2〜10μm程度に形成
される。2μm以下では薄すぎて早く摩耗し、10μm
以上では厚すぎて表面剥離の原因となるからである。チ
タン化合物あるいはSi化合物はガラスとの濡れ性が悪
いためにガラスとの間で反応を生じに(いうえ、高温硬
度も大きい利点があり、中でもTiN5 TiC,T1
CN % T iB 2 、S t C等はコーティン
グし易いのみならず優れた表面硬度、耐摩耗性、耐熱性
等を示すものである。
In the present invention, a ceramic coating layer is formed on the surface of such a plunger base material to a thickness of about 2 to 10 μm. If it is less than 2μm, it will be too thin and wear out quickly, and if it is 10μm
This is because the thickness is too thick and causes surface peeling. Titanium compounds or Si compounds have poor wettability with glass, so they tend to react with the glass (in addition, they have the great advantage of high-temperature hardness; among them, TiN5, TiC, T1
CN % TiB 2 , S t C, etc. are not only easy to coat but also exhibit excellent surface hardness, abrasion resistance, heat resistance, etc.

本発明においてはこのようなチタン化合物層は化学蒸着
法、又は物理蒸着法によってプランジャ母材表面に形成
される。化学蒸着法は周知のようにコーティングしよう
とする材料を構成する元素からなる化合物、又は単体の
ガスを母材表面に供給し、気相中あるいは母材表面での
化学反応によりコーティング層を形成させる方法であり
、緻密で厚さが均一な、密着性に優れたコーティング層
の形成が可能である。また物理蒸着法はイオンプレーテ
ング装置内(真空度10−4Torr台〉のカソードガ
ンに不活性ガス(Ar1He等)を導入してプラズマ電
子ビームを発生させ、金属(Ti、Cr等)を熔解蒸発
させながらイオン化させ、外部より導入する(N2、C
2,82等)反応ガスにより化合物(TiNs TiC
XT1CN等)として負に印加した被覆物の表面に蒸着
させる方法であって、やはり均一な厚さの強固なコーテ
ィング層の形成が可能である。これらの方法によってプ
ランジャ母材の表面に形成されるセラミックコーティン
グ層は一層であっても複層であっても良く、特に化学蒸
着法による場合にはガス成分を順次切替えることによっ
てTiN、TiC,T1CN等の複層のチタン化合物層
を金型母材上に積層状に形成することができる。尚、本
発明においてはこのようなセラミックコーティング層が
ガラスと直接接触する最も表面の部分に露出しているこ
とが必須要件であり、セラミックコーティング層の表面
に更に他のコーティング層を形成することは好ましくな
い。例えば表面にAl2O3のコーティング層を形成す
ると、酸化物層は一般にチタン化合物、あるいはSi化
合物よりもガラスに対する濡れ性が良いため、せっかく
セラミックコーティング層を形成してもその長所が阻害
されてしまうこととなる。
In the present invention, such a titanium compound layer is formed on the surface of the plunger base material by chemical vapor deposition or physical vapor deposition. As is well known, in the chemical vapor deposition method, a compound consisting of the elements constituting the material to be coated, or a single gas, is supplied to the surface of the base material, and a coating layer is formed by a chemical reaction in the gas phase or on the surface of the base material. This method makes it possible to form a coating layer that is dense, has a uniform thickness, and has excellent adhesion. In addition, in the physical vapor deposition method, an inert gas (Ar1He, etc.) is introduced into a cathode gun in an ion plating device (with a vacuum level of 10-4 Torr) to generate a plasma electron beam, which melts and evaporates metals (Ti, Cr, etc.). It is ionized and introduced from the outside (N2, C
2,82, etc.) Compounds (TiNs TiC
XT1CN, etc.), and it is also possible to form a strong coating layer with a uniform thickness. The ceramic coating layer formed on the surface of the plunger base material by these methods may be a single layer or multiple layers, and in particular, in the case of chemical vapor deposition, by sequentially switching the gas components, TiN, TiC, T1CN can be formed. A multilayer titanium compound layer such as the above can be formed in a laminated manner on the mold base material. In addition, in the present invention, it is an essential requirement that such a ceramic coating layer be exposed at the most surface part that directly contacts the glass, and it is not necessary to form another coating layer on the surface of the ceramic coating layer. Undesirable. For example, if a coating layer of Al2O3 is formed on the surface, the oxide layer generally has better wettability to glass than titanium compounds or Si compounds, so even if a ceramic coating layer is formed, its advantages will be hindered. Become.

