JPH0123807B2 - - Google Patents

Info

Publication number
JPH0123807B2
JPH0123807B2 JP56212916A JP21291681A JPH0123807B2 JP H0123807 B2 JPH0123807 B2 JP H0123807B2 JP 56212916 A JP56212916 A JP 56212916A JP 21291681 A JP21291681 A JP 21291681A JP H0123807 B2 JPH0123807 B2 JP H0123807B2
Authority
JP
Japan
Prior art keywords
transistor
voltage
output
resistor
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56212916A
Other languages
Japanese (ja)
Other versions
JPS58114238A (en
Inventor
Kunitoshi Aono
Toshiki Mori
Haruyasu Yamada
Kenichi Hasegawa
Atsushi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56212916A priority Critical patent/JPS58114238A/en
Publication of JPS58114238A publication Critical patent/JPS58114238A/en
Publication of JPH0123807B2 publication Critical patent/JPH0123807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/501Half or full adders, i.e. basic adder cells for one denomination
    • G06F7/5013Half or full adders, i.e. basic adder cells for one denomination using algebraic addition of the input signals, e.g. Kirchhoff adders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/48Indexing scheme relating to groups G06F7/48 - G06F7/575
    • G06F2207/4802Special implementations
    • G06F2207/4806Cascode or current mode logic

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は全加算器に関するもので、多値論理を
用いる事により回路構成が簡略化し、高速、低消
費電力、高集積可能な全加算器を提供するもので
ある。 一般に全加算器は、3つの入力(それぞれ、
A,B,Ciとする。)と2つの出力(和出力をS、
けた上げ出力をCoとする。)を持つ。入力A,
B,Ciと、出力S,Coの間には第1表の様な2
値の真理値表で示される関係を持つ。
The present invention relates to a full adder, and provides a full adder whose circuit configuration is simplified by using multivalued logic, and which is high speed, has low power consumption, and can be highly integrated. In general, a full adder has three inputs (each
Let A, B, C i . ) and two outputs (sum output S,
Let Co be the carry output. )have. Input A,
Between B, C i and the outputs S, Co, there are 2 as shown in Table 1.
It has the relationship shown by the truth table of values.

【表】 上記真理値表をプール方程式で表現すると、次
式の様に表現できる。 S=A・B・Ci+A・・i+・B・i +・・Ci (1) C0=A・B・Ci+A・B・i +A・・Ci+・B・Ci (2) 全加算器をAND,ORの2値論理のゲートで構
成した従来の例を第1図に示す。 第1図において、1,2……6はANDゲート、
7,8,9はNORゲートである。ただし、1,
2,4,6のANDゲートは入力端子の一方が反
転入力になつている。全加算器を2値論理で構成
すると第1図においては6ゲート必要とする。ま
た実際に、トランジスタ、抵抗等を用いて回路を
構成すると、その素子数はかなり多くなる。また
一般に、高速化のために論理ゲートとして、
ECL論理ゲートを用いる必要があるが、ECL論
理ゲートは差動形式となつているため、回路はい
つそう複雑となり素子数が増大する。 全加算器は、通常、加算器乗算器等の基本構成
単位として多数使用される。16ビツトの加算器を
構成する為には16個の全加算器が必要となる。そ
こで、全加算器の素子数が多いと半導体集積化す
る場合にはチツプサイズの制限、消費電力等の問
題があり非常に不利となる。 本発明は、上記従来の全加算器の問題点を解決
する全加算器を提供するものである。すなわち、
全加算器内部の信号処理を多値論理にする事によ
り回路を簡略化し素子数を低減させるものであ
る。 本発明にかかる回路は、それぞれ2値の3入力
A,B,Ciを加算して4値とし、その4値信号を
2つの電圧比較器で比較する事により、和出力
S、けた上げ上力Coを得るものである。 第2図に、本発明の一実施例にかかる全加算器
の基本構成を示し、説明する。11は加算器、1
2は第1の電圧比較器、13は第2の電圧比較
器、14は基情電圧発生回路である。それぞれ2
値の信号を持つ入力A,B,Ciが加算器11で加
算され、V0,V1,V2,V3の4つの電圧レベルを
持つ4値信号VINに変換される。第2表に入力
A,B,Ci、出力S,C0と4値信号VINとの対応
表を示す。
[Table] If the above truth table is expressed using a pool equation, it can be expressed as shown in the following equation. S=A・B・C i +A・・i +・B・i +・・C i (1) C 0 =A・B・C i +A・B・i +A・・C i +・B・C i (2) Figure 1 shows a conventional example in which a full adder is configured with AND and OR binary logic gates. In Figure 1, 1, 2...6 are AND gates,
7, 8, and 9 are NOR gates. However, 1,
One of the input terminals of AND gates 2, 4, and 6 is an inverting input. If the full adder is configured with binary logic, six gates are required in FIG. 1. Furthermore, when a circuit is actually constructed using transistors, resistors, etc., the number of elements becomes considerably large. In addition, it is generally used as a logic gate to increase speed.
It is necessary to use ECL logic gates, but since ECL logic gates are of a differential type, the circuit becomes very complex and the number of elements increases. Full adders are commonly used in large numbers as basic building blocks such as adder multipliers. To configure a 16-bit adder, 16 full adders are required. Therefore, if the full adder has a large number of elements, it is extremely disadvantageous when integrated into semiconductors due to problems such as chip size limitations and power consumption. The present invention provides a full adder that solves the problems of the conventional full adder described above. That is,
By using multi-value logic for signal processing inside the full adder, the circuit is simplified and the number of elements is reduced. The circuit according to the present invention adds three binary inputs A, B, and C i to obtain four values, and compares the four-value signals with two voltage comparators. It is the one that obtains the force Co. FIG. 2 shows and describes the basic configuration of a full adder according to an embodiment of the present invention. 11 is an adder, 1
2 is a first voltage comparator, 13 is a second voltage comparator, and 14 is a fundamental voltage generation circuit. 2 each
Inputs A, B, and C i having value signals are added by an adder 11 and converted into a four-value signal V IN having four voltage levels of V 0 , V 1 , V 2 , and V 3 . Table 2 shows a correspondence table between the inputs A, B, C i , the outputs S, C 0 and the 4-value signal V IN .

