JPH01238851A - Magnetic resonance fluid photographing method - Google Patents

Magnetic resonance fluid photographing method

Info

Publication number
JPH01238851A
JPH01238851A JP63068992A JP6899288A JPH01238851A JP H01238851 A JPH01238851 A JP H01238851A JP 63068992 A JP63068992 A JP 63068992A JP 6899288 A JP6899288 A JP 6899288A JP H01238851 A JPH01238851 A JP H01238851A
Authority
JP
Japan
Prior art keywords
region
picture
pulse sequence
pulse
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63068992A
Other languages
Japanese (ja)
Inventor
Takashi Noguchi
隆 野口
Kenji Oyamada
小山田 健二
Ryuji Kaneda
隆二 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63068992A priority Critical patent/JPH01238851A/en
Publication of JPH01238851A publication Critical patent/JPH01238851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable and a blood vessel image and information on the speed and the direction of liquid, e.g., a blood flow in a blood vessel, to be simultaneously formed in a picture, a picture using a pulse sequence by which only a substance in a rest state is formed in a picture and a picture by using a pulse sequence by which both a substance in a rest state and a substance in a moving state are formed in a picture are subtracted. CONSTITUTION:At a stage precedent to a pulse sequence used for MR angiography and a pulse sequence by which the pictures of a substance in a rest state and a substance in a moving state are both formed, namely in a section 1, by applying a selection 90 deg. RF pulse simultaneously with a gradient magnetic field Gx, only a spin in the region of some fluid flowing vertically to a direction Gx in a photograph region is selected excited. Thereafter, after waiting is made for a given delay time td in a section 2, by using a pulse sequence (90 deg. RF pulse 180 deg. RF pulse) by which a spin echo signal displayed in a section 3 is provided, an NMR signal is observed. In this case, the applying patterns of gradient magnetic fields (Gx, Gy, and Gz) where a substance moving at a speed (v) can be also formed in a picture are employed. The so provided NMR signal is collected and its picture is formed by changing the amplitude of Gy 128 or 256 times.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は核磁気共鳴(以下NMRという)現象を利用し
て被験体の断層画像を作成する磁気共鳴診断装置(以下
MHI装置という)に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a magnetic resonance diagnostic apparatus (hereinafter referred to as an MHI apparatus) that creates a tomographic image of a subject using nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon. It is something.

“ 幹) 従来の技術 NMRは被験体から非侵襲的に流れの情報を得る手段と
して古くから注目されてお、i9.MHIにおいても多
くの方法が提案されている。一般に流れの情報を得る方
法にはNMR信号の縦磁化の振幅の変化を利用する方法
と横磁化の位相の変化を利用する方法がある。MHI装
置を用いて血管造影に似た血管を描出する方法(MRア
ンギオグラフイー)には、この両方の方法が利用できる
が、後者の流れによシ位相が変化することを利用する方
法が主に用いられている。この方法は血管内の血液の流
れの影響によシ、NMR信号の位相が変化し信号が消失
してしまうパルスシーケンスと流れの影響をうけないパ
ルスシーケンスを用い、第1のパルスシーケンスで「静
止しているもののみ」からなる画像を作成し、第2のパ
ルスシーケンスで「静止しているもの+動いているもの
」からなる画像を作成し、それらの画像を5ubtra
ction(差し引き)して「動いているもののみ」の
画像を得ようとするものである。
Conventional technology NMR has long been attracting attention as a means of non-invasively obtaining flow information from a subject, and many methods have been proposed in i9.MHI. There are two methods: a method that uses changes in the amplitude of longitudinal magnetization of the NMR signal, and a method that uses changes in the phase of transverse magnetization.A method that uses an MHI device to depict blood vessels similar to angiography (MR angiography) Although both of these methods can be used, the latter method, which takes advantage of the fact that the phase changes due to the flow of blood, is mainly used. Using a pulse sequence in which the phase of the NMR signal changes and the signal disappears, and a pulse sequence that is unaffected by the flow, an image consisting only of "stationary objects" is created with the first pulse sequence, and an image consisting of "only stationary objects" is created with the second pulse sequence. Create an image consisting of "stationary objects + moving objects" with the pulse sequence of
This method attempts to obtain an image of ``only moving objects'' by subtraction.

これらのパルスシーケンスの1例を@4図(1、(b)
に示す。
An example of these pulse sequences is shown in Figure 4 (1, (b)
Shown below.

