JPH01238849A - Rf coil for head part - Google Patents

Rf coil for head part

Info

Publication number
JPH01238849A
JPH01238849A JP63064845A JP6484588A JPH01238849A JP H01238849 A JPH01238849 A JP H01238849A JP 63064845 A JP63064845 A JP 63064845A JP 6484588 A JP6484588 A JP 6484588A JP H01238849 A JPH01238849 A JP H01238849A
Authority
JP
Japan
Prior art keywords
coil
head
loop
conduction
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63064845A
Other languages
Japanese (ja)
Other versions
JP2620100B2 (en
Inventor
Keiki Yamaguchi
山口 珪紀
Takahiro Sato
隆洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP63064845A priority Critical patent/JP2620100B2/en
Priority to PCT/JP1989/000295 priority patent/WO1989008426A1/en
Publication of JPH01238849A publication Critical patent/JPH01238849A/en
Application granted granted Critical
Publication of JP2620100B2 publication Critical patent/JP2620100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3642Mutual coupling or decoupling of multiple coils, e.g. decoupling of a receive coil from a transmission coil, or intentional coupling of RF coils, e.g. for RF magnetic field amplification
    • G01R33/3657Decoupling of multiple RF coils wherein the multiple RF coils do not have the same function in MR, e.g. decoupling of a transmission coil from a receive coil

Abstract

PURPOSE:To provide an RF coil for a head part which improves SNR (Signal to Noise Ratio) of an apex during photographing of a head part and also improves operability, by a method wherein a title coil is formed with a conduction loop approximately in the shape of a circle, a plurality of conduction elements approximately in an arcuate shape, and volume elements, and is formed approximately in a semispherical shape. CONSTITUTION:An RF coil for a heat part is formed in a semispherical shape and comprises a circular conduction loop 8, 1/4 arcuate conduction elements 10 having the one end connected to the peripheral edge of a loop and the other end connected to a semispherical apex, and capacitors 11, each connected in series between element connection parts on the peripheral edge of the conduction loop. A feed point at a lowermost point seen from a direction -Z is formed, and an RF source is connected to both ends of the capacitor. When an RF voltage of a given frequency is applied, in the conduction element 10, resonance current distribution extending at an angle of theta circumferentially counterclockwisely starting from + of an Y-axis and proportioning costheta is formed. An RF magnetic field and receiving signal sensitivity being uniform on an axial surface can be provided. As a result, during photographing of a head part, the intensity of a receiving signal is increased, an SNR at an apex can be improved, mounting is facilitated, and operability is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、NHR−CT装置のRF (Radio−F
requence )信号の送受信を行う頭部用RFコ
イルに関する。更に詳しくは、頭頂部のSNR(Sig
nal to No1ze RatiO)を改善した頭
部用局所コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to RF (Radio-F) of NHR-CT equipment.
The present invention relates to a head RF coil that transmits and receives (request) signals. For more details, see SNR (Sig
The present invention relates to a local coil for the head that has improved natural to Nolze RatiO).

(従来の技術) 周知のようにNHR−CT装置は、核磁気共鳴(NHR
)現象を利用して、プロトン等の特定の原子核の密度分
布や緩和時間を測定して、人体等の断層1象を得るもの
である。このNHR31J!象の測定方法について、第
6図を用いて説明する。第6図は、従来例のNHR−C
T装置の概略図である。まず、Z方向に均一な静磁場H
,を発生している主磁場コイル1内に被検体2を挿入設
面する。勾配磁場コイル4は、前記静磁場H,に線形勾
配磁場Gzを重畳し、被検体2内で励起するスライス(
アキシャル=XY)面を選択する0次に、角速度ω0で
、ラーモア歳差運動してSするこのスライス面内の原子
核に、RFコイル3からXY面内にω。で回転するRF
パルス磁界を送信してNOR現象を誘起させる0例えば
、スピンワープ法では、始めに90°パルスを印加して
、前記スライス面全体からのN14R(F I D )
信号を得て、τ秒後に180°パルスを印加して、再び
NHR(エコー)信号をRFコイル3によって受信する
。この時2Dフーリエ法では、読出し勾配磁場Gxによ
り、X方向の位置情報を周波数(読出し時間)に割り当
てて収集し、勾配磁場Gyの大きさを規則的に変化させ
ながら、前記NOR゛ 信号を繰り返し収集することに
より、Y方向の位置情報を位相情報として与える。収集
されたNHR信号は画像再構成され、水素原子核の密度
分布像(断層像)やその池の生体化学情報をCRT表示
する。
(Prior Art) As is well known, the NHR-CT apparatus uses nuclear magnetic resonance (NHR).
) phenomenon to measure the density distribution and relaxation time of specific atomic nuclei such as protons to obtain a cross-section image of the human body, etc. This NHR31J! The method for measuring the image will be explained using FIG. 6. Figure 6 shows a conventional NHR-C
FIG. 2 is a schematic diagram of the T device. First, a static magnetic field H uniform in the Z direction
The subject 2 is inserted into the main magnetic field coil 1 which is generating . The gradient magnetic field coil 4 superimposes a linear gradient magnetic field Gz on the static magnetic field H, and generates a slice (
Select the 0th order (axial = RF rotating with
For example, in the spin warp method, a 90° pulse is first applied to induce the NOR phenomenon by transmitting a pulsed magnetic field.
After obtaining the signal, a 180° pulse is applied after τ seconds, and the RF coil 3 receives the NHR (echo) signal again. At this time, in the 2D Fourier method, the position information in the X direction is assigned to frequency (readout time) and collected using the readout gradient magnetic field Gx, and the NOR signal is repeated while regularly changing the magnitude of the gradient magnetic field Gy. By collecting the information, position information in the Y direction is provided as phase information. The collected NHR signals are reconstructed, and a density distribution image (tomographic image) of hydrogen nuclei and biochemical information about the pond are displayed on a CRT.