【表】 ここで、V0,V1,V2,V3の電圧は V0>V1>V2>V3 (またはV0<V1<V2<V3) (3) の関係を持つている。 次に、前記4値信号VINを2つの電圧比較器で
比較して、出力S,C0を得る。この動作を第3
図を用いて説明する。第3図は4値信号VIN、出
力S,C0、電圧比較器の基準電圧Va,Vb,Vc
関係を図示したものである。 第2表の真理値表から明らかな様にけた上げ出
力C0が出力されるのは、4値信号VINがV2または
V3の電圧レベルになつた時であるから、第1の
電圧比較器2の基準電圧Vaを V1>Va>V2 (またはV1<Va<V2) (4) として比較すれば、けた上げ上力C0を得る事が
できる。 また和出力Sが出力されるのは、VINがV1また
はV3の電圧レベルを持つ時である。ここで、前
記けた上げ出力C0、和出力Sと4値信号VINの関
係をみると、C0が出力されない時(第3図にお
いて0とする)に、和出力Sが出力されるのは
VINがV1の電圧レベルを持つ時であり、C0が出力
される時に和出力Sが出力されるのは、VINがV3
の電圧レベルを持つ時である。そこで、第2の電
圧比較器3の基準電圧VBをC0が出力されていな
い時には、Vb V0>Vb>V1 (またはV0<Vb<V1) (5) として、VINと比較し、C0が出力されている時に
は、Vc V2>Vc>V3 (またはV2<Vc<V3) (6) としてVINと比較すれば、発出力Sを得る事がで
きる。第2図において、基準電圧発生回路4は上
記に説明したごとく、前記第1の比較器の出力す
なわちけた上げ信号C0に応じて、基準電圧Vb
たはVcを発生するものである。 ここで、第2図に示した本発明において入力を
電流入力とする事により、加算器11の構成が、
抵抗1個で構成する事も可能となる。また、出力
も電流出力とし入出力電流値を同一とする事によ
り、入出力間のインターフエイスがとれ、本全加
算器を集積する時非常に有利となる。 次に、本発明の第1の実施例の具体構成を第4
図に示す。第4図において第2図のブロツクに対
応する回路を破線で示し説明する。ここで、T1
〜T5はトランジスタ、R1〜R3は抵抗、I1,I2は定
電流源、Vcc,Vaは定電圧源である。 第4図において、加算器11は2値の状態を持
つ3つの電流入力が一方の端子に印加され他方の
端子が直流電圧源Vccに接続した抵抗R1にて形成
され、4値信号を得る。電圧比較器12は、トラ
ンジスタT1ベースに基準電圧源Vaが接続された
トランジスタT2、電流源I1よりなる差動スイツチ
からなり、前記4値信号がトランジスタT1のベ
ースに印加され、トランジスタT2のコレクタよ
りけた上げ信号C0を得る構成である。電圧比較
器13は、トランジスタT4,T5、電流源I2から
なり、トランジスタT5に前記4値信号が印加さ
れ、トランジスタT4のコレクタから和出力を発
生しそのベースは抵抗R3を介して接地されてい
る。基準電圧発生回路14は抵抗R2、トランジ
スタT3、直流電圧源Vaから構成されている。 本発明の第2の実施例を第5図に示す。第5図
に示す回路は、第4図に示した回路において破線
12,13の電圧比較器に、それぞれダイオード
D1,D2を付加する事によりトランジスタの飽和
動作をなくし、動作速度を高速化したものであ
る。 以上のように、本発明の全加算器においては、
従来の全加算器に比べ回路構成が大幅に簡略化さ
れ、且つ入出力間の遅延時間は、差動増幅器2段
分の遅延時間のみであり論理ゲート数が少なく、
高速化をはかる事ができる。また、本発明の全加
算器は電源電圧を小さくしても動作可能であり、
低消費電力型の回路を構成する事ができる。ま
た、本発明の全加算器を用いて半導体集積回路を
構成する場合においては、回路構成が簡略化され
低消費電力化が可能な為、高集積化を実現しうる
ものである。
[Table] Here, the voltages of V 0 , V 1 , V 2 , and V 3 are as follows: V 0 > V 1 > V 2 > V 3 (or V 0 < V 1 < V 2 < V 3 ) (3) have. Next, the four-value signal V IN is compared by two voltage comparators to obtain outputs S and C 0 . Repeat this action in the third
This will be explained using figures. FIG. 3 illustrates the relationship among the four-value signal V IN , the outputs S and C 0 , and the reference voltages Va , V b , and V c of the voltage comparators. As is clear from the truth table in Table 2, the carry output C 0 is output when the 4-level signal V IN is V 2 or
Since this is the time when the voltage level reaches V 3 , the reference voltage V a of the first voltage comparator 2 is compared as V 1 > V a > V 2 (or V 1 < V a < V 2 ) (4) Then, you can obtain the carry up force C 0 . Further, the sum output S is output when V IN has a voltage level of V 1 or V 3 . Now, looking at the relationship between the carry output C 0 , the sum output S, and the 4-value signal V IN , when C 0 is not output (set to 0 in Figure 3), the sum output S is output. teeth
The sum output S is output when V IN has a voltage level of V 1 and C 0 is output when V IN is V 3
when it has a voltage level of . Therefore, when C 0 is not output, the reference voltage V B of the second voltage comparator 3 is set as V b V 0 > V b > V 1 (or V 0 < V b < V 1 ) (5), When compared with V IN , when C 0 is output, V c V 2 > V c > V 3 (or V 2 < V c < V 3 ) (6) If compared with V IN , the output output S can be obtained. In FIG. 2, the reference voltage generating circuit 4 generates the reference voltage Vb or Vc in accordance with the output of the first comparator, that is, the carry signal C0 , as described above. Here, in the present invention shown in FIG. 2, by setting the input as a current input, the configuration of the adder 11 is as follows.
It is also possible to configure it with one resistor. Furthermore, by making the output a current output and making the input and output current values the same, an interface between the input and output can be established, which is very advantageous when integrating the present full adder. Next, the specific configuration of the first embodiment of the present invention will be explained in the fourth section.
As shown in the figure. In FIG. 4, circuits corresponding to the blocks in FIG. 2 are shown by broken lines and will be explained. Here, T 1
~ T5 is a transistor, R1 to R3 are resistors, I1 and I2 are constant current sources, and Vcc and Va are constant voltage sources. In FIG. 4, the adder 11 is formed by a resistor R 1 to which three current inputs having a binary state are applied to one terminal and the other terminal is connected to a DC voltage source Vcc , and outputs a four-value signal. obtain. The voltage comparator 12 consists of a differential switch consisting of a transistor T 2 with a reference voltage source V a connected to the base of the transistor T 1 and a current source I 1 , and the four-value signal is applied to the base of the transistor T 1 . The configuration is such that a carry signal C0 is obtained from the collector of the transistor T2 . The voltage comparator 13 consists of transistors T 4 , T 5 and a current source I 2 .The four-value signal is applied to the transistor T 5 , and a sum output is generated from the collector of the transistor T 4 , whose base connects the resistor R 3 . It is grounded through. The reference voltage generation circuit 14 includes a resistor R 2 , a transistor T 3 , and a DC voltage source V a . A second embodiment of the invention is shown in FIG. The circuit shown in FIG. 5 has diodes in the voltage comparators indicated by broken lines 12 and 13 in the circuit shown in FIG.
By adding D 1 and D 2 , the saturation operation of the transistor is eliminated and the operation speed is increased. As described above, in the full adder of the present invention,
The circuit configuration is greatly simplified compared to conventional full adders, and the delay time between input and output is only the delay time of two stages of differential amplifiers, so the number of logic gates is small.
It is possible to increase the speed. Further, the full adder of the present invention can operate even if the power supply voltage is reduced,
It is possible to configure a low power consumption circuit. Further, when a semiconductor integrated circuit is constructed using the full adder of the present invention, the circuit configuration is simplified and power consumption can be reduced, so that high integration can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2値論理による全加算器の論理
回路図、第2図は本発明の全加算器のブロツク
図、第3図は本発明の全加算器の動作説明図、第
4図は本発明の全加算器の第1の実施例の回路
図、第5図は本発明の全加算器の第2の実施例の
回路図である。 11……加算器、12,13……電圧比較器、
14……基準電圧発生回路、A,B,Ci……電流
入力、C0……けた上げ出力、S……和出力、R1
R2,R3……抵抗、Vcc,Va……電圧源、T1〜T5
……トランジスタ、D1,D2……ダイオード。
Fig. 1 is a logic circuit diagram of a full adder using conventional binary logic, Fig. 2 is a block diagram of the full adder of the present invention, Fig. 3 is an explanatory diagram of the operation of the full adder of the present invention, and Fig. 4 5 is a circuit diagram of a first embodiment of the full adder of the present invention, and FIG. 5 is a circuit diagram of a second embodiment of the full adder of the present invention. 11... Adder, 12, 13... Voltage comparator,
14...Reference voltage generation circuit, A, B, C i ...Current input, C0 ...Carry output, S...Sum output, R1 ,
R 2 , R 3 ... Resistance, V cc , Va ... Voltage source, T 1 to T 5
...transistor, D 1 , D 2 ...diode.

Claims (1)

【特許請求の範囲】 1 それぞれ2値の状態を持つ3つの電流入力を
第1の抵抗に入力し、4値の状態を取る電圧信号
に変換し、該4値の電圧信号を第1の比較器で第
1の基準電圧と比較して桁上げ電流出力および電
圧出力を得ると共に、前記4値の電圧信号を第2
の比較器で前記第1の比較器の桁上げ電圧出力に
より、第2又は第3の基準電圧のどちらか一方と
比較して和電流出力を得るよう制御し、前記3つ
の電流入力と桁上げおよび和電流出力の電流値を
等しく構成することを特徴とする全加算器。 2 それぞれ2値の状態を持つ3つの電流入力が
一端を直流電圧源に接続した第1の抵抗の他端に
それぞれ接続され、前記抵抗の他端は、コレクタ
が直流電圧源に接続された第1のトランジスタの
ベースに接続され、前記第1のトランジスタのエ
ミツタはベースがそれぞれ同一の基準電圧源に接
続される第2、第3のトランジスタのエミツタと
第1の定電流源に接続され、前記第2のトランジ
スタのコレクタから桁上げ電流出力を得るととも
に、前記第3のトランジスタのコレクタは第2の
抵抗を介して直流電圧源に接続されかつ第3の抵
抗を介して接地された第4のトランジスタのベー
スに接続され、前記第4のトランジスタのエミツ
タは、コレクタが直流電圧源に接続されベースが
前記第1の抵抗と3つの電流入力の接続点に接続
された第5のトランジスタのエミツタと第2の定
電流源に接続され、前記第4のトランジスタのコ
レクタから和電流出力を得ることを特徴とする全
加算器。 3 第1のトランジスタのエミツタは、第1のダ
イオードを介して第2、第3のトランジスタのエ
ミツタ及び第1の定電流源に接続され、第5のト
ランジスタのエミツタは第2のダイオードを介し
て第4のトランジスタのエミツタ及び第2の定電
流源に接続されることを特徴とする特許請求の範
囲第2項に記載の全加算器。
[Claims] 1. Three current inputs each having a binary state are input to a first resistor, are converted into a voltage signal having a four-value state, and the four-value voltage signal is subjected to a first comparison. The 4-value voltage signal is compared with the first reference voltage to obtain a carry current output and a voltage output, and the 4-value voltage signal is compared with the first reference voltage.
The comparator controls the carry voltage output of the first comparator to obtain a sum current output by comparing it with either the second or third reference voltage, and the carry voltage output of the first comparator is controlled to obtain a sum current output. A full adder characterized in that the current values of the sum current output and the sum current output are configured to be equal. 2 Three current inputs each having a binary state are respectively connected to the other end of a first resistor whose end is connected to a DC voltage source, and the other end of the resistor is connected to a first resistor whose collector is connected to a DC voltage source. The emitter of the first transistor is connected to the emitters of second and third transistors whose bases are connected to the same reference voltage source, and the first constant current source, and the emitter of the first transistor is connected to the first constant current source. A carry current output is obtained from the collector of the second transistor, and the collector of the third transistor is connected to a fourth transistor connected to a DC voltage source through a second resistor and grounded through a third resistor. The emitter of the fourth transistor connected to the base of the transistor is connected to the emitter of a fifth transistor whose collector is connected to a DC voltage source and whose base is connected to the connection point of the first resistor and the three current inputs. A full adder connected to a second constant current source and obtaining a sum current output from the collector of the fourth transistor. 3 The emitter of the first transistor is connected to the emitters of the second and third transistors and the first constant current source via the first diode, and the emitter of the fifth transistor is connected via the second diode. 3. The full adder according to claim 2, wherein the full adder is connected to the emitter of the fourth transistor and the second constant current source.
JP56212916A 1981-12-28 1981-12-28 Total adder Granted JPS58114238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56212916A JPS58114238A (en) 1981-12-28 1981-12-28 Total adder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56212916A JPS58114238A (en) 1981-12-28 1981-12-28 Total adder

Publications (2)

Publication Number Publication Date
JPS58114238A JPS58114238A (en) 1983-07-07
JPH0123807B2 true JPH0123807B2 (en) 1989-05-09

Family

ID=16630397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56212916A Granted JPS58114238A (en) 1981-12-28 1981-12-28 Total adder

Country Status (1)

Country Link
JP (1) JPS58114238A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607538B2 (en) * 1987-08-28 1997-05-07 株式会社日立製作所 Adder circuit

Also Published As

Publication number Publication date
JPS58114238A (en) 1983-07-07

Similar Documents

Publication Publication Date Title
GB2197558A (en) Level translation circuit
US5045730A (en) Electrical circuitry providing compatibility between different logic levels
US4599526A (en) Clocked latching circuit
JPS6134296B2 (en)
US3539824A (en) Current-mode data selector
US5459466A (en) Method and apparatus for converting a thermometer code to a gray code
EP0486010B1 (en) Multi-level logic input circuit
JP2523590B2 (en) Multi-value arithmetic circuit
JPS6245729B2 (en)
US3925651A (en) Current mode arithmetic logic array
JPH0783247B2 (en) Interface receiving circuit and level converting circuit
US2999637A (en) Transistor majority logic adder
JP3636232B2 (en) Integrated circuit capable of selecting function and method for selecting function
US3430071A (en) Logic circuit
JPH0123807B2 (en)
US4916653A (en) Adder using multi-state logic
JPH0573292B2 (en)
US4779011A (en) Latch circuit having two hold loops
JPS6094531A (en) Level adapter circuit
US4007384A (en) Noninverting current-mode logic gate
US3248529A (en) Full adder
US6215436B1 (en) High-speed differential decoder with reduced area consumption
JPS62292014A (en) Schmitt circuit
JPS60236324A (en) Semiconductor logical integrated circuit
KR950002089B1 (en) Electronic circuit and a/d convertor therewith