測される時点で、 八〇=  JG(t)・Vt dt・・・・・・■G 
(t)・・・勾配磁場強度 V・・・動いているスピンの速度 で与えられる速度Vに応じた位相シフトを受けるためN
MR信号が消失してしまい画像化されない。これに対し
、第4図山)に示すパルスシーケンスは、周波数エンコ
ード、スライス選択の勾配磁場O印加方法を図中斜線の
領域で示すように追加もしくは変更したものであり、斯
かる勾配磁場の印加によ)前述の0式で与えられる速度
ヤで動いているスピンの位相シフトΔ0をゼロにするこ
とが可能である。このようにすることによ、D、(a)
のパルスシーケンスでは消失していた動いているスピン
からの信号を得ることができ、動いている部分も静止し
ている部分と同様に画像化することができる。
At the time of measurement, 80 = JG(t)・Vt dt・・・・・・■G
(t)...Gradient magnetic field strength V...N because it receives a phase shift according to the speed V given by the speed of the moving spins
The MR signal disappears and cannot be imaged. On the other hand, the pulse sequence shown in Fig. 4 (Fig. 4) is one in which the method of applying the gradient magnetic field O for frequency encoding and slice selection has been added or changed as shown in the shaded area in the figure. ) It is possible to make the phase shift Δ0 of the spin moving at the velocity given by the above equation 0 zero. By doing this, D, (a)
With this pulse sequence, signals from the moving spins that had disappeared can be obtained, and moving parts can be imaged in the same way as stationary parts.

これらの2つのパルスシーケンスを用いて得られた2枚
の画像を5ubtractionl、て得られるMRア
ンギオグラフイー画像は、従来より放射本領域で利用さ
れている血管造影に比べ造影剤を使用することなく血管
像を得ることができるという長所がある。
The MR angiography image obtained by 5 ubtraction of the two images obtained using these two pulse sequences does not require the use of a contrast agent, compared to angiography conventionally used in the radiology field. It has the advantage of being able to obtain blood vessel images.

しかしながら上記の方法では、流れのある部位のみ選択
的に画像化できるものの同時に流れに関する速度、方向
の情報を得ることは不可能であシ、それらの情報を得る
ためには別のパルスシーケンスを用いて再度測定し直す
必要があるため、検査時間の延長につながるものであっ
た。
However, with the above method, although it is possible to selectively image only the area where the flow is, it is impossible to simultaneously obtain information on the speed and direction of the flow, and in order to obtain this information, another pulse sequence is required. Since it was necessary to take the measurements again after the test was completed, the test time was extended.

(ハ)発明が解決しようとする課題 前述し九ように従来のMRアンギオグラフイ−の方法で
は、造影剤を使用することなく血管像が得られるものの
、従来の血管造影では造影剤が移動することによシ得ら
れていた流れの速度、方向の情報を得ることは不可能で
あった。それらの情報を得るためには別のパルスシーケ
ンスを用い再度測定する必要があシ検査時間が長くかか
ってしまうという問題があった。
(c) Problems to be Solved by the Invention As mentioned above, in conventional MR angiography methods, blood vessel images can be obtained without using a contrast medium, but in conventional angiography, the contrast medium moves. In particular, it was impossible to obtain information on the velocity and direction of the flow, which was previously available. In order to obtain such information, it is necessary to perform measurement again using a different pulse sequence, which poses a problem in that the test takes a long time.

本発明は、上記問題点を検討し、従来のパルスシーケン
スを応用し、MRアンギオグラフイーと同様な流体([
f[L管)像を得、さらに血管内の血流等の液体の速度
、方向の情報を同時に画像化することを目的としたもの
である。
The present invention considers the above problems, applies a conventional pulse sequence, and uses a fluid similar to MR angiography ([
The objective is to obtain an f[L-tube] image and to simultaneously image information on the velocity and direction of fluid such as blood flow within the blood vessel.

に)課題を解決するための手段 本発明は従来のMRアンギオグラフイーのパルスシーケ
ンスの1つである(静止してめるもの+動いているもの
)を画像化するパルスシーケンス(第4図(b)に相当
する)を、励起RFパルスの印加前に被験体内のある領
域に存在するスピンを選択的に飽和し、他のスピンと差
別化するためのもう1つのRFパルスを印加する過程が
追加されたパルスシーケンスに変更することにより得ら
れた画像と、従来通シのも51つのMRアンギオグラフ
イーのパルスシーケンス(第4図(ωに相当する)で得
られた画像とを5ubtractlonすることを%徴
とする。
4) Means for Solving the Problems The present invention is based on a pulse sequence for imaging (a stationary object + a moving object), which is one of the pulse sequences of conventional MR angiography (Fig. (corresponding to b)), a process of applying another RF pulse to selectively saturate the spins existing in a certain region of the subject and differentiate them from other spins before applying the excitation RF pulse. The image obtained by changing to the added pulse sequence and the image obtained by the conventional MR angiography pulse sequence (Fig. 4 (corresponding to ω)) are 5ubtractloned. is expressed as a percentage.

具体的には、撮像部位の流動部位を第1の90゜無線周
波数パルスを印加して選択励起した後所定の遅延時間経
過を待って前記流動部位を含む撮像部位に第2の無線周
波数パルスを印加して該流動部位を飽和させた状態で共
鳴信号を取り出し、得られた共鳴信号及び前記遅延時間
に基き流動部位と静止部位を共に画像化すると共に流速
及び流動方向の情報を得る第1の行程と、撮像部位に9
0′無線周波数パルスを印加して全撮像部位を選択励起
して共鳴信号を取り出し、得られた共鳴信号に基き静止
部位を画像化する第2の行程と、第1行程で得られた流
動部位及び静止部位の混合画像か画像を得る。
Specifically, after applying a first 90° radio frequency pulse to selectively excite the flow region of the imaging region, a second radio frequency pulse is applied to the imaging region including the flow region after a predetermined delay time has elapsed. A first step in which a resonance signal is extracted in a state in which the flowing region is saturated by applying an electric current, and both the flowing region and the stationary region are imaged based on the obtained resonance signal and the delay time, and information on the flow velocity and flow direction is obtained. 9 for the process and the imaging area
A second process in which a 0' radio frequency pulse is applied to selectively excite all imaged areas to extract resonance signals, and a stationary area is imaged based on the obtained resonance signal, and a flow area obtained in the first process. and obtain a composite image of the static region.

(ホ)作 用 従来よシ提案されている画像間の5ubtracti−
on を用いたMRアンギオグラフイーの2つのノくル
スシーケンスのうち01つを前記手段に従い変更するこ
とによシMRアンギオグラフイーで得られる血管像と同
時に血流の速度や方向の情報を画像化し得るものである
(e) Effect The 5 ubtracti between images that has been proposed in the past
By changing one of the two Norculus sequences of MR angiography using on according to the above method, information on the speed and direction of blood flow can be obtained simultaneously with the blood vessel image obtained by MR angiography. It is something that can be transformed into

(へ)実施例 本発明を実施例に従つて説明する。第3図にMRアンギ
オグラフイーの方法の概念図を示す。
(f) Examples The present invention will be explained based on examples. FIG. 3 shows a conceptual diagram of the MR angiography method.

従来の第4図(a)、 (b)で示した異なる2つのパ
ルスシーケンスで得られた(静止しているもののみ)を
画像化するパルスシーケンスを用いた画像と(−静止し
ているもの中動いているもの)の両方を画像化するパル
スシーケンスを用いた画像とを5ubtraction
することによシ、 (静止しているもの中動いているもの〕−(静止してい
るもの)=(動いているもの)すなわち血管内の血液の
ような流動体を画像化することができる。
An image using a pulse sequence that images (only a stationary object) obtained with the two different conventional pulse sequences shown in Fig. 4 (a) and (b), and an image (-a stationary object). 5ubtraction
By doing this, it is possible to image a fluid such as blood in a blood vessel. .

このMRアンギオグラフイーの方法は造影剤を使用する
ことなく血管像を得ることができる。また心拍との同期
のタイミングを変えることによシ、動脈や静脈を選択的
に描出できるため有用な方法である。しかし、斯かる方
、法は流れのある部位、すなわち血管像は得られるもの
の、流れの速度、方向に関する情報を得ることは困難で
ある。
This MR angiography method can obtain blood vessel images without using a contrast medium. It is also a useful method because arteries and veins can be selectively visualized by changing the timing of synchronization with the heartbeat. However, although such a method can obtain an image of a region where a flow exists, that is, a blood vessel, it is difficult to obtain information regarding the velocity and direction of the flow.

そこで、第4図に示したMRアンギオグラフイーニ使用
するパルスシーケンスを第1図に示すように、(静止し
ているもの中動いているもの)の画像を得るパルスシー
ケンス(第4図(b))ノ前段階に90RF(無線周波
数)パルスを印加する過程を加えるように変更すること
によりMRアンギオグラフイーの画像が得られると同時
に流れの速度、方向の情報を得ることが可能となる。
Therefore, the pulse sequence used in the MR angiography shown in Fig. 4 is changed to the pulse sequence (Fig. 4 (b )) By adding a process of applying 90 RF (radio frequency) pulses to the previous step, it becomes possible to obtain an MR angiography image and at the same time obtain information on the velocity and direction of the flow.

これを第1図と第2図を用いて詳細に説明する。This will be explained in detail using FIGS. 1 and 2.

第1図(a)は(静止しているもの+動いているもの)
を画像化するシーケンスである。同図においてGxは周
波数エンコード、Gyは位相エンコード、Gzはスライ
ス選択の勾配磁場である。区間1において選択90’R
Fパルスを勾配磁場Qxと同時に印加することによシ、
搬像領域内のGx方向に垂直なある流動体の領域のスピ
ンのみが選択的に励起される。次に区間2で所定の遅延
時間td時間待−)九後区間3に示されるスピンエコー
信号を得ルハルスシーケンス(90IRF)(ルス→1
80RFパルス)を用いNMR信号を観測する。この際
、第4図ら)に示したように速度Vをもち動いている物
も画像化できるような勾配磁場(Gx、Gy、 Gz 
)の印加パターンを用いる。このようにして得るNMR
信号をoyの振幅を128もしくば256回変化させて
収集し画像を作成する。得られた画像例を第2図(a)
に示す。図中41は血管を示し44は静止している周辺
組織を示す。第1図(alの区間1で励起され区間3で
飽和させられたスピンは42,43と斜線で示したよう
に1!owintensityで描出される。ところが
43のように血管内のスピンは動いているため、励起さ
せられた時刻から、信号の観測時刻までの間(td信号
観測までの時間)K移動し、位置が静止している周辺部
からΔXで与えられる距離をもって画像化される。この
時血流の速度Vは、 V中Δx/ (t d +TE )−・・・■で与えら
れる。
Figure 1 (a) is (a stationary object + a moving object)
This is a sequence for imaging. In the figure, Gx is a frequency encode, Gy is a phase encode, and Gz is a gradient magnetic field for slice selection. Select 90'R in section 1
By applying the F pulse simultaneously with the gradient magnetic field Qx,
Only spins in a region of the fluid perpendicular to the Gx direction within the image transport region are selectively excited. Next, after waiting for a predetermined delay time td in section 2, a spin echo signal shown in section 3 is obtained using a Luhalus sequence (90IRF) (Luhalus → 1
80RF pulse) to observe the NMR signal. At this time, as shown in Fig. 4, etc., gradient magnetic fields (Gx, Gy, Gz
) is used. NMR obtained in this way
A signal is collected by changing the amplitude of oy 128 or 256 times to create an image. An example of the obtained image is shown in Figure 2(a).
Shown below. In the figure, 41 indicates a blood vessel, and 44 indicates a stationary surrounding tissue. The spins excited in section 1 of Figure 1 (al) and saturated in section 3 are depicted with 1!ow intensity as shown by diagonal lines 42 and 43. However, as shown in 43, the spins in the blood vessel are moving. Therefore, from the time of excitation to the observation time of the signal (time until td signal observation), it moves K and is imaged at a distance given by ΔX from the surrounding area where the position is stationary. The velocity V of the blood flow is given by Δx/(t d +TE)−■ in V.

第1図(b)ハ、通常のスピンニー−法と同様なパルス
シーケンスであ夛第4図(a)と同じである。このパル
スシーケンスによシ第2図(a)と同じ被験体部位を画
像化した場合の結果を第2図の)に示す。
FIG. 1(b) is the same pulse sequence as in the normal spin knee method and is the same as FIG. 4(a). The results obtained when the same subject site as in FIG. 2(a) was imaged using this pulse sequence are shown in FIG. 2).

図中45の静止している周辺組織は第2図(a)と同様
に画像化されるが、46で示した血管は血液が流れてい
るため0式で与えられる位相シフトΔθを受けI!ow
 1ntens ity (中信号ゼロ)に描出される
。これらの2個の画像を一般的なMRアンギオグラフイ
ーの方法と同様に5ubtractionすれば、第4
図(C)に示すように、血管51がhiphinten
sity に、静止している周辺組織はJowinte
nsityに描出される。また血流の速度、方向等の情
報は血管内のj’ow 1ntensity部分54と
静止部位の負の信号部分53の位置関係より0式に従っ
て求められる。
In the figure, the stationary surrounding tissue 45 is imaged in the same way as in FIG. 2(a), but blood vessels shown at 46 have a phase shift Δθ given by the equation 0 because blood is flowing through them.I! ow
It is depicted at 1 ntense (medium signal zero). If these two images are subjected to 5ubtraction in the same manner as in general MR angiography, the fourth
As shown in Figure (C), the blood vessels 51 are
In the city, the stationary surrounding tissues are
nsity. Further, information such as the speed and direction of blood flow can be obtained from the positional relationship between the j'ow 1 ntensity portion 54 in the blood vessel and the negative signal portion 53 in the stationary region according to equation 0.

このようにして、MRアンギオグラフイーを得るパルス
シーケンスに90°RFパルスを印加スる過程を追加す
ることによ、D、MRアンギオグラフイー画像を得るの
と同時に速度、方向の情報を得ることが可能となる。ま
た、上記方法はここで示したスピンエコー法を用いたM
Rアンギオグラフイーに限らず、他の方法を用いたMR
アンギオグツフイーにも応用できる。
In this way, by adding the process of applying a 90° RF pulse to the pulse sequence for obtaining MR angiography, it is possible to obtain speed and direction information at the same time as obtaining an MR angiography image. becomes possible. In addition, the above method uses the spin echo method shown here.
MR using other methods, not limited to R angiography
It can also be applied to angioguthuphy.

(ト)    効     果 本発明により、従来の方法では血管部の描出のみであっ
たMRアンギオグラフイーが同時に直流の速度、方向の
情報が同時に得られるものとなシ、さらに臨床上有用な
ものとなる。
(g) Effects According to the present invention, MR angiography, which in the conventional method only depicts blood vessels, can simultaneously obtain information on the velocity and direction of direct current, and is also clinically useful. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明磁気共鳴流体撮像方法の一実
施例を示し、第1図(ωは流動部位及びその流速と流動
方向並びに静止部位の画像を得るためのパルスシーケン
スを示す図、第1図山)は静止部位のみの画像を得るた
めのパルスシーケンスを示す図、第2図(a)は、第1
図CaJによシ得られる画像を示す図、第2図(b)は
第1図Φ)によシ得られる画像を示す図、第2図(c)
は第2図(a)及びΦ)の画像を差し引きして得られる
MRアンギオグラフイ像を示す図、第3図はMRアンギ
オグラフイの概念図、第4図は従来OMRアンギオグラ
フイの一例を示しくa)は、そのパルスシーケンスを示
す図、(b)はスピンの位相シフトを防止するための勾
配磁場のパターンを示す図である。
FIGS. 1 and 2 show an embodiment of the magnetic resonance fluid imaging method of the present invention, and FIG. , Fig. 1(a) is a diagram showing a pulse sequence for obtaining an image of only a stationary part, and Fig. 2(a) is a diagram showing a pulse sequence for obtaining an image of only a stationary part.
Figure 2 (b) is a diagram showing the image obtained by Figure 1 Φ), Figure 2 (c) is a diagram showing the image obtained by Figure CaJ.
Figure 2 shows an MR angiography image obtained by subtracting the images in (a) and Φ), Figure 3 is a conceptual diagram of MR angiography, and Figure 4 is an example of conventional OMR angiography. FIG. 3A is a diagram showing the pulse sequence thereof, and FIG. 3B is a diagram showing a gradient magnetic field pattern for preventing spin phase shift.

Claims (1)

【特許請求の範囲】[Claims] (1)撮像部位の流動部位を第1の90゜無線周波数パ
ルスを印加して選択励起した後所定の遅延時間経過を待
って前記流動部位を含む撮像部位に第2の90゜無線周
波数パルスを印加して該流動部位を飽和させた状態で共
鳴信号を取り出し、得られた共鳴信号及び前記遅延時間
に基き流動部位と静止部位を共に画像化すると共に、流
速及び流動方向の情報を得る第1の行程と、撮像部位に
90゜無線周波数パルスを印加して全撮像部位を選択励
起して共鳴信号を取り出し、得られた共鳴信号に基き静
止部位を画像化する第2の行程と、第1行程で得られた
流動部位及び静止部位の混合画像から第2行程で得られ
た静止部位の画像を差し引くことにより流速及び流動方
向の情報を含む流動部位のみの画像を得ることを特徴と
する磁気共鳴流体撮像方法。
(1) After applying a first 90° radio frequency pulse to selectively excite the fluid region of the imaging region, wait for a predetermined delay time to elapse, and then apply a second 90° radio frequency pulse to the imaging region including the fluid region. A first step, in which a resonance signal is extracted in a state where the flowing region is saturated by applying a voltage, and both the flowing region and the stationary region are imaged based on the obtained resonance signal and the delay time, and information on the flow velocity and the flow direction is obtained. a second step in which a 90° radio frequency pulse is applied to the imaging region to selectively excite all the imaging regions to extract a resonance signal, and a stationary region is imaged based on the obtained resonance signal; Magnetism characterized in that an image of only the flowing region including information on flow velocity and flow direction is obtained by subtracting the image of the stationary region obtained in the second step from the mixed image of the flowing region and the stationary region obtained in the step. Resonant fluid imaging method.
JP63068992A 1988-03-22 1988-03-22 Magnetic resonance fluid photographing method Pending JPH01238851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068992A JPH01238851A (en) 1988-03-22 1988-03-22 Magnetic resonance fluid photographing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068992A JPH01238851A (en) 1988-03-22 1988-03-22 Magnetic resonance fluid photographing method

Publications (1)

Publication Number Publication Date
JPH01238851A true JPH01238851A (en) 1989-09-25

Family

ID=13389668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068992A Pending JPH01238851A (en) 1988-03-22 1988-03-22 Magnetic resonance fluid photographing method

Country Status (1)

Country Link
JP (1) JPH01238851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050168A1 (en) * 2010-10-13 2012-04-19 株式会社東芝 Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9107589B2 (en) 2010-10-13 2015-08-18 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050168A1 (en) * 2010-10-13 2012-04-19 株式会社東芝 Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2012081276A (en) * 2010-10-13 2012-04-26 Toshiba Corp Magnetic resonance imaging apparatus and magnetic resonance imaging method
US9042961B2 (en) 2010-10-13 2015-05-26 Kabushiki Kaisha Toshiba Velocity measurement of MR-imaged fluid flows
US9107589B2 (en) 2010-10-13 2015-08-18 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method

Similar Documents

Publication Publication Date Title
EP0235758A2 (en) Methods and apparatus for NMR angiography
JPH11267110A (en) Method and device for magnetic resonance imazing
JPH11322A (en) Measuring method for reversible contribution quantity to lateral directional relaxation speed in magnetic resonance imaging method (mri)
JPH01299544A (en) Mri photographing method
JPS63186639A (en) Blood flow imaging system
JPH06169896A (en) Magnetic resonance imaging system
JP3452400B2 (en) Magnetic resonance imaging equipment
JPH07184879A (en) Magnetic resonance video system
Sheppard Basic concepts in magnetic resonance angiography
Ailion et al. Rapid line scan technique for artifact-free images of moving objects
JPH01238851A (en) Magnetic resonance fluid photographing method
JP3501182B2 (en) Magnetic resonance imaging device capable of calculating flow velocity images
JP3514547B2 (en) Magnetic resonance imaging system
JPH0394731A (en) Method and device for magnetic resonance imaging
JP3690874B2 (en) Magnetic resonance imaging system
JPH0751124B2 (en) NMR inspection device using chemical shift value
JP3907944B2 (en) Magnetic resonance imaging method and apparatus
JPS62105013A (en) Liquid measuring method by nmr imaging device
JP3105239B2 (en) Magnetic resonance imaging equipment
JP3440134B2 (en) Magnetic resonance imaging equipment
JP2002052005A (en) Magnetic resonance imaging method
JPH10179545A (en) Magnetic resonance imaging device
JPH03106339A (en) Magnetic resonance imaging device
JPS63111845A (en) Mr imaging system
TRESS et al. Magnetic resonance angiography. I. Basic principles