この様な11t4R−CT装置のRFコイルの形状には
、第7図に示す様な種類がある。第7図(a)はサドル
型コイルであり、高い共振周波数ω(ωX([C)−1
72)を得るため、インダクタンスが小さくなるように
構成されている。しかし、このようなサドル型コイルで
は、送信時のRF磁界及び、受信時の信号感度の均一性
が余り良くない、このため、得られる断層像の解像度を
向上することができない、第7図(b)は、バードケー
ジ型コイルであり、静磁場方向に所定の距離を隔ててお
かれた2つの導電ループ51.52と、これらを固有の
インダクタンスを有する複数本の軸方向導電エレメント
6によって相互接続され、各導電エレメントには直列に
容量素子7が接続されている。この容量素子7の一つの
両端にRF電源(図示せず)を接続し、所定の周波数の
RF電圧を印加すると導電ループ51,52には、θを
円周方向にとって、正弦波状電流分布となり、各導電エ
レメント6は前記ループ電流から90’位相の遅れた正
弦波状電流分布となり、コイル内部のアキシャル面内に
均一なRF磁場及び、受信信号感度を得ることができる
(特開昭60−132547号、特開昭61−9523
4号)、第7図(C)は、サーフェイス型コイルであり
、局所的にNHR信号を受信し、部分的な撮影を行う際
に用いられ、撮影部位にコイルを密接して配置するため
、限られた領域内ではSNRを向上することができる。
There are various shapes of the RF coil of such an 11t4R-CT apparatus as shown in FIG. Figure 7(a) shows a saddle-type coil with a high resonant frequency ω(ωX([C)-1
72), the inductance is configured to be small. However, with such a saddle-shaped coil, the uniformity of the RF magnetic field during transmission and the signal sensitivity during reception is not very good, and therefore the resolution of the obtained tomographic image cannot be improved. b) is a birdcage-type coil in which two conductive loops 51, 52 are separated by a predetermined distance in the direction of the static magnetic field, and these are interconnected by a plurality of axial conductive elements 6 having a specific inductance. A capacitive element 7 is connected in series to each conductive element. When an RF power source (not shown) is connected to both ends of one of the capacitive elements 7 and an RF voltage of a predetermined frequency is applied, the conductive loops 51 and 52 have a sinusoidal current distribution with θ in the circumferential direction. Each conductive element 6 has a sinusoidal current distribution with a phase delay of 90' from the loop current, and a uniform RF magnetic field and reception signal sensitivity can be obtained in the axial plane inside the coil (Japanese Patent Laid-Open No. 60-132547). , Japanese Patent Publication No. 61-9523
No. 4) and Fig. 7 (C) are surface type coils, which are used when locally receiving NHR signals and performing partial imaging, and the coils are placed closely to the imaging site. The SNR can be improved within a limited area.

 ′ (発明が解決しようとする課題) しかし、前記のようなバードケージ型コイルにおいては
、サジタル面(YZ平面)内では、コイルの端部に近づ
くにつれて受信信号感度即ち、SNR(Signal 
to No1ze Ratio )が低下する。又、頭
部を撮影する際は、円筒状のRFコイル内の中央部に被
検体の頭を入れて撮影を行うため、撮影部位(頭部)以
外の場所、即ち顔や首に生じた熱運動によるノイズを受
信し、SNRが劣化する。又、前記サーフェイス型コイ
ルでは、被検体との密着性は良いが、撮影領域が狭く、
撮影部位への装着の操作も煩わしいという問題がある。
(Problem to be Solved by the Invention) However, in the birdcage-type coil as described above, in the sagittal plane (YZ plane), the received signal sensitivity, that is, the SNR (Signal
to No.1ze Ratio) decreases. In addition, when photographing the head, the subject's head is placed in the center of a cylindrical RF coil, so there is no heat generated in areas other than the photographed area (head), such as the face and neck. Noise due to movement is received and the SNR deteriorates. In addition, although the surface type coil has good adhesion to the subject, the imaging area is narrow;
There is also a problem in that the operation of attaching it to the imaging site is cumbersome.

従って、本願発明の目的は、頭部撮影時において、頭部
撮影時の頭頂部のSNRを向上し、操作性も向上した頭
部用RFコイルを提供することにある。
Therefore, an object of the present invention is to provide an RF coil for the head that improves the SNR of the top of the head when photographing the head and also improves operability.

(課題を解決するための手段) 上記の目的を達成するために、本発明の頭部用RFコイ
ルは、以下の様な構成をしている。即ち、略円形の導電
ループと、各々一端を前記ループ周縁に接続し、前記ル
ープ中心を通り、そのループ面に垂直な線上に所定の距
離を隔てて配置された接続部に他端を接続した複数の略
円弧状の導電エレメントと、前記導電ループ周縁上の前
記エレント接続部間の各々又は、前記導電エレントの各
々に直列に接続された容量素子とからなり、略半球形の
形状を有することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the head RF coil of the present invention has the following configuration. That is, each conductive loop has a substantially circular shape, one end of which is connected to the periphery of the loop, and the other end of which is connected to a connecting portion that passes through the center of the loop and is placed at a predetermined distance on a line perpendicular to the loop plane. It is composed of a plurality of substantially arc-shaped conductive elements and a capacitive element connected in series between each of the conductive element connecting portions on the periphery of the conductive loop or to each of the conductive elements, and has a substantially hemispherical shape. It is characterized by

(作用) コイルの表面電流分布が理想的状態となり、アキシャル
面で均一な磁場を作ると共に、コイル形状が略半球形な
ので、頭部撮影時において、受信時の撮影領域外からの
熱運動に起因したノイズ量が減少し、又、コイル面と頭
部撮影面との近接により、受信信号強度が大きくなり、
SNRが向上する。
(Function) The surface current distribution of the coil is in an ideal state, creating a uniform magnetic field on the axial plane, and the coil shape is approximately hemispherical. In addition, due to the proximity of the coil surface to the head imaging surface, the received signal strength increases.
SNR improves.

(実施例) 第1図は、本発明の一実施例による頭部用RFコイルを
表わす図である。第1図(a)のように、頭部用RFコ
イルは、半球の形状をしており、円形の導電ループ8と
、一端を前記ループ周縁に接続し、他端を半球の頂点、
即ち接続部9に接続した174円弧状の導電エレメント
10と、導電ループ8周縁上の前記エレント接続部間の
各々に直列に接続されたコンデンサ11とから構成され
ており、半球の形状を有する。導電ループ8と導電エレ
メント10は、電気伝導性の良い材質、例えば、銅、銀
又は銅に銀メツキを施したもの等で作られ、形状は棒、
管又は箔で構成されている。第1図(b)は、第1図(
a)のRFコイル5をZ方向から見た図である。第1図
(b)のように、接続部9が導電ループ8のループ中心
を通り、このループ面に垂直な線上にとなるように、各
導電エレメント10は、接続部9に一端を接続し、他端
を前記ループ周縁に等間隔に接続している。この導電エ
レメント10の本数は16本であり、このように4n(
nは自然数)本とすることにより、導電ループ8の円周
方向に90″離れた2点のコンデンサ11の両端で90
”位相をずらしてRE送信を行い、受信時は90°位相
をずらして2倍号の加算を行う直交(Quadratu
re )モードを用いることができる。直交モードを用
いる利点は、送信時には磁化ベクトルの回転モードが撮
影部位内のスピンの回転方向のみに制限され、送信電力
が172に省力化できることと、受信時には、NHR信
号は2倍になり、相関のないノイズ信号は15@にしか
ならないため、受信感度が4倍向上することができる点
にある。
(Example) FIG. 1 is a diagram showing an RF coil for a head according to an example of the present invention. As shown in FIG. 1(a), the head RF coil has a hemispherical shape, and includes a circular conductive loop 8, one end connected to the periphery of the loop, and the other end connected to the apex of the hemisphere.
That is, it is composed of a 174-arc conductive element 10 connected to the connecting portion 9, and a capacitor 11 connected in series between each of the electric conductive connecting portions on the periphery of the conductive loop 8, and has a hemispherical shape. The conductive loop 8 and the conductive element 10 are made of a material with good electrical conductivity, such as copper, silver, or copper plated with silver, and are shaped like a rod.
Constructed of tube or foil. Figure 1(b) is the same as Figure 1(b).
It is a figure which looked at the RF coil 5 of a) from the Z direction. As shown in FIG. 1(b), each conductive element 10 connects one end to the connecting portion 9 so that the connecting portion 9 passes through the center of the conductive loop 8 and is on a line perpendicular to the loop plane. , the other end is connected to the loop periphery at equal intervals. The number of conductive elements 10 is 16, and is 4n (
n is a natural number), the capacitors 11 at both ends of the conductive loop 8 are separated by 90 inches in the circumferential direction.
``Quadrature (Quadrature)' performs RE transmission with a phase shift, and when receiving, shifts the phase by 90 degrees and adds the double sign.
re) mode can be used. The advantage of using the orthogonal mode is that during transmission, the rotation mode of the magnetization vector is limited to only the rotation direction of the spins within the imaged area, reducing the transmission power to 172, and during reception, the NHR signal is doubled and the correlation is Since the noise signal without this signal is only 15@, the receiving sensitivity can be improved by four times.