(作用〉 このように構成された本発明のガラス成形用プランジャ
は耐酸化性、耐摩耗性に優れると同時にガラスに対する
濡れ性が悪いセラミックコーティング層をプランジャ母
材表面に露出させて形成しであるので、高温のガラスと
接触しても酸化スケールがプランジャから剥離すること
がなく、更にはプランジャ外表面が非常に緻密で全くピ
ンホールが存在しないので、従来のようにピンホール内
に汚れがたまることもない。従って、ガラス壜内表面に
付着する汚染物の発生がほとんどみられず、クリーンな
状態でガラス壜の成形ができガラス壜の衝撃強度を著し
く向上させることができることとなる。又、セラミック
コーティング層は化学蒸着法又は物理蒸着法によってプ
ランジャ母材表面に緻密、かつ強固に密着形成されてい
るので、セラミックコーティング層の剥離のおそれもな
くプランジャ寿命を著しく増加させることができる。
(Function) The plunger for glass molding of the present invention configured as described above is formed by exposing a ceramic coating layer on the surface of the plunger base material, which has excellent oxidation resistance and abrasion resistance, and at the same time has poor wettability to glass. Therefore, the oxide scale does not peel off from the plunger even when it comes into contact with high-temperature glass, and furthermore, the outer surface of the plunger is very dense and there are no pinholes, so dirt does not accumulate inside the pinholes like in the past. Therefore, there is almost no occurrence of contaminants adhering to the inner surface of the glass bottle, and the glass bottle can be molded in a clean state, and the impact strength of the glass bottle can be significantly improved. Since the ceramic coating layer is densely and firmly adhered to the surface of the plunger base material by chemical vapor deposition or physical vapor deposition, the life of the plunger can be significantly increased without fear of peeling off the ceramic coating layer.

(実施例) 実施例1 ガラスと直接接触する部分の表面粗さを1.0μm以下
にした冷間金型用工具m(SKI)−11)製のガラス
成形用プランジャの表面に、化学蒸着法によりTiC,
TiCNXTiNの3層のチタン化合物層を順次形成し
た。蒸着の手順はまずプランジャ母材を加熱炉中のチャ
ンバー内に入れ、H2、ArXN2、CH4の混合ガス
中で100000まで昇温し、TiCl4を主成分とす
る反応ガスをチャンバー内に2時間供給して化学蒸着を
行わせ4時間の冷却後チャンバー内から取出した。形成
された3層のチタン化合物層は全体で6μmの厚みを有
し、その硬度はビッカースで1300であった。このプ
ランジャを用いてIs型ガラス成形機で重量170gr
、内容量300■の薄肉ガラス環をプレスブロー成形し
た。得られたガラス壜(n=20本)の衝撃強度、及び
連続使用可能時間(単位二時間)を測定したところ第1
表のとおりであった。一方、従来のNi系の溶射コーテ
ィングしたプランジャを用いて成形した同様のガラス壜
の衝撃強度等は比較例のとおりであった。
(Example) Example 1 A chemical vapor deposition method was applied to the surface of a plunger for glass molding made by cold mold tool m (SKI)-11), which has a surface roughness of 1.0 μm or less in the part that directly contacts the glass. TiC,
Three titanium compound layers of TiCNXTiN were sequentially formed. The vapor deposition procedure is as follows: First, the plunger base material is placed in a chamber in a heating furnace, the temperature is raised to 100,000 in a mixed gas of H2, ArXN2, and CH4, and a reaction gas containing TiCl4 as the main component is supplied into the chamber for 2 hours. After cooling for 4 hours, the sample was removed from the chamber. The three titanium compound layers formed had a total thickness of 6 μm and a Vickers hardness of 1300. Using this plunger, the weight is 170g with an Is type glass molding machine.
A thin glass ring having an inner volume of 300 .mu.m was press-blow molded. The impact strength and continuous use time (unit: 2 hours) of the obtained glass bottles (n = 20 bottles) were measured.
It was as shown in the table. On the other hand, the impact strength, etc. of a similar glass bottle molded using a conventional Ni-based thermal spray coated plunger were as in the comparative example.

実施例2 表面粗さを1.0μm以下にした冷間金型工具ji (
SKD−11)製のガラス成形用プランジャを10−4
Torrの真空チャンバー内に入れ、加熱温度500℃
でカソードガンにArを導入してプラズマ電子ビームを
発生させ、Tiを溶解蒸発させなからN2反応ガスによ
りT i Nとして負に印加したプランジャ表面に物理
蒸着した。TiNの厚さは2μmであった。このプラン
ジャを用いて実施例1と同様のガラス壜を成形し、衝撃
強度(n−20本)、及び連続使用可能時間を測定した
結果は第1表のとおりであった。
Example 2 Cold mold tool ji with surface roughness of 1.0 μm or less (
SKD-11) glass molding plunger 10-4
Placed in a Torr vacuum chamber and heated to 500°C.
Then, Ar was introduced into the cathode gun to generate a plasma electron beam, and Ti was not dissolved and evaporated, but was physically vapor deposited as TiN on the negatively applied plunger surface using N2 reactive gas. The thickness of TiN was 2 μm. A glass bottle similar to that in Example 1 was formed using this plunger, and the impact strength (n-20 bottles) and continuous usable time were measured. The results are shown in Table 1.

第1表 (発明の効果) 本発明は以上の説明からも明らかなように、ガラス壜成
形時におけるプランジャからの場内表面への汚染物の付
着を防止して、ガラス壜の衝撃強度を著しく向上させる
ことができるものであり、又、プランジャ寿命延長によ
る実用上の効果も併せて有するものであるから、従来の
問題点を解決したガラス成形用プランジャとして、業界
に寄与するところは極めて大きいものである。
Table 1 (Effects of the Invention) As is clear from the above description, the present invention significantly improves the impact strength of glass bottles by preventing contaminants from adhering to the inside surface from the plunger during glass bottle forming. It also has the practical effect of extending the life of the plunger, so it will make an extremely large contribution to the industry as a plunger for glass molding that solves the problems of conventional glass molding. be.

Claims (1)

【特許請求の範囲】[Claims] [1]表面粗さが1.0μm以下であるプランジャ母材
表面に、化学蒸着法又は物理蒸着法によるTiN、Ti
C、TiCN、TiB_2、SiC等のセラミックコー
ティング層を表面に露出させて形成したことを特徴とす
るガラス成形用プランジャ。
[1] TiN, Ti is deposited on the plunger base material surface with a surface roughness of 1.0 μm or less by chemical vapor deposition or physical vapor deposition.
A plunger for glass molding, characterized in that it is formed with a ceramic coating layer of C, TiCN, TiB_2, SiC, etc. exposed on the surface.
JP63064037A 1988-03-17 1988-03-17 Glass forming plunger Expired - Fee Related JPH07121812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63064037A JPH07121812B2 (en) 1988-03-17 1988-03-17 Glass forming plunger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064037A JPH07121812B2 (en) 1988-03-17 1988-03-17 Glass forming plunger

Publications (2)

Publication Number Publication Date
JPH01239029A true JPH01239029A (en) 1989-09-25
JPH07121812B2 JPH07121812B2 (en) 1995-12-25

Family

ID=13246517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064037A Expired - Fee Related JPH07121812B2 (en) 1988-03-17 1988-03-17 Glass forming plunger

Country Status (1)

Country Link
JP (1) JPH07121812B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141629A (en) * 1983-12-27 1985-07-26 Olympus Optical Co Ltd Mold for forming optical glass element
JPS60176929A (en) * 1984-02-21 1985-09-11 Matsushita Electric Ind Co Ltd Mold for press molding glass lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141629A (en) * 1983-12-27 1985-07-26 Olympus Optical Co Ltd Mold for forming optical glass element
JPS60176929A (en) * 1984-02-21 1985-09-11 Matsushita Electric Ind Co Ltd Mold for press molding glass lens

Also Published As

Publication number Publication date
JPH07121812B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US5679448A (en) Method of coating the surface of a substrate and a coating material
GB2086943A (en) A process of physical vapor deposition
US5230755A (en) Protective layer for a metal substrate and a method of producing same
US20220162739A1 (en) Improved coating processes
US20040185182A1 (en) Method for protecting articles, and related compositions
US5476134A (en) CRN coated die-casting tools for casting low aluminum iron alloys and method of making same
JP3080651B2 (en) Method for producing immersion member for molten metal bath
JP2004137541A (en) Dlc gradient structural hard film, and its manufacturing method
US20040022662A1 (en) Method for protecting articles, and related compositions
JPH01239029A (en) Plunger for glass forming
JPH07109561A (en) Chromium nitride film coated substrate
EP1099002B1 (en) Composition for production of a protective gradient coating on a metal substrate by electron beam evaporation and condensation under vacuum
EP0603797B1 (en) Silicide coating having good resistance to molten metals
JPH05209259A (en) Member for molten metal bath with coating film excellent in corrosion resistance to molten metal and exfoliation resistance and its production
JPH0383824A (en) Complex mold for molding of optical member
JPH0429612B2 (en)
JPS63156020A (en) Mold for glass
JPH02129035A (en) Mold for molding optical element
JPH0925583A (en) Ceramic coated roll in hot dip zinc bath
KR940000280B1 (en) Method for making two-layer plating steel sheet of galvanized coat with al/zn-fe alloy
JP2587807B2 (en) Method for forming carbide film and article having the film
JPH07258821A (en) Metallic article with hard film and its production
JPS6349750B2 (en)
JP2000052018A (en) Thixotropy die of magnesium alloy
JP4830882B2 (en) Mold for optical element molding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees