JPH01236701A - Amplitude equalizer for very high frequency band - Google Patents

Amplitude equalizer for very high frequency band

Info

Publication number
JPH01236701A
JPH01236701A JP6297588A JP6297588A JPH01236701A JP H01236701 A JPH01236701 A JP H01236701A JP 6297588 A JP6297588 A JP 6297588A JP 6297588 A JP6297588 A JP 6297588A JP H01236701 A JPH01236701 A JP H01236701A
Authority
JP
Japan
Prior art keywords
transmission line
frequency
amplitude
band
amplitude equalizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6297588A
Other languages
Japanese (ja)
Inventor
Takao Shima
島 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6297588A priority Critical patent/JPH01236701A/en
Publication of JPH01236701A publication Critical patent/JPH01236701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filters And Equalizers (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

PURPOSE:To obtain an amplitude equalizer which has the variable extent of equalization and can be used in several GHz by connecting parallel resonators with a transmission line having a length lambdaC/2 to constitute a pi type circuit. CONSTITUTION:A transmission line 11 of lambda/4, a resistance 13, a variable capacity element 15, a transmission line 12 of lambda/4, a resistance 14, and a variable capacity element 16 constitute parallel resonators. The other ends of elements 15 and 16 of this pair of parallel resonators are connected to an earth line 18, and the other ends of resistances 13 and 14 are connected to one end and the other of a transmission line 17 of lambda/2, and these connection points are used as input and output terminals to constitute the PI type circuit. The wavelength lambdais the wavelength lambdaC of the center frequency in the frequency band where the variable amplitude equalizer for very high frequency is applied. By this constitution, the operation in the several GHz band is possible and the capacity value is changed to obtain a right falling or left falling characteristic.

Description

【発明の詳細な説明】 〔発明の概要〕 マイクロ波通信装置に用いられ振幅の周波数特性を補正
する超高周波帯振幅等化器に関し、数GHz帯で使用で
き、等化量が可変である振幅等化器を提供することを目
的とし、 適用対象周波数帯の中心周波数の波長をλcとして、λ
c / 4よりや−長い伝送線路と、帯域外のインピー
ダンスを抵抗性にする抵抗と、可変容量素子とを直列接
続してなる一対の並列共振器を備え、これらの並列共振
器を、長さλc/2の伝送線路で接続してπ形回路とし
てなる構成とする。
[Detailed Description of the Invention] [Summary of the Invention] This invention relates to an ultra-high frequency band amplitude equalizer that is used in microwave communication equipment and corrects the frequency characteristics of the amplitude, and which can be used in several GHz bands and whose equalization amount is variable. The purpose is to provide an equalizer, and the wavelength of the center frequency of the applicable frequency band is λc, and λ
It is equipped with a pair of parallel resonators made by connecting in series a transmission line slightly longer than c/4, a resistor that makes out-of-band impedance resistive, and a variable capacitance element, and these parallel resonators are The configuration is such that a π-type circuit is formed by connecting with a transmission line of λc/2.

〔産業上の利用分野〕[Industrial application field]

本発明は、マイクロ波通信装置に用いられ振幅の周波数
特性を補正する超高周波帯振幅等化器に関する。
The present invention relates to an ultra-high frequency band amplitude equalizer used in a microwave communication device to correct amplitude frequency characteristics.

マイクロ波通信装置において超高周波部に用いられる増
幅器、ミキサ等の個々の回路は、その伝送チャネル毎に
最適な特性となるように設計、調整されることは少なく
、通常は、多数のチャネルをカバーすることができるよ
うに広帯域化されている。このような広帯域の増幅器、
ミキサ等にすると、同一仕様のものを各チャネルに使用
できる。
Individual circuits such as amplifiers and mixers used in the ultra-high frequency section of microwave communication equipment are rarely designed or adjusted to have optimal characteristics for each transmission channel, and usually cover a large number of channels. The band has been expanded to allow for Such a wideband amplifier,
If you use a mixer or the like, you can use one with the same specifications for each channel.

しかしながら広帯域の増幅器、ミキサ等でも、全帯域で
平坦な振幅周波数特性ではなく、彎曲している、特に高
周波部で下っているのが普通であるから、該帯域を複数
に区分したその1つ(各チャネル)で見ると右下り、左
下りになるものがある(帯域内振幅偏差の正または負の
1次傾斜が現われる)。
However, even in wideband amplifiers, mixers, etc., the amplitude frequency characteristics are not flat over the entire band, but are curved, especially in the high frequency region. When looking at each channel), there are some that are downward to the right and downward to the left (a positive or negative first-order slope of the in-band amplitude deviation appears).

帯域内の振幅周波数特性に厳しい平坦特性が要求される
場合は振幅等化器が必要になり、必要な等化量はチャネ
ルによって異なるため、等化mが可変である1辰幅等化
器が望まれる。
If strict flatness is required for the amplitude frequency characteristics within the band, an amplitude equalizer is required.The amount of equalization required varies depending on the channel, so a one-arrow width equalizer with variable equalization m is used. desired.

〔従来の技術〕[Conventional technology]

振幅等化器は低い周波数帯例えば70〜140MHzの
IF帯用のものは、第10図(a)に示すようにLC回
路で構成される。図でDIはバラクタダイオードで、バ
イアス(バイアス回路は図示していない)を変えること
により容量値が変る。これはキャパシタC2と直列に、
そしてこれらはキャパシタC+、  インダクタンスL
1と並列になっており、結局この回路はLC共振回路を
構成し、共振点でインピーダンス最小、その左、右で容
量性、誘導性のあるインピーダンス値を持ち、彎曲特性
を示す。この彎曲特性またはその左側、右側の左下り、
右下り特性を増幅器等のそれと逆にすれば・相殺して、
フラットな振幅周波数特性を実現することができる。
An amplitude equalizer for a low frequency band, for example, an IF band of 70 to 140 MHz, is composed of an LC circuit as shown in FIG. 10(a). In the figure, DI is a varactor diode, and the capacitance value changes by changing the bias (the bias circuit is not shown). This is in series with capacitor C2,
And these are capacitor C+, inductance L
1, and this circuit ultimately constitutes an LC resonant circuit, with minimum impedance at the resonance point, capacitive and inductive impedance values to the left and right of the resonance point, and exhibits curved characteristics. This curved characteristic or its left side, right side down left side,
If you reverse the right-down characteristic to that of an amplifier, etc., you can cancel it out,
A flat amplitude frequency characteristic can be achieved.

本発明で得ようとする振幅等化器は、IGHz〜数GH
zの周波帯、チャネル幅20MHz、などの高周波域用
のもので、第10図(a)のような集中定数型のものは
通さない。
The amplitude equalizer to be obtained by the present invention has a frequency range of IGHz to several GHz.
It is for a high frequency range such as a frequency band of Z and a channel width of 20 MHz, and does not pass a lumped constant type as shown in FIG. 10(a).

増幅器は多段接続されて、所要の利得を得たりされるが
、この場合出力側と入力側の特性インピーダンスが等し
くて反射が生じないようにする必要がある。しかし、あ
らゆる周波数において整合をとることは困難で、このた
め使用周波数帯以外などでは不整合となり易い。そこで
第10図(b)に示すように段間にアイソレータCIR
またはアッテネータATTを挿入し、増幅器A2の入力
側からの反射波が増幅器A1の出力側へ戻されないよう
にする。なおFlはバンドパスフィルタである。
Amplifiers are connected in multiple stages to obtain a desired gain, but in this case it is necessary to ensure that the characteristic impedances on the output side and the input side are equal to prevent reflection from occurring. However, it is difficult to achieve matching at all frequencies, and therefore mismatching is likely to occur in frequencies other than the used frequency band. Therefore, as shown in Fig. 10(b), an isolator CIR is installed between the stages.
Alternatively, an attenuator ATT is inserted to prevent the reflected wave from the input side of the amplifier A2 from being returned to the output side of the amplifier A1. Note that Fl is a bandpass filter.

増幅器がトランジスタ等の増幅素子で構成されていると
、トランジスタは周波数の低い領域で増幅能力が大きい
ので、上記反射により低域でスプリアス発振が生じ易い
。アイソレータCIRまたは減衰器ATTを挿入すれば
、この発振は防げる。
When the amplifier is composed of amplification elements such as transistors, spurious oscillations are likely to occur in the low frequency range due to the above reflection, since the transistor has a large amplification ability in the low frequency range. This oscillation can be prevented by inserting an isolator CIR or an attenuator ATT.

アイソレータ(サーキュレータ”)CIHの場合挿入損
失はないが、アッテネータでは挿入損失があり、しかも
挿入損失が大きい程発振防止に有効である。
An isolator (circulator) CIH has no insertion loss, but an attenuator has an insertion loss, and the greater the insertion loss, the more effective it is in preventing oscillation.

低域発振を防くには、使用帯域外の利得を低くすると同
時に、インピーダンスを抵抗性にして回路を安定化する
のがよい。振幅等化器を使用帯域外では抵抗性にし、ま
た低利得にすれば、該振幅等化器に上記アイソレータま
たは減衰器の機能を兼ねさせることができる。
To prevent low-frequency oscillation, it is best to lower the gain outside the band of use and at the same time make the impedance resistive to stabilize the circuit. By making the amplitude equalizer resistive outside the band of use and having a low gain, the amplitude equalizer can also function as the isolator or attenuator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、数GHz帯で使用でき、等化量が可変である
振幅等化器を提供することを目的とするものである。
An object of the present invention is to provide an amplitude equalizer that can be used in several GHz bands and has a variable equalization amount.

またこの振幅等化器は、低域発振防止殿能も有するよう
にすることを目的とするものである。
This amplitude equalizer is also intended to have the ability to prevent low frequency oscillation.

〔課題を解決するだめの手段〕[Failure to solve the problem]

第1図に本発明の原理図を示す。11.12はス/4の
伝送線路、13.14は伝送線路11゜12の一端にそ
の一端を接続した抵抗、15,16は同他端にその一端
を接続した可変容量素子であり、これら即ち11と13
と15.12と14と16は並列共振器を構成する。
FIG. 1 shows a diagram of the principle of the present invention. 11.12 is a transmission line of S/4, 13.14 is a resistor whose one end is connected to one end of the transmission line 11 and 12, and 15 and 16 are variable capacitance elements whose one end is connected to the other end of the same. i.e. 11 and 13
and 15.12, 14, and 16 constitute a parallel resonator.

これら一対の並列共振器の可変容量素子15゜16の他
端は接地線18に接続され、同抵抗13゜14の他端は
λ/2の伝送線路17の一端、同他端に接続され、これ
らの接続点が人、出力端となり、π形回路を構成する。
The other ends of the variable capacitance elements 15 and 16 of these pair of parallel resonators are connected to the grounding line 18, and the other ends of the same resistance 13 and 14 are connected to one end and the other end of the λ/2 transmission line 17, These connection points become output terminals and constitute a π-shaped circuit.

波長λは、この第1図の超高周波用可変振幅等化器が適
用される周波数帯の中心周波数の波長λcである。伝送
線路11.12はλ/4長こ\ではλc/4長であるが
、厳密にλc / 4にする必要はない。可変容量素子
15.16が直列に入るので、伝送線路11.12はλ
c / 4よりや−長くするのが適当である。
The wavelength λ is the wavelength λc of the center frequency of the frequency band to which the ultra-high frequency variable amplitude equalizer of FIG. 1 is applied. Although the transmission lines 11 and 12 have a length of λ/4, it is not necessary to have a length of λc/4 strictly. Since the variable capacitance elements 15 and 16 are connected in series, the transmission line 11 and 12 are λ
It is appropriate to make it slightly longer than c/4.

可変容量素子としてはバラクタダイオードなどが適当で
、該ダイオードなら電圧制御で容量値を変更することが
できる。
A varactor diode or the like is suitable as the variable capacitance element, and the capacitance value of such a diode can be changed by voltage control.

〔作用〕[Effect]

第1図の構成の振幅等化器であれば、数GHz帯で動作
でき、容量値の変更で右下り、左下すなどの1辰幅周波
数特性を得ることができ、中心周波数から外れた周波数
では低利得で、低域発振の阻止機能を有する。次にこれ
を詳細に説明する。
The amplitude equalizer with the configuration shown in Figure 1 can operate in the several GHz band, and by changing the capacitance value, it is possible to obtain one-inch width frequency characteristics such as downward to the right or downward to the left, and it is possible to obtain frequency characteristics with a width of one arrow such as downward to the right or downward to the left. It has a low gain and has a low-frequency oscillation blocking function. Next, this will be explained in detail.

IGHz程度以上のマイクロ波帯、準ミリ波帯を対象と
した等化器を実現しようとする場合、集中定数型の素子
(コンデンサ、インダクタ)では素子値の精度の問題、
寄性容量およびインダクタンスの問題により、設計性が
悪くなり、回路実装の面でも、微小な回路部品の組合せ
となるため、困難がつきまとう。そこで分布定数型とす
るのが好適である。
When trying to realize an equalizer for the microwave band or quasi-millimeter wave band above about IGHz, lumped constant type elements (capacitors, inductors) have problems with the accuracy of element values.
Problems with parasitic capacitance and inductance impair design efficiency, and circuit implementation is also difficult because it requires a combination of minute circuit components. Therefore, it is preferable to use a distributed constant type.

第3図に示すように、およそλ/4の伝送線路25の片
端を可変容量素子26で接地すると、共振周波数が可変
の分布定数形共振器が得られる。
As shown in FIG. 3, when one end of the approximately λ/4 transmission line 25 is grounded with a variable capacitance element 26, a distributed constant resonator with a variable resonance frequency is obtained.

この伝送線路25は(b1図に示すように、裏面に接地
金属膜28を被着した絶縁基板29の表面に帯状導電体
11R25aを形成して得られる。人、出力端間を結ぶ
伝送線路27も同様にして形成される。
This transmission line 25 is obtained by forming a band-shaped conductor 11R25a on the surface of an insulating substrate 29 whose back surface is coated with a ground metal film 28, as shown in Figure b1.A transmission line 27 connecting between a person and an output end is formed in the same manner.

これらの伝送線路の特性インピーダンスは導電体膜の幅
W、絶縁基板29の厚みt及び誘電率εで決まるが、通
常の50Ωなどに選ぶ。数GH2帯では幅Wは数1−程
度である。伝送線路25aの一端は伝送線路27に接続
し、他端は可変容量素子26を介して裏面金属膜28に
接続すると、第3図(alになる。
The characteristic impedance of these transmission lines is determined by the width W of the conductor film, the thickness t of the insulating substrate 29, and the dielectric constant ε, and is usually selected to be 50Ω or the like. In the several GH2 band, the width W is about several 1-. When one end of the transmission line 25a is connected to the transmission line 27 and the other end is connected to the back metal film 28 via the variable capacitance element 26, the result is shown in FIG. 3 (al).

可変容量素子26を除いて伝送線路25の他端を直接接
地すると第4図(a)になり、これは同図(b)と等化
である。つまり伝送線路25は並列共振器を構成し、共
振周波数frはfr=1/2πハ1−である。並列共振
器であるからインピーダンスは、入力周波数fがf=f
rの時oo(挿入損失なし)、f>frのときC性、f
<f rのときL性である。
When the other end of the transmission line 25 is directly grounded except for the variable capacitance element 26, the result is shown in FIG. 4(a), which is equivalent to FIG. 4(b). In other words, the transmission line 25 constitutes a parallel resonator, and the resonant frequency fr is fr=1/2πha1-. Since it is a parallel resonator, the impedance is such that the input frequency f is f=f
When r, oo (no insertion loss), when f>fr, C property, f
<fr When r, it is L property.

伝送線路をインピーダンスzRで終端すると、第4図(
(+)になる。25bは該伝送線路で、長さl、特性イ
ンビニダンスZoとする。このインピーダンスZは βは伝播定数でβ=2π/λ として表わされる。インピーダンスzRを可変容量素子
とし、その容量はCとすると、 となる。この回路が共振する条件は分母=Oであるから janβi!=−20+JJC である。上式の左辺をyl、右辺をy2とすると、y2
=−ZaωC である(Cは光速、λf=C)。これらのyl。
When the transmission line is terminated with impedance zR, Figure 4 (
It becomes (+). 25b is the transmission line, which has a length l and a characteristic invinidance Zo. This impedance Z is expressed as β=2π/λ, where β is a propagation constant. If impedance zR is a variable capacitance element and its capacitance is C, then the following equation is obtained. The condition for this circuit to resonate is that the denominator = O, so janβi! =-20+JJC. If the left side of the above equation is yl and the right side is y2, then y2
=-ZaωC (C is the speed of light, λf=C). These yl.

y2を周波数rに対してプロットすると第6図の如くな
り、共振周波数はylとy2の交点で表わされる。本例
では、可変容量素子の容量値Cが5pl”のとき約2.
2GHz、1pFのとき約2.9GHzであり、Cを5
〜1pFの範囲で変化させると共振周波数は2.2〜2
.9 G Hzの範囲で変化する。
When y2 is plotted against frequency r, it becomes as shown in FIG. 6, and the resonance frequency is represented by the intersection of yl and y2. In this example, when the capacitance value C of the variable capacitance element is 5 pl'', approximately 2.
At 2GHz and 1pF, it is about 2.9GHz, and when C is 5
When changed in the range of ~1pF, the resonant frequency is 2.2~2
.. It varies in the range of 9 GHz.

この第6図より明らかなように、共振周波数は、容量を
介さずに直接接地した場合(約1.87GH2)に比べ
て高くなり、しかも容量が小さくなる程共振周波数が高
くなる。こうして第5図に示すように、容1cを変える
ことでこの回路を通る信号の振幅特性に傾斜を持たせ、
それを変えることができる。この第5図で曲線Aは共振
周波数をfCにしたときの振幅周波数特性、曲線Bは容
量を小にして共振周波数をfc′ にしたときの振幅周
波数特性である。点線で示す帯域が本回路の使用対象の
周波数帯(チャネル)とすると、曲線Aならフラット、
曲線Bなら左下りの特性になり右下りの増幅器の振幅等
化を行なうことができる。曲線Aのfcより右側部分を
利用すれば右下りの特性が得られ、左下りの増幅器の振
幅等化を行なうことができる。
As is clear from FIG. 6, the resonant frequency is higher than that in the case of direct grounding without a capacitor (approximately 1.87 GH2), and the smaller the capacitor, the higher the resonant frequency becomes. In this way, as shown in FIG. 5, by changing the capacitance 1c, the amplitude characteristics of the signal passing through this circuit are given a slope,
You can change that. In FIG. 5, curve A is the amplitude frequency characteristic when the resonant frequency is set to fC, and curve B is the amplitude frequency characteristic when the capacitance is reduced and the resonant frequency is set to fc'. Assuming that the band indicated by the dotted line is the frequency band (channel) to be used by this circuit, curve A is flat,
Curve B has a left-downward characteristic, and amplitude equalization of the right-downward amplifier can be performed. By using the portion to the right of fc of the curve A, a right-downward characteristic can be obtained, and amplitude equalization of the left-downward amplifier can be performed.

こうして第3図の並列共振器により振幅等化を行なうこ
とができるが、第3図の回路では中心周波数fcから外
れた周波数ではC性またはL性のあるインピーダンス値
を示し、か\る回路の挿入でインピーダンスが不整合に
なる。そこで、安定化回路としての機能を持たせるため
、第1図に示すように、伝送線路の接地側の反対側に抵
抗を直列に接続する。またか\る並列共振器は1個より
複数個、縦続接続して用いた方が、合成振幅周波数特性
の彎曲塵が強くなり、振幅等化に有効である。そこで第
1図に示すようにか\る並列共振器を2組(13と11
と15及び14と12と16)用い、これらはλ/2長
の伝送線路17で接続し、π型回路とする。
In this way, amplitude equalization can be performed by the parallel resonator shown in Fig. 3, but the circuit shown in Fig. 3 exhibits an impedance value of C-character or L-character at frequencies away from the center frequency fc, and Insertion causes impedance mismatch. Therefore, in order to function as a stabilizing circuit, a resistor is connected in series to the opposite side of the transmission line from the ground side, as shown in FIG. Furthermore, using a plurality of such parallel resonators in cascade rather than just one resonator increases the curvature of the composite amplitude frequency characteristic and is more effective in equalizing the amplitude. Therefore, as shown in Figure 1, two sets of parallel resonators (13 and 11) were installed.
, 15, 14, 12, and 16) are used, and these are connected by a transmission line 17 of λ/2 length to form a π-type circuit.

伝送線路17は、特性インピーダンスが高いようにする
。例えば50Ω系なら80Ωなどとし、インピーダンス
不整合を起す(インピーダンスが挿入された状態にする
)。80Ωにするのは伝送線路(ストリップ線路)の幅
を細くすることにより実現できる。長さlがλ/2の伝
送線路は直列共振器となり(人、出力端間にLC直列回
路を接続したと等化)、バンドパスの特性を示す。共振
周波数frはやはりfr=1/2π市であり、共振周波
数の波長λrはλr=2I!=c/frである。これに
よっても、第5図の振幅周波数特性の彎曲塵が強化され
る。
The transmission line 17 is designed to have high characteristic impedance. For example, if it is a 50Ω system, set it to 80Ω to cause impedance mismatch (impedance is inserted). 80Ω can be achieved by narrowing the width of the transmission line (strip line). A transmission line with a length l of λ/2 becomes a series resonator (equivalent to connecting an LC series circuit between output terminals) and exhibits bandpass characteristics. The resonant frequency fr is also fr=1/2π, and the wavelength λr of the resonant frequency is λr=2I! =c/fr. This also strengthens the curvature of the amplitude frequency characteristic shown in FIG.

〔実施例〕〔Example〕

第2図に本発明の実施例を示す。企図を通してそうであ
るが同じ部分には同じ符号が付しである。
FIG. 2 shows an embodiment of the present invention. As throughout the design, like parts are numbered the same.

15.16はパ゛ラクタダイオードで構成した可変容H
素子で、制御電圧Vc、フィルタ(インダクタ2工とキ
ャパシタ22)がダイオード15.16に対するバイア
ス回路を構成する。制御電圧VCを変えることにより、
バラクタダイオード15゜16の容量値が変る。19.
20は直流阻止用のキャパシタで、制御電圧Vcが人、
出力端を通して前、後段回路へ加わるのを禁止する。こ
の回路は50Ω系で、伝送線路11.12などはそのよ
うに設定されるが、伝送線路17は50Ωより高く、例
えば80Ωにしである。これは、伝送線路11.12で
は幅を’l am、伝送線路17では幅を0、5 *s
にすることにより得られる。
15.16 is a variable capacitance H composed of a paractor diode
The control voltage Vc and the filter (inductor 2 and capacitor 22) constitute a bias circuit for the diodes 15 and 16. By changing the control voltage VC,
The capacitance value of the varactor diode 15°16 changes. 19.
20 is a capacitor for DC blocking, and the control voltage Vc is
Prohibits input to the front and rear circuits through the output terminal. This circuit is a 50Ω system, and the transmission lines 11, 12, etc. are set as such, but the transmission line 17 is higher than 50Ω, for example, 80Ω. This means that for transmission line 11.12 the width is 'l am, for transmission line 17 the width is 0, 5*s
It can be obtained by

第7図に、バラクタダイオードに加える逆電圧VR(V
)と容量Cv (pF)との関係を示す。
Figure 7 shows the reverse voltage VR (V
) and the capacitance Cv (pF).

図示のように逆電圧vRが大になる程、容Mcvは小に
なる。
As shown in the figure, the larger the reverse voltage vR becomes, the smaller the capacitance Mcv becomes.

第7図のように逆電圧vRにより容量Cvを変えたと、
きの第2図の振幅等化器の振幅特性の変化を第8図に示
す。VR=11.7Vのときの共振周波数がf ’c 
= 2.5 G Hzで、VR=15Vにするとfcは
上って左下りの特性になり、またvR−9■にするとf
cが下って右下りの特性になる。
When the capacitance Cv is changed by the reverse voltage vR as shown in Fig. 7,
FIG. 8 shows changes in the amplitude characteristics of the amplitude equalizer shown in FIG. 2. The resonance frequency when VR=11.7V is f'c
= 2.5 GHz, when VR = 15V, fc rises and has a downward left-hand characteristic, and when vR-9■, fc
c decreases, resulting in a downward-sloping characteristic.

第9図に、逆電圧■Rを変えることによる振幅傾斜dB
/100MHzの変化を示す。VR=11.7Vでは傾
斜は0で、それよりVRが大になると傾斜は正(右上り
)、VRが小になると傾斜は負(左下り)になる。
Figure 9 shows the amplitude slope in dB by changing the reverse voltage ■R.
/100MHz change is shown. When VR=11.7V, the slope is 0. When VR becomes larger than that, the slope becomes positive (upward to the right), and when VR becomes smaller, the slope becomes negative (downward to the left).

λ/2長の伝送線路17は固定であるが、並列共振器1
3と11と15.14と12と16の共振周波数を変え
るのに応じて共振周波数を変える例えば長さを変えるの
が、原理的には好ましい。
The transmission line 17 with a length of λ/2 is fixed, but the parallel resonator 1
In principle, it is preferable to change the resonant frequency, for example, change the length, in accordance with changing the resonant frequencies of 3, 11, 15, 14, 12, and 16.

固定伝送線路17を用いる場合の該線路17の共振周波
数は、並列共振器の共振周波数のmax、 min値の
中間にしておく。
When the fixed transmission line 17 is used, the resonant frequency of the line 17 is set between the maximum and minimum values of the resonant frequencies of the parallel resonators.

(発明の効果〕 以上説明したように本発明の、振幅の一次1項斜を補償
する機能を持つ振幅等化器により、その電圧制御で、緩
やかな波状特性を持つ広帯域の増幅器やミキサの振幅偏
差をチャネル帯域で等化することができる。
(Effects of the Invention) As explained above, the amplitude equalizer of the present invention, which has a function of compensating for the first order one-term slope of the amplitude, can control the amplitude of broadband amplifiers and mixers with gentle wave characteristics by controlling the voltage. The deviation can be equalized over the channel band.

また、この振幅等化器には、帯域外でのインピーダンス
を抵抗性にすると共に、離調するに従って減衰量を大き
くする帯域通過特性を持たせているので、多段接続の回
路の股間に使用されるとき、この1辰幅等化器は安定化
回路として動作する利点を有する。
In addition, this amplitude equalizer has a bandpass characteristic that makes the impedance resistive outside the band and increases the amount of attenuation as the tune is detuned, so it can be used between multiple stages of circuits. This one-width equalizer has the advantage of operating as a stabilizing circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す回路図、 第2図は本発明の実施例を示す回路図、第3図は並列共
振器の説明図、 第4図は第3図の原理説明図、 第5図は振幅周波数特性の変更の説明図、第6図は並列
共振器のインピーダンス特性図、第7図はバラククダイ
オードの電圧容量特性図、第8図は振幅等化器の振幅特
性図、 第9図は1次傾斜対制御電圧特性図、 第10図は従来例の説明図である。 第1図で11.12はλ3/4伝送線路、13゜14は
抵抗、15.16は可変容量素子、17はλc / 2
伝送線路、18は接地導体である。
Fig. 1 is a circuit diagram showing the principle of the present invention, Fig. 2 is a circuit diagram showing an embodiment of the invention, Fig. 3 is an explanatory diagram of a parallel resonator, Fig. 4 is an explanatory diagram of the principle of Fig. 3, Figure 5 is an explanatory diagram of changes in amplitude frequency characteristics, Figure 6 is an impedance characteristic diagram of a parallel resonator, Figure 7 is a voltage capacity characteristic diagram of a barrack diode, and Figure 8 is an amplitude characteristic diagram of an amplitude equalizer. , FIG. 9 is a primary slope versus control voltage characteristic diagram, and FIG. 10 is an explanatory diagram of a conventional example. In Figure 1, 11.12 is a λ3/4 transmission line, 13°14 is a resistor, 15.16 is a variable capacitance element, and 17 is a λc/2
The transmission line 18 is a ground conductor.

Claims (1)

【特許請求の範囲】[Claims] 1.適用対象周波数帯の中心周波数の波長をλcとして
、λc/4よりやゝ長い伝送線路(11,12)と、帯
域外のインピーダンスを抵抗性にする抵抗(13,14
)と、可変容量素子(15,16)とを直列接続してな
る一対の並列共振器を備え、 これらの並列共振器(13と11と15,14と12と
16)を、長さλc/2の伝送線路(17)で接続して
π形回路としてなることを特徴とする超高周波帯用振幅
等化器。
1. Assuming that the wavelength of the center frequency of the applicable frequency band is λc, a transmission line (11, 12) slightly longer than λc/4 and a resistor (13, 14) that makes the impedance outside the band resistive are used.
) and a variable capacitance element (15, 16) are connected in series. An amplitude equalizer for an ultra-high frequency band, characterized in that it is connected by two transmission lines (17) to form a π-type circuit.
JP6297588A 1988-03-16 1988-03-16 Amplitude equalizer for very high frequency band Pending JPH01236701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6297588A JPH01236701A (en) 1988-03-16 1988-03-16 Amplitude equalizer for very high frequency band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6297588A JPH01236701A (en) 1988-03-16 1988-03-16 Amplitude equalizer for very high frequency band

Publications (1)

Publication Number Publication Date
JPH01236701A true JPH01236701A (en) 1989-09-21

Family

ID=13215865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6297588A Pending JPH01236701A (en) 1988-03-16 1988-03-16 Amplitude equalizer for very high frequency band

Country Status (1)

Country Link
JP (1) JPH01236701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008267A1 (en) * 2011-07-08 2013-01-17 Nec Corporation High-pass filters for high-speed data transmission systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008267A1 (en) * 2011-07-08 2013-01-17 Nec Corporation High-pass filters for high-speed data transmission systems

Similar Documents

Publication Publication Date Title
US4577168A (en) Notch filter
EP0255195B1 (en) Notch filter
US7567153B2 (en) Compact bandpass filter for double conversion tuner
US3879690A (en) Distributed transmission line filter
US6054908A (en) Variable bandwidth filter
EP0368661B1 (en) Microwave filter
US5144268A (en) Bandpass filter utilizing capacitively coupled stepped impedance resonators
JP3479290B2 (en) Passband flatness compensation circuit
JPH0385903A (en) Band pass filter
US5291161A (en) Microwave band-pass filter having frequency characteristic of insertion loss steeply increasing on one outside of pass-band
CN105811057B (en) Balanced type broadband is adjustable common-mode filter
JP7149819B2 (en) band pass filter
US2661459A (en) Band pass filter circuit
JPH01236701A (en) Amplitude equalizer for very high frequency band
JP3136867B2 (en) Tunable bandpass filter
JP7190926B2 (en) band stop filter
JP2008078734A (en) Variable frequency rf filter
US10027305B1 (en) Filter including non-magnetic frequency selective limiters
Lorenz et al. Wide bandwidth low cost SAW notch filters
US11271546B2 (en) Filter circuit using 90-degree hybrid coupler
JP6994988B2 (en) Filters and electronic devices
JPH0129322B2 (en)
JP2800479B2 (en) Microwave filter
CN116707485A (en) Band-pass filter circuit, band-pass filter and electronic equipment
JPH11330890A (en) Band-pass filter