RF信号の送信及び受信は、コンデンサ11の中の1個
又はお互いが90゛離れた2個のコンデンサの両端に端
子を設けて、RF電源や受信回路を接続する。又、コイ
ルの入出力部には、−a的に用いられている反射防止の
ためのインピーダンス変換回路を任意の位置に接続し、
平衡不平衡変換のためのバラ:y (balanced
 unbalanced transfornor )
回路(共に図示せず)を前記コンデンサと端子の間に接
続する。
For transmission and reception of RF signals, terminals are provided at both ends of one of the capacitors 11 or two capacitors separated by 90 degrees from each other, and an RF power source and a receiving circuit are connected. In addition, an impedance conversion circuit for preventing reflection, which is used in -a, is connected to the input/output part of the coil at an arbitrary position.
Rose for balanced unbalanced transformation: y (balanced
unbalanced transformer)
A circuit (both not shown) is connected between the capacitor and the terminal.

第2図は、受信専用の本実施例の頭部用RFコイルの等
価回路図である。第2図において、12、〜12,6は
前記導電エレメント10の待つ固有のインダクタンス、
13は受信用の頭部用RFコイルとその外側に配置され
る送信用のボディコイル(図示せず)との磁気的カップ
リングを防止するデカップリング回路、14はコンデン
サ114に並列に接続され、容量可変のバリコン(ba
liabl13condenser )である0図のよ
うに、全体としては、バイパスフィルターの構造をして
おり、コイルの共振角周波数がω=γH(γ:磁気回転
比、H:静磁場強度)となるように、コンデンサ11.
〜11.6の容量を決定し、バリコン14樟よってその
値を調節する。デカップリング回路13は、磁化ベクト
ルの直交した2つの回転モードを抑えるため、前記ルー
プ円周方向に90°の位置にも設けられ、更に確実にカ
ップリングを防止するために、180°、270″離れ
れな位置の計4個のコンデンサの各々に設置される。こ
のデカップリング回路13は、クロスダイオード15a
、15bとインダクタンス16からなり、ボディコイル
送信時に、インダクタンス12、〜12.6に生じる誘
導起電力でクロスダイオード15a、15bの両端に電
位差が生じ、これらが交互にオンになる。この結果、イ
ンダクタンス16とコンデンサ11+が共振回路となり
、頭部用REコイルの共振周波数がずれるため、頭部用
RFコイルとボディ用のRFコイルとの磁気的カップリ
ングを防ぐことができる9頭部用RFコイルによる受信
時は、NHR信号が微弱なため、インダクタンス121
〜12.4に生じる誘導起電力がダイオード15a、1
5bをオンするほど大きくないため、デカップリング回
路13は動作しない。
FIG. 2 is an equivalent circuit diagram of the head RF coil of this embodiment for reception only. In FIG. 2, 12, to 12,6 are the inherent inductances of the conductive element 10;
13 is a decoupling circuit that prevents magnetic coupling between the receiving head RF coil and the transmitting body coil (not shown) disposed outside the receiving head RF coil; 14 is connected in parallel to the capacitor 114; Variable capacitor (ba) with variable capacity
As shown in Figure 0, which is liabl13condenser), the overall structure is a bypass filter, and the resonance angular frequency of the coil is ω = γH (γ: gyromagnetic ratio, H: static magnetic field strength). Capacitor 11.
Determine the capacity of ~11.6 and adjust the value using a variable capacitor of 14 cm. The decoupling circuit 13 is also provided at a position of 90° in the circumferential direction of the loop in order to suppress the two orthogonal rotation modes of the magnetization vector, and at 180° and 270″ to more reliably prevent coupling. The decoupling circuit 13 is installed at each of a total of four capacitors at separate locations.
, 15b and an inductance 16, and during body coil transmission, the induced electromotive force generated in the inductances 12 to 12.6 creates a potential difference across the cross diodes 15a and 15b, and these are turned on alternately. As a result, the inductance 16 and the capacitor 11+ become a resonant circuit, and the resonant frequency of the head RE coil shifts, which prevents magnetic coupling between the head RF coil and the body RF coil. When receiving with the RF coil, the inductance is 121 because the NHR signal is weak.
~12.4 The induced electromotive force generated in the diodes 15a, 1
5b is not large enough to turn on, the decoupling circuit 13 does not operate.

次に、このように構成された本実施例の頭部用RFコイ
ルの動作を説明する。第3図は、本実施例の頭部用R[
コイルの電流分布図である。第3図(a)のように、−
2方向から見て最下点の給電点を設けて、このコンデン
サの両端にRF’を源(図示せず)を接続し、所定の周
波数のRF雷電圧印加する。
Next, the operation of the head RF coil of this embodiment configured as described above will be explained. FIG. 3 shows the head R[
It is a current distribution diagram of a coil. As shown in Figure 3(a), -
A power supply point at the lowest point when viewed from two directions is provided, an RF' source (not shown) is connected to both ends of this capacitor, and an RF lightning voltage of a predetermined frequency is applied.

この結果、導電エレメント10には、第3図(b)のよ
うに、Y軸の十から右同りにθを円周方向にとって、C
OSθに比例した共振電流分布となる。
As a result, as shown in FIG. 3(b), the conductive element 10 has C
The resonant current distribution is proportional to OSθ.

これはコイル表面の理想的な電流分布であり、コイル内
部のアキシャル面CXY面)に均一なRF磁場及び、受
信信号感度を得ることができる。第4図は、本実施例の
頭部用R[コイルのSNRの2依存性を表わすグラフで
ある。第4図(a)は、頬部用RFコイルをZ軸に垂直
な方向から見た図であり、導電ループ面がZ軸と交わる
点を0として、コイル内のZ方向への距離をdimとす
る。第4図(b)は、本実施例の頭部用RFコイルを単
一(Sin!11113>のモード(受信AIDが1つ
)を用いて測定したときの、d Ti11Mれなアキシ
ャル面の信号強度のノイズ強度に対する比(S14R)
のグラフである(直交モードを用いればSNRは更にp
倍となる)、第4図(b)において、点線は、従来のバ
ードゲージコイルによる比較実験結果である。グラフの
ように、本実施例の頭部用RFコイルでは、dが大きい
ところでは、5I4Rが従来のバードケージコイルを上
回る。従って、頭部撮影においては頭頂部の受信信号強
度が大きく、SNRが向上し、頭頂部の画質を向上する
ことができる。このように、本実施例の頭部用RFコイ
ルにおいては、コイル形状が半球形なため、頭部撮影時
において、コイル内に入るのは頭部だけであり、頭部以
外はコイル外にあるため、撮影領域外からの熱運動に起
因したノイズの受信を減少できる。又、コイル面と頭頂
部が密接しているため、受信信号強度が大きくなり、頭
頂部でのSNRが向上する。又、頭部以外がコイルによ
り囲まれていないため、視界の確保ができ、患者の圧迫
感を軽減することができる。
This is an ideal current distribution on the coil surface, and it is possible to obtain a uniform RF magnetic field and reception signal sensitivity on the axial plane (CXY plane) inside the coil. FIG. 4 is a graph showing the 2 dependence of the SNR of the head R[coil] in this example. FIG. 4(a) is a diagram of the cheek RF coil viewed from a direction perpendicular to the Z-axis, with the point where the conductive loop surface intersects with the Z-axis as 0, and the distance in the coil in the Z-direction as dim. shall be. FIG. 4(b) shows the signal on the axial plane of dTi11M when the head RF coil of this example was measured using the single (Sin!11113> mode (one receiving AID)). Ratio of intensity to noise intensity (S14R)
(If the orthogonal mode is used, the SNR will be further p
In FIG. 4(b), the dotted line is the result of a comparative experiment using a conventional bird gauge coil. As shown in the graph, in the head RF coil of this embodiment, 5I4R exceeds the conventional birdcage coil where d is large. Therefore, in head imaging, the strength of the received signal at the top of the head is high, the SNR is improved, and the image quality of the top of the head can be improved. In this way, in the head RF coil of this embodiment, since the coil shape is hemispherical, only the head enters the coil when photographing the head, and everything other than the head is outside the coil. Therefore, reception of noise caused by thermal motion from outside the imaging area can be reduced. Furthermore, since the coil surface and the top of the head are in close contact, the received signal strength increases and the SNR at the top of the head improves. Furthermore, since the coil does not surround the area other than the head, visibility can be secured and the patient's feeling of pressure can be reduced.

尚、本M発明は上記実施例に限ることなく、特許請求の
範囲内で種々の変形が可能である。第5図は、本願発明
の他の実施例の頭部用RFコイルを表わす概略図である
。第5図における記号は、第1図と同様に用いているの
で、ここでの説明を省略する。前記実施例においては、
容量素子は導電ループ8に直列に設けられていたが、第
5図(a)のように、導電エレメント10に直列に設け
ても良い、この場合1等価回路はローパスフィルター型
となる。第5図(b)は、第5図(a)のRF=zイル
5を2方向から見た図である。前記実施例では、接続部
9は導電エレメント10が1点で接続するように構成さ
れていたが、接続部9近傍は、Z軸とのなす角が大きく
、コイル面としては有効に面かないので、第5図(b)
のように、導電ループ8と平行に配置された半径の小さ
い導電性の小ループ17のように構成したり、金属プレ
ート構造としても良い、又、導電ループ8の形状は、完
全な円形でなく、人頭形状に合せて縦方向を長軸にとっ
た楕円形にすることも、容量素子の容量を調節すること
で可能である。同様に、導電エレメント10の形状も完
全な174円弧ではなく、池の曲線の形状を用いても良
い、更に、導電エレメント10及びコンデンサ111〜
1114のうち、電流の微少なエレメントや容量素子を
取り除いても良い、更に、コンデンサ11は、導電ルー
プ8周縁上の導電エレント10接続部間と、前記導電エ
レント10の各々の両方に直列に接続しても良い、この
場合、等価回路はバンドパスフィルター型となる。更に
、上記実施例では受信専用に用いたが、送受信両方に用
いても良い、更に、デカ・yプリング回路のインダク!
ンス16は省略しても良い。
Note that the present M invention is not limited to the above embodiments, and various modifications can be made within the scope of the claims. FIG. 5 is a schematic diagram showing a head RF coil according to another embodiment of the present invention. Symbols in FIG. 5 are used in the same way as in FIG. 1, so their explanations will be omitted here. In the above embodiment,
Although the capacitive element was provided in series with the conductive loop 8, it may also be provided in series with the conductive element 10 as shown in FIG. 5(a). In this case, one equivalent circuit becomes a low-pass filter type. FIG. 5(b) is a view of the RF=z-il 5 in FIG. 5(a) seen from two directions. In the embodiment described above, the connecting portion 9 was configured so that the conductive element 10 is connected at one point, but the area near the connecting portion 9 has a large angle with the Z axis and does not have an effective coil surface. , Figure 5(b)
The conductive loop 8 may be configured as a small conductive loop 17 with a small radius arranged in parallel with the conductive loop 8, or may have a metal plate structure, or the conductive loop 8 may have a shape other than a perfect circle. By adjusting the capacitance of the capacitive element, it is also possible to form an elliptical shape with the longitudinal direction as the major axis to match the shape of a human head. Similarly, the shape of the conductive element 10 is not a perfect 174-arc shape, but may have a curved shape.
1114, an element with a small current or a capacitive element may be removed.Furthermore, the capacitor 11 is connected in series both between the connection portions of the conductive elements 10 on the periphery of the conductive loop 8 and to each of the conductive elements 10. In this case, the equivalent circuit will be a bandpass filter type. Furthermore, although it was used only for reception in the above embodiment, it may also be used for both transmission and reception.
The step 16 may be omitted.

(発明の効果) 以上、説明の通り、本発明の頭部用RFコイルによれば
、以下の効果が得られる。
(Effects of the Invention) As described above, the head RF coil of the present invention provides the following effects.

(1)コイルの表面電流分布が理想的状態となり、アキ
シャル面で均一な磁場を作ると共に、コイル形状が半球
形であり、頭部撮影時にお〜1て、コイル内に入るのは
頭部だけであるため、頭部(撮影領域)以外からの熱運
動に起因したノイズの受信を減少できる。又、コイル面
と頭頂部が密接しているため、受信信号強度が大きくな
り、頭頂部でのSIRを向上することができる。従って
、頭部撮影時において、頭頂部の画質を向上させること
ができる。
(1) The surface current distribution of the coil is in an ideal state, creating a uniform magnetic field on the axial plane, and the coil shape is hemispherical, so when photographing the head, only the head enters the coil. Therefore, reception of noise caused by thermal motion from sources other than the head (imaging area) can be reduced. Furthermore, since the coil surface and the top of the head are in close contact, the strength of the received signal increases, and the SIR at the top of the head can be improved. Therefore, when photographing the head, the image quality of the top of the head can be improved.

(2)コイル形状が半球形なため、撮影部位への装着は
、従来のサーフェイスコイルと上ヒベ位置決めが容易で
あり、操作性が向上する。又、頭部以外がコイルにより
囲まれていなりまため、視界の確保ができ、撮影時の患
者の圧迫感を軽減することができる。
(2) Since the coil shape is hemispherical, it is easy to attach the coil to the imaging site by positioning the upper hemisphere with the conventional surface coil, improving operability. In addition, since the coils surround the area other than the head, a good field of view can be ensured, and the patient's feeling of pressure during imaging can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>、(b)は、本発明の一実施例による頭部
用R[コイルを表わす概略図、第2図は本願発明の一実
施例の頭部用RFコイルの等価回路図、第3図は本願発
明の一実施例の電流分布図、第4図(a)、(b)は、
本実施例の頭部用RFコイルのSNRのZ依存性を表わ
すグラフ、第5図(a)。 (b)は、本願発明の他の実施例の頭部用RFコイルを
表わす概略図、第6図は従来例のNHR−CT波装置表
わす概略図、第7図(a>、(b)、(c)は、従来例
のRFコイルを表わす概略図。 1・・・静磁場マグネット、2・・・被検体、3・・・
RFコイル、    4・・・勾配磁場コイル、5.8
・・・導電ループ、 6.10・・・導電エレメント、 7・・・容量素子、9・・・接続部、 11.111へ110.・・・コンデンサ、121〜1
216・・・インダクタンス、13・・・デカップリン
グ回路、14・・・バリコン、15a、15b・・・ク
ロスダイオード、16・・・インダクタンス、17・・
・小ループ。
FIGS. 1(a) and 1(b) are schematic diagrams showing a head RF coil according to an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of a head RF coil according to an embodiment of the present invention. , FIG. 3 is a current distribution diagram of one embodiment of the present invention, and FIGS. 4(a) and (b) are:
FIG. 5(a) is a graph showing the Z dependence of the SNR of the head RF coil of this example. (b) is a schematic diagram showing a head RF coil according to another embodiment of the present invention, FIG. 6 is a schematic diagram showing a conventional NHR-CT wave device, and FIG. 7 (a>, (b), (c) is a schematic diagram showing a conventional RF coil. 1... Static magnetic field magnet, 2... Subject, 3...
RF coil, 4... Gradient magnetic field coil, 5.8
... Conductive loop, 6.10... Conductive element, 7... Capacitive element, 9... Connection part, 11.110 to 111. ... Capacitor, 121-1
216... Inductance, 13... Decoupling circuit, 14... Variable capacitor, 15a, 15b... Cross diode, 16... Inductance, 17...
・Small loop.

Claims (4)

【特許請求の範囲】[Claims] (1)略円形の導電ループと、各々一端を前記ループ周
縁に接続し、前記ループ中心を通り、そのループ面に垂
直な線上に所定の距離を隔てて配置された接続部に他端
を接続した複数の略円弧状の導電エレメントと、前記導
電ループ周縁上の前記エレント接続部間の各々又は、前
記導電エレントの各々に直列に接続された容量素子とか
らなり、略半球形の形状を有することを特徴とする頭部
用RFコイル。
(1) Approximately circular conductive loops, one end of which is connected to the periphery of the loop, and the other end connected to a connection part that passes through the center of the loop and is placed at a predetermined distance on a line perpendicular to the loop surface. a plurality of substantially arc-shaped conductive elements; and a capacitive element connected in series between each of the conductive element connection portions on the periphery of the conductive loop or to each of the conductive elements, and has a substantially hemispherical shape. An RF coil for the head characterized by the following.
(2)前記容量素子の少なくとも1個は、バリコンを並
列に備えることを特徴とする請求項(1)記載の頭部用
RFコイル。
(2) The head RF coil according to claim (1), wherein at least one of the capacitive elements includes a variable capacitor in parallel.
(3)前記導電エレメントは、4n(nは自然数)本で
あることを特徴とする請求項(1)記載の頭部用RFコ
イル。
(3) The head RF coil according to claim (1), wherein the number of conductive elements is 4n (n is a natural number).
(4)前記容量素子の少なくとも1個に並列して、デカ
ップリング回路を設けることを特徴とする請求項(1)
記載の頭部用RFコイル。
(4) Claim (1) characterized in that a decoupling circuit is provided in parallel with at least one of the capacitive elements.
The described head RF coil.
JP63064845A 1988-03-18 1988-03-18 RF coil for NMR Expired - Fee Related JP2620100B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63064845A JP2620100B2 (en) 1988-03-18 1988-03-18 RF coil for NMR
PCT/JP1989/000295 WO1989008426A1 (en) 1988-03-18 1989-03-17 Rf coil for head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63064845A JP2620100B2 (en) 1988-03-18 1988-03-18 RF coil for NMR

Publications (2)

Publication Number Publication Date
JPH01238849A true JPH01238849A (en) 1989-09-25
JP2620100B2 JP2620100B2 (en) 1997-06-11

Family

ID=13269962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63064845A Expired - Fee Related JP2620100B2 (en) 1988-03-18 1988-03-18 RF coil for NMR

Country Status (2)

Country Link
JP (1) JP2620100B2 (en)
WO (1) WO1989008426A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029313A (en) * 2008-07-25 2010-02-12 Mr Technology:Kk Nuclear magnetic resonance image diagnostic system
JP2017507742A (en) * 2014-03-14 2017-03-23 ザ ジェネラル ホスピタル コーポレイション System and method for low field multi-channel imaging
WO2018176940A1 (en) * 2017-03-28 2018-10-04 中国科学院合肥物质科学研究院 Radio-frequency coil for magnetic resonance device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602479A (en) * 1995-08-08 1997-02-11 Picker International, Inc. Quadrature radio frequency coil for magnetic resonance imaging

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694255A (en) * 1983-11-04 1987-09-15 General Electric Company Radio frequency field coil for NMR
JPS62190705A (en) * 1986-02-17 1987-08-20 Yokogawa Medical Syst Ltd Rf coil for nuclear magnetic resonance imaging apparatus
JPS62170007U (en) * 1986-04-18 1987-10-28

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029313A (en) * 2008-07-25 2010-02-12 Mr Technology:Kk Nuclear magnetic resonance image diagnostic system
JP2017507742A (en) * 2014-03-14 2017-03-23 ザ ジェネラル ホスピタル コーポレイション System and method for low field multi-channel imaging
WO2018176940A1 (en) * 2017-03-28 2018-10-04 中国科学院合肥物质科学研究院 Radio-frequency coil for magnetic resonance device
US11029376B2 (en) 2017-03-28 2021-06-08 Hefei Institutes Of Physical Science, Chinese Academy Of Sciences Radio-frequency coil for magnetic resonance device

Also Published As

Publication number Publication date
JP2620100B2 (en) 1997-06-11
WO1989008426A1 (en) 1989-09-21

Similar Documents

Publication Publication Date Title
US4799016A (en) Dual frequency NMR surface coil
US4783641A (en) NMR radio frequecny field coil with distributed current
US6396271B1 (en) Tunable birdcage transmitter coil
US4320342A (en) Magnet coil arrangement for generating linear magnetic gradient fields
US4617936A (en) Flexible surface coil for magnetic resonance imaging
EP0758092A1 (en) Quadrature radio frequency coil for magnetic resonance imaging
Wu et al. 7T human spine imaging arrays with adjustable inductive decoupling
JPH0222347B2 (en)
US7525310B2 (en) Signal acquisition and processing method and apparatus for magnetic resonance imaging
US20030088181A1 (en) Method of localizing an object in an MR apparatus, a catheter and an MR apparatus for carrying out the method
WO1991010915A1 (en) Nmr radio frequency coil with dielectric loading for improved field homogeneity
JP4588830B2 (en) RF coil array device for vertical magnetic field MRI
US5646530A (en) Surface coil for high resolution imaging using a magnetic resonance imaging apparatus
US4928064A (en) Hybrid surface coils
JPH09192117A (en) Mri system
CA2760546A1 (en) Signal acquisition and processing method and apparatus for magnetic resonance imaging
JP2834569B2 (en) Resonator for nuclear magnetic resonance tomography
CN108663641B (en) Radio frequency coil for a magnetic resonance apparatus
US6791321B2 (en) Birdcage coils for simultaneous acquisition of spatial harmonics
JPH04332531A (en) Inspecting device using nuclear magnetic resonance
JPH01238849A (en) Rf coil for head part
US6452393B1 (en) Nuclear magnetic resonance birdcage coil with Cassinian oval former
Gasson et al. Modified birdcage coils for targeted imaging
US20050253581A1 (en) Open half volume quadrature transverse electromagnetic coil for high field magnetic resonance imaging
Link The design of resonator probes with homogeneous radiofrequency fields

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees