JPH01237339A - Fuel injector of internal combustion engine - Google Patents

Fuel injector of internal combustion engine

Info

Publication number
JPH01237339A
JPH01237339A JP6022988A JP6022988A JPH01237339A JP H01237339 A JPH01237339 A JP H01237339A JP 6022988 A JP6022988 A JP 6022988A JP 6022988 A JP6022988 A JP 6022988A JP H01237339 A JPH01237339 A JP H01237339A
Authority
JP
Japan
Prior art keywords
cylinder
amount
cylinders
fuel injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6022988A
Other languages
Japanese (ja)
Other versions
JP2623653B2 (en
Inventor
Toshiyuki Takimoto
滝本 敏幸
Takeshi Kotani
武史 小谷
Akio Yasuda
彰男 安田
Soichi Matsushita
宗一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63060229A priority Critical patent/JP2623653B2/en
Publication of JPH01237339A publication Critical patent/JPH01237339A/en
Application granted granted Critical
Publication of JP2623653B2 publication Critical patent/JP2623653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode

Abstract

PURPOSE:To aim at expansion of critical lean combustion range so as to improve fuel consumption by increasing an amount of fuel injection in the cylinders showing a larger amount of torque fluctuation, in an internal combustion engine in which fuel injection is applied simultaneously to both cylinders synchronously with each of two cylinders' intake strokes taking place alternately. CONSTITUTION:In a 4-cylinder engine in which fuel injection is applied simultaneously to two cylinders by simultaneously opening respective fuel injection valves 28 of the first and fourth cylinders and those of the second and third cylinders by means of a first drive circuit 44 and a second drive circuit 46 respectively, a controller 40 for controlling respective drive circuits 44, 46 is provided with a means 1 which applies fuel injection simultaneously to two cylinders synchronously with each of two cylinders' intake strokes taking place alternately. In addition, a means 2 for detecting the amount of torque fluctuation of each cylinder is provided. Further, a means 3 is also provided for increasing an amount of fue injection to a pair of cylinders showing a larger amount of torque fluctuation detected by this detecting means 2 and decreasing amount of fuel injection to the other pair of cylinders.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2気筒同時に燃料を噴射させるようにした内燃
機関の燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection device for an internal combustion engine that injects fuel into two cylinders simultaneously.

〔従来の技術〕[Conventional technology]

特開昭57−28834号公報は、クランク角度で36
0度の行程差をもつ2気筒、即ち、吸気行程が交互する
2気筒の各吸気行程に同期して2気筒同時に燃料を噴射
する燃料噴射方法を開示している。この場合、各気筒で
は、1燃焼サイクルにつき、−方の気筒の吸気行程とも
う一方の気筒の吸気行程(前記一方の気筒では吸気弁の
閉じている爆発行程)とに2度の燃料噴射が行われる。
JP-A No. 57-28834 has a crank angle of 36
A fuel injection method is disclosed in which fuel is simultaneously injected into two cylinders in synchronization with each intake stroke of two cylinders having a stroke difference of 0 degrees, that is, two cylinders whose intake strokes alternate. In this case, in each cylinder, fuel is injected twice per combustion cycle, during the intake stroke of the negative cylinder and during the intake stroke of the other cylinder (in the explosion stroke when the intake valve is closed in the one cylinder). It will be done.

このような燃料噴射方法により、吸気弁の閉じている爆
発行程に噴射された燃料の霧化が促進され、且つ吸気行
程に噴射された燃料が燃焼室の上層部に成層して、良好
な燃焼を達成することができる。なお、燃焼室で吸入空
気をスワールさせるようにすると、燃焼室の中間部に空
燃比の薄い混合気の層があり且つその両側にあたる下方
部及び上方部に空燃比の濃い混合気の層ができる、サン
ドイッチ状の成層化を確実に達成して、希薄空燃比での
燃焼限界を拡大し、且つ中間部に空燃比の薄い混合気の
層があるので燃焼温度を低くすることができ、排気ガス
浄化性能(NOX)を向上させることができる。
This fuel injection method promotes atomization of the fuel injected during the explosion stroke when the intake valve is closed, and the fuel injected during the intake stroke is stratified in the upper layer of the combustion chamber, resulting in good combustion. can be achieved. Note that if the intake air is swirled in the combustion chamber, there will be a layer of air-fuel mixture with a thin air-fuel ratio in the middle part of the combustion chamber, and a layer of air-fuel mixture with a rich air-fuel ratio will be created in the lower and upper parts on both sides. , by reliably achieving sandwich-like stratification, expanding the flammability limit at a lean air-fuel ratio, and with a layer of air-fuel mixture at a lean air-fuel ratio in the middle, the combustion temperature can be lowered, and the exhaust gas Purification performance (NOx) can be improved.

また、特開昭60−150446号公報は、エンジンの
燃焼室に圧力センサを取りつけて、所定のクランク角度
毎に燃焼室内圧力をサンプリングし、燃焼室内圧力のサ
ンプリング値の1サイクル分の累積値をサンプル数で割
って平均有効圧力(トルクに相当する)を求め、こうし
て求袷たサイクル毎の平均有効圧力を複数サイクル分だ
けサンプリングし、数学的な分散(S2)を計算するこ
とによってトルク変動量を計算することを開示している
In addition, Japanese Patent Application Laid-open No. 150446/1983 discloses that a pressure sensor is attached to the combustion chamber of an engine, the pressure in the combustion chamber is sampled at every predetermined crank angle, and the cumulative value of the sampled values of the pressure in the combustion chamber for one cycle is calculated. The average effective pressure (corresponding to torque) is obtained by dividing by the number of samples, and the average effective pressure for each cycle obtained in this way is sampled for multiple cycles, and the torque fluctuation amount is calculated by calculating the mathematical variance (S2). It discloses that it calculates.

また、本願の先願である特願昭62−35877は、機
関の負荷と、爆発行程の所定期間内における機関回転速
度の変動と、機関の負荷と機関回転速度の変動との比と
を求め、この比からトルク変動量を検出することを提案
している。
In addition, Japanese Patent Application No. 62-35877, which is an earlier application of the present application, calculates the engine load, the fluctuation of the engine rotational speed within a predetermined period of the explosion stroke, and the ratio of the engine load and the fluctuation of the engine rotational speed. , proposes to detect the amount of torque fluctuation from this ratio.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最初に述べた特開昭57−28834号公報に記載され
ているように、吸気行程が交互する2気筒の各吸気行程
に同期して2気筒同時に燃料を噴射する燃料噴射装置で
は、一方の気筒の吸気行程ともう一方の気筒の吸気行程
とに2度の燃料噴射が行われるが、各噴射時の燃料噴射
量は同じである。そこで、燃料噴射弁の特性にバラツキ
があったり、吸入空気量が気筒間で差が生じたりすると
、気筒間で空燃比のバラツキが生じる。そのために、空
燃比を設定する際に、空燃比の設定値をバラツキ内の最
も薄くなるものを参考に設定しなければならなくなり、
実際の空燃比を希薄燃焼限界よりも濃い値に設定する傾
向が強くなる。また、空燃比のバラツキが生じるとトル
ク変動量も大きくなる。
As described in Japanese Patent Application Laid-Open No. 57-28834 mentioned above, in a fuel injection device that simultaneously injects fuel into two cylinders in synchronization with the intake strokes of two cylinders whose intake strokes alternate, one cylinder Two fuel injections are performed, one during the intake stroke of one cylinder and the other during the intake stroke of the other cylinder, but the amount of fuel injected during each injection is the same. Therefore, if there are variations in the characteristics of the fuel injection valves or differences in intake air amount between cylinders, variations in air-fuel ratio will occur between the cylinders. Therefore, when setting the air-fuel ratio, it is necessary to set the air-fuel ratio setting value with reference to the thinnest value within the variation,
There is a strong tendency to set the actual air-fuel ratio to a value richer than the lean burn limit. Furthermore, when variations in the air-fuel ratio occur, the amount of torque fluctuation also increases.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明による内燃機関の
燃料噴射装置は、例えば第1図を参照すると、吸気行程
が交互する2気筒の各吸気行程に同期して2気筒同時に
燃料を噴射させる手段1と、各気筒のトルク変動量を検
出する手段2と、該トルク変動量検出手段の出力に応じ
て、トルク変動量の大きい方の気筒の吸気行程に同期す
る燃料噴射時の燃料噴射量を増量させ且つ他方の気筒の
吸気行程に同期する燃料噴射時の燃料噴射量を減量させ
る手段3とを設けたことを特徴とするものである。
In order to solve the above problems, the fuel injection device for an internal combustion engine according to the present invention, for example, referring to FIG. 1, injects fuel into two cylinders simultaneously in synchronization with each intake stroke of the two cylinders whose intake strokes alternate. means 1, means 2 for detecting the torque fluctuation amount of each cylinder, and a fuel injection amount at the time of fuel injection synchronized with the intake stroke of the cylinder having a larger torque fluctuation amount according to the output of the torque fluctuation amount detection means. The present invention is characterized in that it is provided with means 3 for increasing the amount of fuel and decreasing the amount of fuel injected when fuel is injected in synchronization with the intake stroke of the other cylinder.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図を参照すると、内燃機関本体10は4気筒の燃焼
室12を有する。各気筒にはそれぞれ吸気ポート14及
び排気ポート16が形成される。
Referring to FIG. 1, an internal combustion engine main body 10 has a four-cylinder combustion chamber 12. An intake port 14 and an exhaust port 16 are formed in each cylinder.

吸気ポート14及び排気ポート16にはそれぞれ機関の
クランクシャフトと同期して駆動される吸気弁18及び
排気弁20が配置される。また、燃焼室12には点火栓
22が取りつけられる。さらに、燃焼室12には圧力セ
ンサ24が取りつけられる。なお、吸気ポート14は吸
入空気が燃焼室12内でスワールを発生するようにヘリ
カル形に形成されている。
An intake valve 18 and an exhaust valve 20, which are driven in synchronization with the engine crankshaft, are arranged at the intake port 14 and the exhaust port 16, respectively. Further, an ignition plug 22 is attached to the combustion chamber 12. Furthermore, a pressure sensor 24 is attached to the combustion chamber 12. Note that the intake port 14 is formed in a helical shape so that intake air generates a swirl within the combustion chamber 12.

吸気ポート14は吸気マニホールド26の各枝管に連結
され、各枝管にはそれぞれ燃料噴射弁28が配置される
。吸気マニホールド26の上流側の吸気管には、スロッ
トル弁30及びエアフロ−メータ32が配置される。排
気ポート16は排気マニホールド34に接続される。ま
た、第1図には、機関の回転数を検出する回転数センサ
34が示されている。回転数センサ34は内燃機関の分
野で公知のものを使用することができ、その他のセンサ
、例えば機関冷却水温センサや酸素濃度センサ等を使用
することができる。
The intake port 14 is connected to each branch pipe of an intake manifold 26, and a fuel injection valve 28 is disposed in each branch pipe. A throttle valve 30 and an air flow meter 32 are arranged in the intake pipe upstream of the intake manifold 26. Exhaust port 16 is connected to exhaust manifold 34. Also shown in FIG. 1 is a rotational speed sensor 34 that detects the rotational speed of the engine. As the rotation speed sensor 34, a sensor known in the field of internal combustion engines can be used, and other sensors such as an engine cooling water temperature sensor, an oxygen concentration sensor, etc. can also be used.

燃料噴射弁28は制御装置40によって制御される。制
御装置40はマイクロコンピュータとして構成され、演
算と制御の機能を有する中央処理装置(CPU) 42
を有する。制御装置40はさらにプログラムを記憶させ
たリードオンリメモリ (ROM)や、データ等を記憶
させるランダムアクセスメモ!J  (RAM) 、並
びに入出力インターフェースを備えている。本発明にお
いては、2つの駆動回路44.46が設けられ、制御装
置40は圧力センサ24、エアフローメータ32、回転
数センサ34等からの検出信号を受け、2つの駆動回路
44.46を介して燃料噴射弁28に制御信号を送る。
The fuel injection valve 28 is controlled by a control device 40. The control device 40 is a central processing unit (CPU) 42 that is configured as a microcomputer and has calculation and control functions.
has. The control device 40 further includes a read-only memory (ROM) in which programs are stored, and a random access memory (ROM) in which data is stored. J (RAM), and an input/output interface. In the present invention, two drive circuits 44, 46 are provided, and the control device 40 receives detection signals from the pressure sensor 24, air flow meter 32, rotation speed sensor 34, etc., and sends them via the two drive circuits 44, 46. A control signal is sent to the fuel injection valve 28.

第1の駆動回路44は第1気筒の燃料噴射弁28及び第
4気筒の燃料噴射弁28に接続され、これらの2つの燃
料噴射弁28を同時に同じ時間だけ開弁させることがで
きる。第2の駆動回路46は同様に第2気筒の燃料噴射
弁28及び第3気筒の燃料噴射弁28に接続される。こ
こで、点火順序は第1.3.4.2気筒の順であり、第
1気筒と第4気筒の吸気行程がクランク角度で360度
毎に交互になる。同様に、第2気筒と第3気筒の吸気行
程がクランク角度で360度毎に交互になる。なお、こ
の実施例は4気筒の内燃機関の例であるが、6気筒の内
燃機関等の場合にも吸気行程が交互になる2気筒ずつを
対として本発明を実施することができる。
The first drive circuit 44 is connected to the fuel injection valve 28 of the first cylinder and the fuel injection valve 28 of the fourth cylinder, and can open these two fuel injection valves 28 at the same time for the same amount of time. The second drive circuit 46 is similarly connected to the fuel injection valve 28 of the second cylinder and the fuel injection valve 28 of the third cylinder. Here, the ignition order is the 1st, 3rd, 4th, and 2nd cylinders, and the intake strokes of the 1st and 4th cylinders alternate every 360 degrees in crank angle. Similarly, the intake strokes of the second and third cylinders alternate every 360 degrees in crank angle. Although this embodiment is an example of a four-cylinder internal combustion engine, the present invention can also be practiced in the case of a six-cylinder internal combustion engine, etc., using pairs of two cylinders each having alternating intake strokes.

第2図は4気筒の場合の吸気行程と燃料噴射時期とを示
している。吸気行程はハツチングで示され、燃料噴射時
期は点塗りで示されている。第1気筒の吸気行程におい
て、第1気筒と第4気筒が同時に燃料噴射され、さらに
第4気筒の吸気行程において、第1気筒と第4気筒が同
時に燃料噴射される。第1気筒及び第4気筒の燃料噴射
弁28は第1の駆動回路44から共通的に制御されるの
で、燃料噴射時間、即ち燃料噴射量は同じである。
FIG. 2 shows the intake stroke and fuel injection timing for a four-cylinder engine. The intake stroke is indicated by hatching, and the fuel injection timing is indicated by dots. During the intake stroke of the first cylinder, fuel is injected into the first cylinder and the fourth cylinder simultaneously, and further, during the intake stroke of the fourth cylinder, fuel is injected into the first cylinder and the fourth cylinder simultaneously. Since the fuel injection valves 28 of the first and fourth cylinders are commonly controlled by the first drive circuit 44, the fuel injection time, that is, the fuel injection amount is the same.

第2・3気筒についても同様である。The same applies to the second and third cylinders.

第3図は空燃比の濃い混合気の層と空燃比の薄い混合気
の層とをサンドイッチ状に成層化した様子を示し、例え
ば第2図にAで示す第1気筒の吸気行程に同期する燃料
噴射時の第1気筒を示す図である。このとき、第4気筒
は爆発行程であり、同時に燃料噴射が行われるが、その
吸気弁は閉じられている。第1気筒においては、吸気行
程の前に、例えば第2図にBで示す第4気筒の吸気行程
に同期した燃料噴射時に、第1気筒にも燃料噴射が行わ
れており、この燃料は吸気ポート14内で気化してそこ
の空気と混合され、比較的に濃い混合気を形成している
。第1気筒の吸気弁18が開弁すると、最初にこの混合
気が燃焼室12内に混入する。吸気ポート14はスワー
ルを発生させるヘリカル形に形成されており、混合気は
燃焼室12の軸線の回りを旋回しながら流入し、ピスト
ン36側に濃い混合気の層を形成する。それから、吸気
ポート14にたまっていた混合気が流出した後で燃料噴
射弁28が開弁するまでの間は、混合気は非常に薄くな
っており、これが燃焼室12の中間部に入る。次いで燃
料噴射弁28が開弁すると、燃焼室12の上方部に濃い
混合気の層ができる。このように、サンドイッチ状の成
層化を達成すると、希薄空燃比での燃焼限界を拡大し、
且つ中間部に空燃比の薄い混合気の層があるので燃焼温
度を低くすることができ、NOXの発生を防止すること
ができる。
Figure 3 shows how a layer of air-fuel mixture with a rich air-fuel ratio and a layer of air-fuel mixture with a lean air-fuel ratio are stratified in a sandwich-like manner. It is a figure which shows the 1st cylinder at the time of fuel injection. At this time, the fourth cylinder is in the explosion stroke and fuel injection is performed at the same time, but its intake valve is closed. In the first cylinder, before the intake stroke, for example, at the time of fuel injection synchronized with the intake stroke of the fourth cylinder shown as B in FIG. 2, fuel injection is also performed in the first cylinder, and this fuel is It vaporizes in the port 14 and mixes with the air there, forming a relatively rich mixture. When the intake valve 18 of the first cylinder opens, this air-fuel mixture first enters the combustion chamber 12. The intake port 14 is formed in a helical shape that generates a swirl, and the air-fuel mixture flows into the combustion chamber 12 while swirling around the axis, forming a layer of rich air-fuel mixture on the piston 36 side. Then, after the air-fuel mixture accumulated in the intake port 14 flows out and until the fuel injection valve 28 opens, the air-fuel mixture becomes very lean and enters the middle part of the combustion chamber 12. Next, when the fuel injection valve 28 opens, a rich mixture layer is formed in the upper part of the combustion chamber 12. Thus, achieving sandwich-like stratification expands the flammability limit at lean air-fuel ratios,
In addition, since there is a layer of air-fuel mixture with a low air-fuel ratio in the middle part, the combustion temperature can be lowered, and the generation of NOx can be prevented.

本発明では、このような成層化を達成するとともに、ト
ルク変動量を検出して、燃料噴射量を補正するようにし
ている。
In the present invention, such stratification is achieved, and the amount of torque fluctuation is detected to correct the fuel injection amount.

第7図は燃料噴射量を補正する燃料補正係数を演算する
ために第1図の制御装置40で実施されるルーチンのフ
ローチャートである。まずステップ50において、気筒
毎のトルク変動量△Triを計算する。このために、気
筒毎に取りつけられた圧力センサ24の検出値が使用さ
れる。トルク変動量ΔTriの計算は、例えば上記した
特開昭6O−(q) 150446号公報に記載された手順に従って実施する
ことができる。即ち、所定のクランク角度毎に燃焼室内
圧力をサンプリングし、燃焼室内圧力のサンプリング値
の1サイクル分の累積値をサンプル数で割って平均有効
圧力(トルクに相当する)を求め、こうして求めたサイ
クル毎の平均有効圧力を複数サイクル分だけサンプリン
グし、数学的な分散(S2)を計算することによってト
ルク変動量を計算する。或いは、燃焼時の最高圧力をサ
ンプリングし、この最高圧力の分散を計算することによ
ってトルク変動量を計算することもできる。或いは、本
願の先願である特願昭62−35877に記載されてい
るように、機関の負荷と、爆発行程の所定期間内におけ
る機関回転速度の変動と、機関の負荷と機関回転速度の
変動との比とを求め、この比からトルク変動量を検出す
ることができる。
FIG. 7 is a flowchart of a routine executed by the control device 40 of FIG. 1 to calculate a fuel correction coefficient for correcting the fuel injection amount. First, in step 50, the torque fluctuation amount ΔTri for each cylinder is calculated. For this purpose, the detected value of the pressure sensor 24 attached to each cylinder is used. The torque fluctuation amount ΔTri can be calculated, for example, according to the procedure described in the above-mentioned Japanese Patent Laid-Open No. 6O-(q) 150446. In other words, the pressure in the combustion chamber is sampled at every predetermined crank angle, and the cumulative value of the sampled values of the pressure in the combustion chamber for one cycle is divided by the number of samples to find the average effective pressure (corresponding to torque). The amount of torque fluctuation is calculated by sampling the average effective pressure for each cycle for a plurality of cycles and calculating the mathematical variance (S2). Alternatively, the amount of torque fluctuation can be calculated by sampling the maximum pressure during combustion and calculating the variance of this maximum pressure. Alternatively, as described in Japanese Patent Application No. 62-35877, which is an earlier application of the present application, engine load and engine rotational speed fluctuations within a predetermined period of the explosion stroke, and engine load and engine rotational speed fluctuations. The torque fluctuation amount can be detected from this ratio.

このようにして気筒毎のトルク変動量ΔTriが得られ
ると、ステップ51において、第1気筒のトルク変動量
ΔTr、と第4気筒のトルク変動量△Tr4とが等しい
かどうかを判定する。ノーであれば、ステップ52に進
み、第1気筒のトルク変動量ΔTr、が第4気筒のトル
ク変動量ΔTr4よりも大きいかどうかを判定する。イ
エスであれば、ステップ53に進んで、第1気筒の吸気
行程に同期する燃料補正係数α1に増分△αを加え、且
つ第4気筒の吸気行程に同期する燃料補正係数α4から
増分△αを差し引く。
When the torque fluctuation amount ΔTri for each cylinder is obtained in this way, in step 51, it is determined whether the torque fluctuation amount ΔTr of the first cylinder and the torque fluctuation amount ΔTr4 of the fourth cylinder are equal. If no, the process proceeds to step 52, where it is determined whether the torque fluctuation amount ΔTr of the first cylinder is larger than the torque fluctuation amount ΔTr4 of the fourth cylinder. If yes, the process proceeds to step 53, where the increment Δα is added to the fuel correction coefficient α1 synchronized with the intake stroke of the first cylinder, and the increment Δα is added to the fuel correction coefficient α4 synchronized with the intake stroke of the fourth cylinder. Subtract.

この処理を第4図及び第5図を用いて説明する。This process will be explained using FIGS. 4 and 5.

第5図においては、白塗りの点が第1気筒の単独のトル
ク変動量を示し、黒塗りの点が第4気筒の単独のトルク
変動量を示している。例えば、時点T。において、白塗
りの点で示された第1気筒のトルク変動量の方が黒塗り
の点で示された第4気筒のトルク変動量よりも大きい場
合、この関係に従って、第4図の増量と減量を実施して
いる。
In FIG. 5, the white dots indicate the individual torque fluctuation amount of the first cylinder, and the black dots represent the individual torque fluctuation amount of the fourth cylinder. For example, at time T. In , if the torque fluctuation amount of the first cylinder indicated by the white dot is larger than the torque fluctuation amount of the fourth cylinder indicated by the black dot, then according to this relationship, the amount increase and the increase shown in FIG. Weight reduction is being carried out.

第4図は燃料噴射量を補正するための補正係数の変化を
示し、白塗りの点は第1気筒の吸気行程に同期する燃料
噴射時のもの、黒塗りの点は第4気筒の吸気行程に同期
する燃料噴射時のものを表している。第1気筒の吸気行
程に同期する燃料噴射とは第2図のAによって示された
ものに相当し、第4気筒の吸気行程に同期する燃料噴射
とは第2図の已によって示されたものに相当する。いず
れの場合にも、第1気筒及び第4気筒ともに燃料噴射が
行われる。
Figure 4 shows the changes in the correction coefficient for correcting the fuel injection amount, where the white dots are for fuel injection synchronized with the intake stroke of the 1st cylinder, and the black dots are for the intake stroke of the 4th cylinder. This represents fuel injection synchronized with The fuel injection synchronized with the intake stroke of the first cylinder corresponds to the one shown by A in FIG. 2, and the fuel injection synchronized with the intake stroke of the fourth cylinder corresponds to the one shown by A in FIG. corresponds to In either case, fuel injection is performed in both the first cylinder and the fourth cylinder.

第7図のステップ52によって、白塗りの点で示される
燃料噴射においては、補正係数が1.0よりも大きくな
るので、基本噴射量に補正係数を乗じて得られる燃料噴
射量が増量されることになる。
In step 52 of FIG. 7, in the fuel injection indicated by the white dot, the correction coefficient is larger than 1.0, so the fuel injection amount obtained by multiplying the basic injection amount by the correction coefficient is increased. It turns out.

一方、黒塗りの点で示される燃料噴射においては、補正
係数が1.0よりも小さくなるので、基本噴射量に補正
係数を乗じて得られる燃料噴射量が減量されることにな
る。第1気筒の吸気行程と第4気筒の吸気行程は交互に
あるので、白塗りの点と黒塗りの点とは時間的に交互に
現れ、従って、燃料の増量と減量が交互に行われ、総合
的には燃料を増量しない。
On the other hand, in the fuel injection indicated by the black dot, the correction coefficient is smaller than 1.0, so the fuel injection amount obtained by multiplying the basic injection amount by the correction coefficient is reduced. Since the intake stroke of the first cylinder and the intake stroke of the fourth cylinder are alternate, the white dots and the black dots appear alternately in time, and therefore, fuel increases and decreases alternately. Overall, do not increase the amount of fuel.

かくして、総合的な燃料量は基本量に対して増減しない
が、第1気筒の吸気行程に同期する燃料噴射時には燃料
が増量され、第4気筒の吸気行程に同期する燃料噴射時
には燃料が減量されることになる。ここで、第3図を参
照すると、第1気筒の吸気行程に同期して噴射された燃
料は燃焼室12の上方部にあり、主に着火性及び燃焼速
度を支配するということができ、この部分の燃料の増量
は総合的に希薄化された空燃比の混合気の中で燃焼を安
定化させるのに寄与する。従って、第1気筒のトルク変
動量が第5図の白塗りの点によって示されるように低下
する。これに対応して、第4気筒では、吸気行程の燃料
量が減量されることになり、トルク変動量が大きくなる
。しかして、時点T1において、第1気筒と第4気筒の
トルク変動量が等しくなる。
Thus, the overall amount of fuel does not increase or decrease with respect to the basic amount, but when fuel is injected in synchronization with the intake stroke of the first cylinder, the amount of fuel is increased, and when fuel is injected in synchronization with the intake stroke of the fourth cylinder, the amount of fuel is decreased. That will happen. Here, referring to FIG. 3, the fuel injected in synchronization with the intake stroke of the first cylinder is located in the upper part of the combustion chamber 12, and can be said to mainly control the ignitability and combustion speed. The increase in the amount of fuel in the portion contributes to stabilizing combustion in the overall lean air/fuel mixture. Therefore, the amount of torque fluctuation in the first cylinder decreases as shown by the white dots in FIG. Correspondingly, in the fourth cylinder, the amount of fuel in the intake stroke is reduced, and the amount of torque fluctuation increases. Therefore, at time T1, the torque fluctuation amounts of the first cylinder and the fourth cylinder become equal.

第7図のステップ52においてノーであれば、トルク変
動量の大小関係が第5図を参照して説明したものとは反
対になり、この場合にはステップ54に進んで、第1気
筒の吸気行程に同期する燃料補正係数α1から増分Δα
を差し引き、且つ第4気筒の吸気行程に同期する燃料補
正係数α4に増分△αを加える。これによって、第4気
筒のトルク変動量の方が大きい場合にも同様にトルク変
動量のバラツキをなくすことができる。
If NO in step 52 of FIG. 7, the magnitude relationship of the torque fluctuation amount is opposite to that explained with reference to FIG. Increment Δα from fuel correction coefficient α1 synchronized with stroke
is subtracted, and an increment Δα is added to the fuel correction coefficient α4 synchronized with the intake stroke of the fourth cylinder. Thereby, even when the torque fluctuation amount of the fourth cylinder is larger, it is possible to eliminate variations in the torque fluctuation amount.

第7図のステップ51においてイエスであれば、ステッ
プ55に進む。前のステップが第1気筒と第4気筒の処
理に関連するものであったのに対して、ステップ55か
らステップ58は第2気筒と第3気筒の処理に関するも
のである。ステップ55からステップ58はそれぞれス
テップ51からステップ58に対応するので説明は省略
する。
If YES in step 51 of FIG. 7, the process proceeds to step 55. Whereas the previous steps were related to the processing of the first and fourth cylinders, steps 55 to 58 are related to the processing of the second and third cylinders. Steps 55 to 58 correspond to steps 51 to 58, respectively, so their explanation will be omitted.

第8図は第4図及び第5図の時点T1以降の処理に相当
するものである。ステップ6oにおいて、第1気筒のト
ルク変動量ΔTr、と第4気筒のトルク変動量△Tr4
との差が許容値kTrよりも小さいかどうかを判定する
。イエスであれば、第5図に示されるように第1気筒と
第4気筒のトルク変動量の平均値がトルク変動量の限界
値しよりも大きいかどうかを判定する。イエスであれば
、スナップ63において、第1気筒と第4気筒ともにト
ルク変動を低下させるために燃料補正係数α1゜α4に
増分△αを加える。ノーであれば、トルク変動景は小さ
いので燃料低減を優先させることができると判断して、
ステップ62において、燃料補正係数α1.α4から増
分△αを差し引く。ステップ60においてノーのときに
はステップ64に進む。ステップ64からステップ67
は第7図の場合と同様にステップ60からステップ63
に対応して第2気筒と第3気筒に関することである。
FIG. 8 corresponds to the processing after time T1 in FIGS. 4 and 5. In step 6o, the torque fluctuation amount ΔTr of the first cylinder and the torque fluctuation amount ΔTr4 of the fourth cylinder are determined.
It is determined whether the difference between the two values is smaller than the allowable value kTr. If YES, as shown in FIG. 5, it is determined whether the average value of the torque fluctuation amount of the first cylinder and the fourth cylinder is larger than the limit value of the torque fluctuation amount. If yes, at snap 63, an increment Δα is added to the fuel correction coefficient α1°α4 in order to reduce torque fluctuations in both the first and fourth cylinders. If no, it is determined that the torque fluctuation is small and fuel reduction can be prioritized.
In step 62, fuel correction coefficient α1. Subtract the increment Δα from α4. If the answer in step 60 is NO, the process proceeds to step 64. Step 64 to Step 67
As in the case of FIG. 7, steps 60 to 63 are performed.
This relates to the second and third cylinders correspondingly.

これにより、第7図に従って(第5図の時点T1に示さ
れるように)第1気筒と第4気筒のトルク変動量が等し
くなり、且つ第2気筒と第3気筒のトルク変動量が等し
くなったら、これらの2つの気筒グループのトルク変動
量を比較して、金気筒のトルク変動量を平均化するよう
にすることになる。
As a result, according to FIG. 7 (as shown at time T1 in FIG. 5), the torque fluctuation amounts of the first cylinder and the fourth cylinder become equal, and the torque fluctuation amounts of the second cylinder and the third cylinder become equal. Then, the torque fluctuations of these two cylinder groups are compared and the torque fluctuations of the gold cylinders are averaged.

これを第4図、第5図、第6図を用いて説明する。This will be explained using FIG. 4, FIG. 5, and FIG. 6.

時点T1において、第1気筒のトルク変動量と第4気筒
のトルク変動量とが等しくなっている。
At time T1, the amount of torque fluctuation in the first cylinder and the amount of torque fluctuation in the fourth cylinder are equal.

さらに時点T1以降においては、第5図に示すトルク変
動量が等しいままで、第8図のステップ62により、第
4図の補正係数がともに小さくされるようになっていく
。その結果、第6図に示されるように、空燃比は増量と
減量を交互に行う時点T。と時点T1との間は一定であ
るが、その後は薄くなっている。
Further, after time T1, the torque fluctuation amounts shown in FIG. 5 remain the same, and the correction coefficients shown in FIG. 4 are both reduced in step 62 in FIG. 8. As a result, as shown in FIG. 6, the air-fuel ratio reaches a point T when the amount is alternately increased and decreased. It remains constant between and time T1, but becomes thinner thereafter.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、吸気行程が交互
する2気筒の各吸気行程に同期して2気筒同時に燃料を
噴射させる手段と、各気筒のトルク変動量を検出する手
段と、該トルク変動量検出手段の出力に応じて、トルク
変動量の大きい方の気筒の吸気行程に同期する燃料噴射
時の燃料噴射量を増量させ且つ他方の気筒の吸気行程に
同期する燃料噴射時の燃料噴射量を減量させる手段とを
設けたので、希薄空燃比で安定した燃焼を行うことがで
きるようになるという効果を奏する。特に、1つの駆動
回路で2つの燃料噴射弁を駆動するような場合には個々
の気筒の空燃比を独立的に変化させることガできないが
、検出したトルク変動量に関連して吸気行程に同期する
燃料噴射量を変化させることによってトルク変動レベル
を均一化することが可能となり、従来のバラツキが大き
かった場合に希薄燃焼限界が制約されたのに対して、本
発明によれば希薄燃焼限界を拡大して燃費の向上と排気
浄化性能の向上を達成することができる。
As explained above, according to the present invention, there are provided means for simultaneously injecting fuel into two cylinders in synchronization with the respective intake strokes of the two cylinders whose intake strokes alternate, means for detecting the amount of torque fluctuation in each cylinder, and In response to the output of the torque fluctuation amount detection means, the fuel injection amount is increased during fuel injection synchronized with the intake stroke of the cylinder with the larger amount of torque fluctuation, and the fuel injection amount is increased during fuel injection synchronized with the intake stroke of the other cylinder. Since a means for reducing the injection amount is provided, it is possible to perform stable combustion at a lean air-fuel ratio. In particular, when driving two fuel injectors with one drive circuit, it is not possible to change the air-fuel ratio of each cylinder independently, but it is possible to synchronize with the intake stroke in relation to the detected torque fluctuation amount. By changing the fuel injection amount, it is possible to equalize the torque fluctuation level.In contrast to the conventional method where the lean burn limit was restricted when the variation was large, the present invention allows the lean burn limit to be restricted. This can be expanded to improve fuel efficiency and exhaust purification performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による内燃機関の構成図、第2図は第1
図の内燃機関において吸気行程に同期して2気筒同時に
燃料噴射する特徴を説明する図、第3図は第2図の燃料
噴射によって燃焼室内で混合気の成層化を達成するとこ
ろを説明する図、第4図は燃料の増量及び減量のための
補正係数の変化を示す図、第5図はトルク変動量の変化
を示す図、第6図は空燃比の変化を示す図、第7図はト
ルク変動量に応じた補正係数の計算を行う制御のフロー
チャート、第8図は第7図からさらに先の補正係数の計
算を行う制御のフローチャートである。 12・・・燃焼室、     14・・・吸気ポート、
24・・・圧力センサ、 26・・・吸気マニホールド、 28・・・燃料噴射弁。
FIG. 1 is a block diagram of an internal combustion engine according to the present invention, and FIG.
Figure 3 is a diagram explaining the characteristics of simultaneous fuel injection in two cylinders in synchronization with the intake stroke in the internal combustion engine shown in Figure 3. Figure 3 is a diagram explaining how stratification of the air-fuel mixture is achieved in the combustion chamber by the fuel injection shown in Figure 2. , FIG. 4 is a diagram showing changes in the correction coefficient for increasing and decreasing fuel amount, FIG. 5 is a diagram showing changes in torque fluctuation amount, FIG. 6 is a diagram showing changes in air-fuel ratio, and FIG. 7 is a diagram showing changes in the amount of torque fluctuation. FIG. 8 is a flowchart of control for calculating a correction coefficient according to the amount of torque fluctuation. FIG. 8 is a flowchart of control for calculating a correction coefficient further from that shown in FIG. 12... Combustion chamber, 14... Intake port,
24...Pressure sensor, 26...Intake manifold, 28...Fuel injection valve.

Claims (1)

【特許請求の範囲】[Claims]  吸気行程が交互する2気筒の各吸気行程に同期して2
気筒同時に燃料を噴射させる手段と、各気筒のトルク変
動量を検出する手段と、該トルク変動量検出手段の出力
に応じて、トルク変動量の大きい方の気筒の吸気行程に
同期する燃料噴射時の燃料噴射量を増量させ且つ他方の
気筒の吸気行程に同期する燃料噴射時の燃料噴射量を減
量させる手段とを設けた内燃機関の燃料噴射装置。
2 in synchronization with each intake stroke of the 2 cylinders whose intake strokes alternate.
means for simultaneously injecting fuel into the cylinders; means for detecting the amount of torque fluctuation in each cylinder; and fuel injection time synchronized with the intake stroke of the cylinder with the larger amount of torque fluctuation according to the output of the torque fluctuation amount detection means. A fuel injection device for an internal combustion engine, comprising means for increasing the amount of fuel injected in one cylinder and decreasing the amount of fuel injected during fuel injection synchronized with the intake stroke of the other cylinder.
JP63060229A 1988-03-16 1988-03-16 Fuel injection device for internal combustion engine Expired - Fee Related JP2623653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63060229A JP2623653B2 (en) 1988-03-16 1988-03-16 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060229A JP2623653B2 (en) 1988-03-16 1988-03-16 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01237339A true JPH01237339A (en) 1989-09-21
JP2623653B2 JP2623653B2 (en) 1997-06-25

Family

ID=13136134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060229A Expired - Fee Related JP2623653B2 (en) 1988-03-16 1988-03-16 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2623653B2 (en)

Also Published As

Publication number Publication date
JP2623653B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
JP3683681B2 (en) Control device for direct-injection spark-ignition internal combustion engine
US6178945B1 (en) Control system for internal combustion engine
US6058905A (en) Fuel injection control system for internal combustion engine
US4644921A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US5060618A (en) Method and apparatus for controlling torque variations in an internal combustion engine
US5664544A (en) Apparatus and method for control of an internal combustion engine
US5690074A (en) Fuel injection control system for internal combustion engines
JPH0416622B2 (en)
US20020059919A1 (en) Fuel injection control system and method and engine control unit for internal combustion engine
US6975934B2 (en) Control system for correcting a torque variation of an engine
US6662782B2 (en) Controller for internal combustion engine
JP2000303888A (en) Fuel injection control device for internal combustion engine
JPH01237339A (en) Fuel injector of internal combustion engine
JP2586101B2 (en) Control device for multi-cylinder internal combustion engine
US4694805A (en) Air-fuel ratio control method for internal combustion engines
JP2623654B2 (en) Fuel injection device for internal combustion engine
US20230287845A1 (en) Internal combustion engine
JPH01271634A (en) Device for controlling fuel injection quantity of multicylinder internal combustion engine
JP3680505B2 (en) Fuel injection control device for direct-injection spark-ignition internal combustion engine
JP3677948B2 (en) Fuel injection control device for internal combustion engine
JP3546652B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JP2586565B2 (en) Output fluctuation detecting device for internal combustion engine
JPS62195461A (en) Ignition timing control device for internal combustion engine
JP2000045842A (en) Fuel injection control device for internal combustion engine
JPH01315639A (en) Air-fuel ratio controller of two-cycle internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees