JPH01236747A - System for generating adaptive level deciding voltage - Google Patents

System for generating adaptive level deciding voltage

Info

Publication number
JPH01236747A
JPH01236747A JP6191488A JP6191488A JPH01236747A JP H01236747 A JPH01236747 A JP H01236747A JP 6191488 A JP6191488 A JP 6191488A JP 6191488 A JP6191488 A JP 6191488A JP H01236747 A JPH01236747 A JP H01236747A
Authority
JP
Japan
Prior art keywords
level
voltage
input signal
circuit
judgment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6191488A
Other languages
Japanese (ja)
Other versions
JPH0783384B2 (en
Inventor
Seizo Nakamura
精三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP6191488A priority Critical patent/JPH0783384B2/en
Priority to US07/323,382 priority patent/US4939750A/en
Priority to EP89302634A priority patent/EP0333491B1/en
Priority to DE68911961T priority patent/DE68911961T2/en
Publication of JPH01236747A publication Critical patent/JPH01236747A/en
Publication of JPH0783384B2 publication Critical patent/JPH0783384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To perform level decision free from the variance in level of an input signal by providing a deciding voltage generating circuit to generate a discrimi nating voltage adapted to the level of the input signal. CONSTITUTION:A positive, negative, or zero deciding voltage having one or plural levels is generated as the deciding voltage in a deciding voltage generat ing circuit 25 based on the mean level of levels held in capacitors 15 and 18. A discriminating circuit 28 decides the level of the input signal based on digital signals from analog comparators 25 and 27 at the time of the leading edge of a regenerated clock signal. When this level is maximum or minimum, a sampling pulse is applied to a corresponding switch 14 or 17 to correct the level, and the difference from a reference voltage is held in capacitors 15 and 18. This reference voltage is selected from deciding voltages in accordance with the input signal level and allowed to pass an LPF 35 and follows up the variance of the center level. Since the voltage adapted to the level of the input signal is generated in this manner, level decision free from variance in level of the input signal is performed.

Description

【発明の詳細な説明】 (産業上の利用分野ン 本発明は、低域が遮断された伝送系を通過してきたデジ
タル信号の復調に用いられる適応レベル判定電圧生成方
式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an adaptive level determination voltage generation system used for demodulating a digital signal that has passed through a transmission system in which the low frequency band is cut off.

(従来の技術) 近年、デジタル信号を無線で伝送したいとする要求が出
て来てhる。特に移動無線用のシングルチャネル、4−
キャリア(Single Channel perCa
rrier )方式では、二値のディジタル信号で直接
FM変調する方式や云送帯域幅を狭くするために二値の
ディジタル信号を低域濾波器(以下、LPFという)に
通した後KFM変調する方式等が採用されている。前H
6LPF’としてガウスフィルタを用いた方式はGMS
K (Gaussian FilterManipul
atedMinimum 5hift Keying 
)と呼ばれ極めて帯域の狭い変調方式である。又、二値
のディノタル信号を多値、例えば四値に変換した後LP
Fを通してFM変調する方式もある。
(Prior Art) In recent years, there has been a demand for wireless transmission of digital signals. Single channel, especially for mobile radio, 4-
Carrier (Single Channel per Ca)
rrier ) method involves direct FM modulation with a binary digital signal, or a method in which the binary digital signal is passed through a low pass filter (hereinafter referred to as LPF) and then KFM modulated in order to narrow the transmission bandwidth. etc. have been adopted. Previous H
The method using a Gaussian filter as 6LPF' is GMS.
K (Gaussian Filter Manipul
Minimum 5hift Keying
) and is a modulation method with an extremely narrow band. Also, after converting a binary dinotal signal into a multivalued signal, for example, a four-valued signal, the LP
There is also a method of FM modulation through F.

以上、いずれの変調方式も二値又は多値の周波数変調波
と考えることができる。これらの周波数変調波はその生
成過程から明らかなよう援直流成分を含むものであるか
ら、変調過程、伝送過程、復調過程のすべてにわたって
直流成分を考慮しなければならない。しかしながら以下
の2つの理由により、この直流成分の伝送は極めて困難
である。
As described above, any modulation method can be considered as a binary or multi-value frequency modulated wave. Since these frequency modulated waves contain DC components as is clear from their generation process, the DC component must be taken into consideration throughout the modulation process, transmission process, and demodulation process. However, transmission of this DC component is extremely difficult for the following two reasons.

(イ)送信周波数と受信周波数は温度等の環境条件の7
化によシそれぞれ変動し、その相対的ずれは復調した際
の直流電位のずれとなって現われる。
(b) The transmitting frequency and receiving frequency depend on environmental conditions such as temperature.
The relative deviations appear as deviations in the DC potential upon demodulation.

この直流電位のずれを防ぐために、受信機の周波数弁別
器の出力側に直流1断用の回路を入れることが多い。
In order to prevent this deviation in DC potential, a DC 1 cutoff circuit is often installed on the output side of the frequency discriminator of the receiver.

仲)送信周波数を切り替えて使用する必要性から、近年
搬送波の生成に周波数シンセサイザが用いられているが
、これにFM変調をかける場合、直流成分まで考慮する
と回路が隠めて複雑なものとなる。
Naka) Frequency synthesizers have recently been used to generate carrier waves due to the need to switch the transmission frequency, but when applying FM modulation to this, the circuit becomes hidden and complicated if even the DC component is taken into consideration. .

以上の理由によシ直流成分を伝送しない方式が望まれる
が、直流成分を伝送しない場合、受信側において復調信
号の中心電圧が変動し符号判定に誤りを生じるおそれが
ある。この問題全解決する方法として、受信側において
直流成分を再生することが考えられる。第2図は直流再
生方式の一例を示すブロック図であって、判定帰還方式
を用いたものである(例えば、信学技報751:51 
)(1975−6−25)電子通信学会1)−93−9
4)。第2図におAて、1は入力端子、2は前方フィル
タ、3は加算回路、4は識別回路、5は帰還フィルタ、
6は出力端子である。前方フィルタ2は、周波数特性が
A(jω)なる高域戸波器、帰還フィルタ5は周波数特
性がB(jω)なる低域ろ波器であるとすると、これら
のフィルタ間には(1〕式の関係が成立し、前方フィル
タ2で失われた低域成分は帰還フィルタ5の出力によっ
て補償される。
For the above reasons, a system that does not transmit the DC component is desired, but if the DC component is not transmitted, the center voltage of the demodulated signal may fluctuate on the receiving side, which may cause an error in code determination. One possible way to completely solve this problem is to regenerate the DC component on the receiving side. FIG. 2 is a block diagram showing an example of a DC regeneration method, which uses a decision feedback method (for example, IEICE Technical Report 751:51).
) (1975-6-25) Institute of Electronics and Communication Engineers 1)-93-9
4). In Fig. 2A, 1 is an input terminal, 2 is a forward filter, 3 is an adder circuit, 4 is an identification circuit, 5 is a feedback filter,
6 is an output terminal. Assuming that the forward filter 2 is a high-pass filter with a frequency characteristic of A(jω), and the feedback filter 5 is a low-pass filter with a frequency characteristic of B(jω), the equation (1) is expressed between these filters. The following relationship holds true, and the low frequency components lost in the forward filter 2 are compensated by the output of the feedback filter 5.

A(jω)十B(jω)=1      ・・・・・・
(1)ここで、前方フィルタ2を一次の高域フィルタで
あるとするとその周波数特性A(jω)Fi(2)式で
表わすことができる。
A(jω) 1 B(jω)=1 ・・・・・・
(1) Here, if the forward filter 2 is a first-order high-pass filter, its frequency characteristic A(jω)Fi can be expressed by the equation (2).

但しS=jω、ω−2πf0であって、foは伝送りロ
ック周波数、αはf。に対する高域フィルタの遮断局波
数の比である。
However, S=jω, ω-2πf0, where fo is the transmission lock frequency and α is f. is the ratio of the cutoff frequency of the high-pass filter to .

従って(4) 、 (2)式から(3)式を得ることが
できる。
Therefore, equation (3) can be obtained from equations (4) and (2).

即ち、 B(jω)=1−A(jω) 帰還フィルタ5は前方フィルタ2と同一の遮断周波at
−有する一次の低域P波器となる。
That is, B(jω)=1-A(jω) The feedback filter 5 has the same cutoff frequency at as the forward filter 2.
- becomes a first-order low-frequency P-wave device.

第3図は第2図に示すブロック図の各部の波形金示すも
のであって、(a)の(イ)は入力端子lに加えられた
入力信号の波形、(a)の(イ)は前方フィルタ2の出
力波形、(b)の(つ)は識別回路4の出力波形、(b
)のに)は帰還フィルタの出力波形である。加算回路3
の出力波形は前方フィルタ2の出力波形(イ)と帰還フ
ィルタ5の出力波形に)と全加算し念波形であるが、こ
れは(a)の(7)に示す入力信号の波形と同一となシ
、識別回路4には前方フィルタ2の特性の影9t−受け
ない、入力信号と同一の波形の信号が入力されることと
なる。
Figure 3 shows the waveforms of each part of the block diagram shown in Figure 2, where (a) (b) is the waveform of the input signal applied to the input terminal l, (a) (b) The output waveform of the forward filter 2, (b) is the output waveform of the discrimination circuit 4, (b)
) is the output waveform of the feedback filter. Addition circuit 3
The output waveform of is a total summation of the output waveform of the forward filter 2 (a) and the output waveform of the feedback filter 5), but this is the same as the waveform of the input signal shown in (7) of (a). However, a signal having the same waveform as the input signal is inputted to the identification circuit 4, which is not affected by the characteristics of the front filter 2.

即ち、変調過程を含む伝送過程に高域戸波特性が存在し
、直流成分が失われても上述の方式により直流分を再生
して復調、信号の中心電圧を固定し、誤りなくレベル判
定をすることができる。
In other words, even if a high-frequency wave characteristic exists in the transmission process including the modulation process, and the DC component is lost, the DC component is regenerated and demodulated using the method described above, the center voltage of the signal is fixed, and the level is determined without error. be able to.

又、第3図(、)の(3)は第2図に示す前方フィルタ
2の出力波形(イ)の中心レベルを示すもので、この中
心レベルと同じ判定レベル電圧を用いてレベル判定を行
なえば、中心レベルの変動に影響されることなく誤シの
ない判定をすることができる。第3図(b)の閃)は帰
還フィルタ5の出力波形に)を反転したもので、(a)
の(4)に示す前方フィルタ2の出力の中心電圧の・波
形と同一となる。従って、判定レベル1圧として、この
帰還フィルタ5の出力を反転して使えば、中心レベル変
動の影響を受けることなく誤りのないレール判定を行な
うことができる。
Also, (3) in Fig. 3(,) shows the center level of the output waveform (a) of the front filter 2 shown in Fig. 2, and the level judgment can be performed using the same judgment level voltage as this center level. For example, error-free determination can be made without being affected by fluctuations in the center level. 3(b) is the inverted version of the output waveform of the feedback filter 5, and (a)
It is the same as the waveform of the center voltage of the output of the front filter 2 shown in (4). Therefore, if the output of this feedback filter 5 is inverted and used as the determination level 1 voltage, error-free rail determination can be performed without being affected by center level fluctuations.

(発明が解決しようとする課題) しかしながら上記直流再生方式は(1)式にも示すよう
に、入力信号の振幅と識別回路4の出力振幅とを常に等
しくする必要があるので、入力信号の振幅は通常変動す
ることを考慮すると振幅変動を抑圧するための自動利得
制御(AGC)回路を設ける必要がある。しかも前・記
AGC回路は直線的に振幅を調整し得るも゛のでなけれ
ばならないので回路が’a ”、喉となシ、又入力信号
が多値の場合には適用することができないという欠点が
あった。
(Problem to be Solved by the Invention) However, in the above DC regeneration method, as shown in equation (1), it is necessary to always make the amplitude of the input signal equal to the output amplitude of the discrimination circuit 4. Considering that the amplitude normally varies, it is necessary to provide an automatic gain control (AGC) circuit to suppress amplitude variations. Moreover, since the AGC circuit described above must be able to linearly adjust the amplitude, it has the disadvantage that it cannot be applied to cases where the circuit is 'a', throat, or where the input signal is multi-valued. was there.

本発明は、これらの欠点を除去し、簡単に入力信号の振
!潜変動に対応し、入力信号の中心電圧の変動に追従す
る判定電圧を生成する適応レベル判定電圧生成回路を提
供することを目的とする。
The present invention eliminates these drawbacks and easily changes the input signal! It is an object of the present invention to provide an adaptive level determination voltage generation circuit that responds to latent fluctuations and generates a determination voltage that follows fluctuations in the center voltage of an input signal.

(課題を解決するための手段) 本発明はデジタル入力・画号のレベル判定の基準とする
判定電圧を生成する適応レベル判定電圧生成方式におい
て、 再生クロック信号で入力信号のレベル値を判定し、前記
レベル値に対応する電圧保持回路を選択して入力信号と
基準電圧との差を保持し、各電圧保持回路に保持されて
いる電圧の絶対直の平均レベルを算出して該平均レベル
に基づいてi又は複数のレベルの正、負の電圧及び零の
電圧を生成し、前記レベル値に応じていずれかを選択し
、低域濾波器に通して前記基準電圧とし、前記電圧保持
回路に保持されている電圧と前記基準電圧に基づいて入
力信号に適応した判定電圧を生成することを特徴とする
適応レベル判定電圧生成方式である。
(Means for Solving the Problems) The present invention is an adaptive level judgment voltage generation method that generates a judgment voltage as a reference for level judgment of digital input/picture symbol. A voltage holding circuit corresponding to the level value is selected to hold the difference between the input signal and the reference voltage, and an absolute direct average level of the voltage held in each voltage holding circuit is calculated based on the average level. i or a plurality of levels of positive and negative voltages and zero voltage are generated, one of which is selected according to the level value, passed through a low-pass filter to become the reference voltage, and held in the voltage holding circuit. This is an adaptive level judgment voltage generation method characterized in that a judgment voltage adapted to an input signal is generated based on the voltage being set and the reference voltage.

(作 用) 本発明は、デジタル信号の中心レベルの変動に追従する
基準電圧を生成し、前記デジタル信号と基準電圧とによ
シ該デジタル信号の変動に適応した判定電圧を生成して
いるので、デジタル信号が変動しても誤動作することな
く安定にレベル判定を行々うことかできる。
(Function) The present invention generates a reference voltage that follows fluctuations in the center level of a digital signal, and uses the digital signal and the reference voltage to generate a judgment voltage that adapts to fluctuations in the digital signal. , it is possible to stably perform level determination without malfunctioning even when the digital signal fluctuates.

(実施例) 第1図は本発明の実施例を示すブロック図であって、1
1は入力端子、12は前方フィルタとしての高域濾波器
、13.16,19.36は電圧ホロワとした演算増幅
器、14.17はスイッチ、15.18はコンデンサ、
22.33は利得10反転増幅器、23.24は加算平
均するための同一の抵抗値をもつ抵抗器、25は判定電
圧生成回路、26.27,311dアナログコンノやレ
ータ、28は判別回路、29は論理回路、30は出力端
子、32はクロック再生・タイミング生成回路、34は
判別回路、28の判別結果と逆の量子化レベルを選択す
る量子化レベル選択回路、35は高域戸波器12と同一
遮断周波数を有する後方フィルタとしての低域戸波器で
ある。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention.
1 is an input terminal, 12 is a high-pass filter as a forward filter, 13.16, 19.36 is an operational amplifier as a voltage follower, 14.17 is a switch, 15.18 is a capacitor,
22.33 is an inverting amplifier with a gain of 10, 23.24 is a resistor with the same resistance value for averaging, 25 is a judgment voltage generation circuit, 26.27, 311d analog controller or regulator, 28 is a discrimination circuit, 29 30 is a logic circuit, 30 is an output terminal, 32 is a clock regeneration/timing generation circuit, 34 is a discrimination circuit, quantization level selection circuit selects a quantization level opposite to the discrimination result of 28, and 35 is a high-frequency wave filter 12. This is a low-pass door filter as a rear filter with the same cut-off frequency.

入力端子1ノに、−例としてBb−T≠0.25のGM
SK信号が加えられたものとする。但し、Bbは変調の
際に使用するがウスフィルタの帯域幅、Tはデジタル信
号のビットレートの逆数である。このGMSK信号は第
4図(、)に示すアイツヤタンを有しておシ、各nT 
(nは整数、Tはビットレートの逆数)において3つの
レベル値り、 、 L2及びL3ヲとる、これらり、 
、 t、2及びL3の判別は、判定電圧生成回路25、
アナログコンノ(レータ26,27及び判別回路28に
より以下のようにして実行される。
GM of Bb-T≠0.25 to input terminal 1 - example
Assume that the SK signal is added. However, Bb is the bandwidth of the filter used during modulation, and T is the reciprocal of the bit rate of the digital signal. This GMSK signal has the characteristics shown in Figure 4(,), and each nT
(where n is an integer and T is the reciprocal of the bit rate), take three level values, L2 and L3, these,
, t, 2 and L3 are determined by the judgment voltage generation circuit 25,
This is executed by the analog controllers 26, 27 and the discrimination circuit 28 as follows.

まず判定電圧生成回路25は入力信号の最高レベルL、
(演算増幅器16の出力レベル)と中心レベルL2(演
算増幅器36の出力レベル)とに゛基づきLlとL2の
中央の電圧LaJ−生成し、入力信号の中心レベルL2
と最低レベルLs (演算増幅器19の出力レベル)と
に基づきL2とL3の中央の電圧L5を生成する。
First, the judgment voltage generation circuit 25 selects the highest level L of the input signal,
(the output level of the operational amplifier 16) and the center level L2 (the output level of the operational amplifier 36), generates a voltage LaJ- at the center of Ll and L2, and generates a voltage LaJ- at the center of the input signal L2.
A voltage L5 at the center of L2 and L3 is generated based on the lowest level Ls (output level of the operational amplifier 19).

第6図は判定電圧生成回路25の一実施例を示すもので
、端子25−1.25−5.25−9はそれぞれ第1図
に示す演算増幅器16,19.36の各出力側に接続さ
れ、レベルL、 、 L3. L2の電圧がそれぞれ入
力される。端子25−3.25−7は第1図に示スアナ
ログコンパレータ26,27にそれぞれ接続され、判定
電圧La、Lbが出力される。抵抗器25−2.25−
4.25−6.25−8は共に同一の抵抗@Rを有して
いるので、前記判定電圧La、 Lbはそれぞれレベル
L1とL2の中央の電圧、レベルL2とLbの中央の電
圧となる。従って判定電圧La、Lbは入力信号のレベ
ルL、 、 L2. L、に追従して変化することとな
る。
FIG. 6 shows an embodiment of the judgment voltage generation circuit 25, and the terminals 25-1.25-5.25-9 are connected to the respective output sides of the operational amplifiers 16, 19.36 shown in FIG. and level L, , L3. The voltages of L2 are respectively input. Terminals 25-3 and 25-7 are connected to analog comparators 26 and 27 shown in FIG. 1, respectively, and judgment voltages La and Lb are output. Resistor 25-2.25-
4.25-6.25-8 both have the same resistance @R, so the judgment voltages La and Lb are the voltage at the center of levels L1 and L2, and the voltage at the center of levels L2 and Lb, respectively. . Therefore, the determination voltages La, Lb are based on the input signal levels L, , L2 . It will change according to L.

アナログコン・ぐレータ26は前記Lat−判定電圧と
して入力信号がLafI:超えているときはデジタル信
号”1″を、超えていないときはデジタル信号″’0”
i出力する。一方、アナログコン・ぐレータ22は前記
Lbを判定電圧として入力信号がLbヲ超えているとき
はデジタル信号”1”を、超えていないときはデジタル
信号”0″を出力する。判別回路28はアナログコンミ
4レータ26,27から出力される前記各デジタル信号
の組合せから入力信号のレベルがり4. L2又はLb
のどれに該当するかを判別する。例えばアナログコン・
ぐレータ26からの出力が@0”で、27からの出力が
“1”であれば、入力信号のレベルはL2に該当するこ
ととなる。論理回路29は判別回路28の判別結果に基
づいて、入力信号がLlであるとき“l″を、Lbであ
るとき0″を、L2であるとき過去のレベルの推移から
“1″か′0″かを決定して出力端子30に出力する。
The analog converter 26 outputs a digital signal "1" when the input signal exceeds LafI as the Lat-judgment voltage, and a digital signal "0" when it does not exceed LafI.
i Output. On the other hand, the analog converter 22 uses the Lb as a determination voltage and outputs a digital signal "1" when the input signal exceeds Lb, and outputs a digital signal "0" when the input signal does not exceed Lb. The discrimination circuit 28 determines the level of the input signal based on the combination of the digital signals output from the analog commutators 26 and 27. L2 or Lb
Determine which of the following applies. For example, analog controller
If the output from regulator 26 is @0" and the output from regulator 27 is "1", the level of the input signal corresponds to L2. Based on the determination result of determination circuit 28, logic circuit 29 , when the input signal is Ll, it outputs "l", when it is Lb, it outputs 0'', and when it is L2, it determines whether it is "1" or '0'' from the past level transition and outputs it to the output terminal 30.

一方、アナログコンパレータ3ノには判定電圧として演
算増幅器36から出力されるレベルL2の電圧が与えら
れ、入力信号が加えられると、該入力信号がL2を超え
たときデジタル信号“1″k、超えないときはデノタル
信号@0#全出力する。クロック再生・タイミング生成
回路32は、前記アナログコンパレータ31の出力を受
けて、第4図(b)に示すような再生クロック信号を生
成するとともに、(c)に示すように該再生クロック信
号の立上りから時間tだけ遅れたサンプリング/4’ル
ス1−1成する。このサンプリングパルスは第4図に示
すように入力信号のアイ・ぐタンの3値が集中する部分
にほぼ同期している。判別回路28は、第4図(b)に
示す再生クロック信号の立上シでアナログコンパレータ
26,27からのデジタル信号に基づき入力信号レベル
がり4. L2. Lbのいずれに該当するかを判別し
、Llに該当するときはサンプリング・ンルスをスイッ
チ1411C加え、Lbに該当するときはスイッチ17
に加え、Lbに該当するときは、スイッチ14.17の
いずれにも加えない。なお、サンプリングノクルスを第
4図(c)に示すように再生クロック信号の立上シより
時間tだけ遅らせているのは、判別回路28が判別動作
をするために必要な時間を考慮したものである。従って
、コンデンサ15は入力信号のレベルL1と演算増幅器
36からの出力のレベルL2との差の電圧を保持し、コ
ンデンサ18は入力信号のレベルL3と前記L2との差
の電圧を保持する。コンデンサ15及び18によシ保持
されている電圧は演算増幅器36からの出力電圧に重畳
されそれぞれ演算増幅器16゜19に入力される。演算
増幅器16.19の出力は反転増幅器22及び抵抗器2
3,24によって加算平均され、量子化レベル選択回路
34の端子aに加えられるとともに、反転増幅器33を
介して端子すにも加えられる。従って、量子化レベル選
択回路34の入力側には、入力信号レベルの最高喧り、
と最低値L3との差のAの電圧が加えられることとなる
が、この電圧は入力信号のレベルL1とL2との差及び
L2とLbとの差の電圧に一致し、入力信号のレベル変
動に追従して変動する。
On the other hand, the voltage of level L2 output from the operational amplifier 36 is given to the analog comparator 3 as a judgment voltage, and when an input signal is applied, when the input signal exceeds L2, the digital signal "1"k is exceeded. If not, the full output signal @0# is output. The clock regeneration/timing generation circuit 32 receives the output of the analog comparator 31 and generates a regenerated clock signal as shown in FIG. A sampling/4' pulse 1-1 is generated delayed by a time t. As shown in FIG. 4, this sampling pulse is approximately synchronized with the portion where the input signal's three values of eye and tongue are concentrated. The discrimination circuit 28 detects that the input signal level increases based on the digital signals from the analog comparators 26 and 27 at the rising edge of the reproduced clock signal shown in FIG. 4(b). L2. It is determined which of Lb it corresponds to, and when it corresponds to Ll, the sampling pulse is added to switch 1411C, and when it corresponds to Lb, switch 17 is added.
In addition, when it corresponds to Lb, it is not applied to any of the switches 14 and 17. The reason why the sampling clock is delayed by the time t from the rising edge of the recovered clock signal as shown in FIG. 4(c) is to take into account the time required for the discrimination circuit 28 to perform the discrimination operation. It is. Therefore, the capacitor 15 holds the voltage difference between the level L1 of the input signal and the level L2 of the output from the operational amplifier 36, and the capacitor 18 holds the voltage difference between the level L3 of the input signal and the level L2. The voltages held by capacitors 15 and 18 are superimposed on the output voltage from operational amplifier 36 and input to operational amplifiers 16 and 19, respectively. The output of operational amplifier 16.19 is connected to inverting amplifier 22 and resistor 2.
3 and 24, and is applied to terminal a of the quantization level selection circuit 34, as well as to terminal A via the inverting amplifier 33. Therefore, on the input side of the quantization level selection circuit 34, the highest level of the input signal level,
A voltage that is the difference between the input signal level L1 and the lowest value L3 will be applied, but this voltage corresponds to the voltage difference between the input signal levels L1 and L2 and the difference between L2 and Lb, and the level fluctuation of the input signal fluctuates according to.

量子化レベル選択回路34は判別回路28の指示に基づ
き、該判別回路28が入力信号のレベルをり、と判別し
たときは接点すを、Lbと判別したときは接点aを、L
2と判別したときは接点cf、選択し、出力側に接続す
る。なお筬点Cはアースに接続されている。量子化レベ
ル選択回路34の出力は、低域濾波器35及び演算増幅
器36′t−介してコンデンサ15.18の一端、判定
賀正生成回路25及びアナログコンパレータ31にそれ
ぞれ加えられる。上述の動作を第5図に示す。入力端子
1ノに第5図(a)の(7)に示す入力信号が加えられ
ると高域戸波器12からは中心レベルが(a)の(つ)
のように変動する波形(a)の(イ)が出力される。一
方、量子化レベル選択回路34からは入力信号レベルに
対応してレベルL1とLbとの差の34のJtLヲもつ
(+1電圧、←)電圧及び零電圧が4量子化されたもの
として出力され、その波形は第5図(b)のに)に示す
ようになる。量子化レベル選択回路34の出力は低域濾
波器35に入力され、該低域戸波器35からは第5図(
b)の(3)に示す波形の電圧が出力される。この低域
濾波器35の出力波形(b)の(3)は、入力信号のレ
ベルに変動に関係なく、高域濾波器12の出力の中心レ
ベル(a)の(つ)忙一致し、判定電圧を生成する際の
基準電圧として用いる。以上説明したように本実施例に
よれば入力信号の振幅変動及び中心レベル変動に追従す
る判定電圧を生成し、レベル判定を行ってbるので、A
GC回路を周込ることなく正確なレベル判定を行なうこ
とができる。
Based on the instruction from the discrimination circuit 28, the quantization level selection circuit 34 sets the contact A when the discrimination circuit 28 discriminates that the level of the input signal is above, and the contact a when the discrimination circuit 28 discriminates that the level of the input signal is Lb.
If it is determined to be 2, contact cf is selected and connected to the output side. Note that the reed point C is connected to ground. The output of the quantization level selection circuit 34 is applied to one end of the capacitor 15, 18, the decision value generation circuit 25, and the analog comparator 31 via a low-pass filter 35 and an operational amplifier 36't-. The above operation is shown in FIG. When the input signal shown in (7) of FIG. 5(a) is applied to the input terminal 1, the center level of (a) is output from the high frequency door amplifier 12.
Waveforms (a) and (a) that fluctuate as shown are output. On the other hand, the quantization level selection circuit 34 outputs 4 quantized voltages and zero voltages having 34 JtL, which is the difference between levels L1 and Lb (+1 voltage, ←), corresponding to the input signal level. , the waveform is as shown in FIG. 5(b). The output of the quantization level selection circuit 34 is input to a low-pass filter 35, and the output from the low-pass filter 35 is as shown in FIG.
A voltage having the waveform shown in (3) of b) is output. (3) of the output waveform (b) of the low-pass filter 35 coincides with the center level (a) of the output of the high-pass filter 12, regardless of fluctuations in the level of the input signal. Used as a reference voltage when generating voltage. As explained above, according to this embodiment, the determination voltage that follows the amplitude fluctuation and center level fluctuation of the input signal is generated, and the level is determined.
Accurate level determination can be performed without going through the GC circuit.

本実施例では伝送系ヲ含めて低域特性が高域戸波器12
によシ決定される場合を例にとって説明しであるが、該
高域戸波器12を省略し、低域濾波器35の遮断周波a
を伝送系の高域p波特性に対応して決めた場合にも本実
施例と同一の効果を得ることができる。
In this embodiment, the low frequency characteristics including the transmission system are the same as that of the high frequency door waver 12.
In this example, the high-pass filter 12 is omitted and the cut-off frequency a of the low-pass filter 35 is determined by
The same effect as that of this embodiment can be obtained even when is determined in accordance with the high-frequency p-wave characteristics of the transmission system.

更に、本実施例はデジタル信号が2値或は3値以上の多
値の場合にも同様に適用できる。
Furthermore, this embodiment can be similarly applied to the case where the digital signal is multi-valued, such as binary or three-valued or more.

(発明の効果) 以上詳細に説明したように1本発明によれば、低域成分
が遮断された7′ジタル信号のレベル判定において、入
力信号のレベルに適応して判定電圧を生成しているので
、AGC回路を使用する必要がなく、入力信号のレベル
変動、中心レベル変動に影響されな込レベル判定を行な
うことができる。
(Effects of the Invention) As explained in detail above, according to the present invention, in determining the level of a 7' digital signal whose low frequency components are cut off, a determination voltage is generated in accordance with the level of the input signal. Therefore, there is no need to use an AGC circuit, and it is possible to perform a level judgment without being affected by the level fluctuations of the input signal and the center level fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック図、第2図は従来の
レベル判定方式、第3図は第2図の各部信号波形図、第
4図は第1図のタイミング信号の説明図、M5図は第1
図の各部信号波形図、第6図は判定電圧生成回路図であ
る。 11・・・入力端子、12・・・高域濾波器、13゜1
6.19.36・・・演算増幅器、14.17・・・ス
イッチ、15.18・・・コンデンサ、23.33・−
・反転増幅器、23.24・・・抵抗器、25・・・判
定電圧生成回路、26,27.31・・・アナログコン
/4’レータ、28・・・判別回路、29・・・論理回
路、30・・・出力端子、32・・・クロック再生・タ
イミング生成回路、34・・・量子化レベル選択回路、
35・・・低域濾波器。 特許出願人 沖電気工業株式会社 12 重輪85戸[シ 本発明の炙たイ用のプロ、7図 第1図 uのし勺ν刺側方氏 第2図 ジ1鴫、215!1le2シさ乙154コ九ち二12テ
ヤシ図第3図 利え電7i往枚可ト又 第6図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a conventional level determination method, FIG. 3 is a waveform diagram of each part of the signals in FIG. 2, and FIG. 4 is an explanatory diagram of the timing signal in FIG. 1. M5 diagram is the first
FIG. 6 is a diagram of signal waveforms at various parts in the figure, and FIG. 6 is a diagram of a judgment voltage generation circuit. 11...Input terminal, 12...High-pass filter, 13°1
6.19.36...Operation amplifier, 14.17...Switch, 15.18...Capacitor, 23.33.-
・Inverting amplifier, 23.24...Resistor, 25...Judgment voltage generation circuit, 26, 27.31...Analog converter/4'lator, 28...Discrimination circuit, 29...Logic circuit , 30... Output terminal, 32... Clock regeneration/timing generation circuit, 34... Quantization level selection circuit,
35...Low pass filter. Patent applicant: Oki Electric Industry Co., Ltd. Saotsu 154 Kochi 2 12 Teyashi Figure 3 Figure 3 Reiden 7i Transferable Tomata Figure 6

Claims (1)

【特許請求の範囲】 1、デジタル入力信号のレベル判定の基準とする判定電
圧を生成する適応レベル判定電圧生成方式において、 再生クロック信号で入力信号のレベル値を判定し、 前記レベル値に対応する電圧保持回路を選択して入力信
号と基準電圧との差を保持し、 各電圧保持回路に保持されている電圧の絶対値の平均レ
ベルを算出して該平均レベルに基づいてi又は複数のレ
ベルの正、負の電圧及び零の電圧を生成し、前記レベル
値に応じていずれかを選択し、低域濾波器に通して前記
基準電圧とし、前記電圧保持回路に保持されている電圧
と前記基準電圧に基づいて入力信号に適応した判定電圧
を生成することを特徴とする適応レベル判定電圧生成方
式。 2、前記低域P波器と同一の遮断周波数を有する高域濾
波器を入力側に設けたことを特徴とする請求項1記載の
適応レベル判定電圧生成方式。 3、前記低域濾波器の遮断周波数を伝送系の高域濾波特
性の遮断周波数に一致させたことを特徴とする請求項1
記載の適応レベル判定電圧生成方式。
[Claims] 1. In an adaptive level judgment voltage generation method that generates a judgment voltage as a reference for level judgment of a digital input signal, the level value of the input signal is judged by a reproduced clock signal, and the level value corresponding to the level value is determined. Select a voltage holding circuit to hold the difference between the input signal and the reference voltage, calculate the average level of the absolute value of the voltage held in each voltage holding circuit, and calculate i or multiple levels based on the average level. A positive voltage, a negative voltage, and a zero voltage are generated, and one of them is selected according to the level value, and the voltage is passed through a low-pass filter to be the reference voltage, and the voltage held in the voltage holding circuit and the voltage are An adaptive level judgment voltage generation method characterized by generating a judgment voltage adapted to an input signal based on a reference voltage. 2. The adaptive level determination voltage generation system according to claim 1, further comprising a high-pass filter having the same cutoff frequency as the low-pass P-wave filter on the input side. 3. Claim 1, characterized in that the cut-off frequency of the low-pass filter is made to match the cut-off frequency of the high-pass filter characteristic of the transmission system.
The adaptive level determination voltage generation method described.
JP6191488A 1988-03-17 1988-03-17 Method of generating adaptive level judgment voltage Expired - Lifetime JPH0783384B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6191488A JPH0783384B2 (en) 1988-03-17 1988-03-17 Method of generating adaptive level judgment voltage
US07/323,382 US4939750A (en) 1988-03-17 1989-03-14 Adaptive signal discrimination circuit and a method for discriminating high and low level of data signals
EP89302634A EP0333491B1 (en) 1988-03-17 1989-03-17 An adaptive signal discrimination circuit and a method for discriminating high and low level of data signals
DE68911961T DE68911961T2 (en) 1988-03-17 1989-03-17 Adaptive signal discrimination circuit and method for discriminating high and low levels of data signals.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6191488A JPH0783384B2 (en) 1988-03-17 1988-03-17 Method of generating adaptive level judgment voltage

Publications (2)

Publication Number Publication Date
JPH01236747A true JPH01236747A (en) 1989-09-21
JPH0783384B2 JPH0783384B2 (en) 1995-09-06

Family

ID=13184906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6191488A Expired - Lifetime JPH0783384B2 (en) 1988-03-17 1988-03-17 Method of generating adaptive level judgment voltage

Country Status (1)

Country Link
JP (1) JPH0783384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025076A1 (en) 2019-08-06 2021-02-11 株式会社京三製作所 Pulsed high frequency monitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025076A1 (en) 2019-08-06 2021-02-11 株式会社京三製作所 Pulsed high frequency monitor
JP2021027495A (en) * 2019-08-06 2021-02-22 株式会社京三製作所 Pulsed high frequency monitor
KR20220042115A (en) 2019-08-06 2022-04-04 가부시끼가이샤교산세이사꾸쇼 Pulsed High Frequency Monitor
US11852665B2 (en) 2019-08-06 2023-12-26 Kyosan Electric Mfg. Co., Ltd. Pulsed high frequency monitor

Also Published As

Publication number Publication date
JPH0783384B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US5412687A (en) Digital communications equipment using differential quaternary frequency shift keying
US4835790A (en) Carrier-to-noise detector for digital transmission systems
US3959726A (en) Pilot signal transmission system
KR900002330B1 (en) Radio receiver
JP2634319B2 (en) Frequency control method for coherent radio receiver and apparatus for implementing the method
US3872381A (en) Digital transmission system
JPH11331052A (en) Asynchronous clock for adaptive equalization
KR100586279B1 (en) Sampling control loop for a receiver for digitally transmitted signals
US6154510A (en) Symbol timing recovery based on adjusted, phase-selected magnitude values
CN111181883A (en) Polar transmitter with zero-crossing avoidance
US3813598A (en) Single tone carrier recovery system
US9106485B1 (en) System and method for FSK demodulation
US5625645A (en) Differential pulse encoding and decoding for binary data transmissions
JPH0136745B2 (en)
US4320527A (en) Bit synchronizing system for pulse signal transmission
US5170131A (en) Demodulator for demodulating digital signal modulated by minimum shift keying and method therefor
US4847874A (en) Clock recovery system for digital data
JPH01236747A (en) System for generating adaptive level deciding voltage
US6101219A (en) Adaptive equaliser
US5642380A (en) Data communication system and modem therefor
JPH0681162B2 (en) Data judgment circuit
US20030081699A1 (en) Phase detector
JPH01236748A (en) Adaptive level deciding system
JP5272847B2 (en) Signal transmission apparatus and signal transmission method
JP2861778B2 (en) Demodulator