JPH01236603A - Sic thin film thermistor - Google Patents

Sic thin film thermistor

Info

Publication number
JPH01236603A
JPH01236603A JP6395688A JP6395688A JPH01236603A JP H01236603 A JPH01236603 A JP H01236603A JP 6395688 A JP6395688 A JP 6395688A JP 6395688 A JP6395688 A JP 6395688A JP H01236603 A JPH01236603 A JP H01236603A
Authority
JP
Japan
Prior art keywords
substrate
surface roughness
thermistor
heat
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6395688A
Other languages
Japanese (ja)
Inventor
Kazuo Nakajima
一雄 中島
Masaru Oda
大 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6395688A priority Critical patent/JPH01236603A/en
Publication of JPH01236603A publication Critical patent/JPH01236603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to suppress irregularity in the resistance value and the thermistor constant of the title thin film thermistor by bringing the degree of surface roughness of a heat-resisting insulated substrate to 1mum or less. CONSTITUTION:The surface roughness of a heat-resisting insulating substrate 1 is formed at 1mum or less by conducting a mirror-polishing work thereon. Then, Pt-Au conductive paste is printed on said substrate 1 using a screen printing method, and after the paste has been dried up, a pair of pectinated electrodes 2 are formed by sintering. Also, a part of said electrodes 2 is used as terminal attaching parts 2a and 2b, and an SiC temperature-sensitive resistance film is formed on the substrate 1, excluding the terminal attaching parts 2a and 2b, and the electrode 2 by conducting a high frequency sputtering method. As the surface roughness of the insulated substrate 1 becomes 1mum or less as above-mentioned, the irreqularity in resistance value and thermistor constant can be made small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、温度センサ用感温抵抗素子として用いられる
2熱応答性に優れ、かつ高耐熱性を有するSIC薄膜サ
ーミスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an SIC thin film thermistor that is used as a temperature-sensitive resistance element for a temperature sensor and has excellent bithermal responsiveness and high heat resistance.

従来の技術 温度センサには各種の感温手段があるが、金属酸化物か
らなるサーミスタ素子が一般的であって。
Conventional technology temperature sensors include various temperature sensing means, but thermistor elements made of metal oxides are common.

各種分野に実用化されている。そして、近年は用途の拡
大に伴ってさらに温度検知範囲が広く、応答速度が速く
、かつ各種環境下における信頼度の高いものが望まれて
いる。
It has been put into practical use in various fields. In recent years, with the expansion of applications, there has been a demand for devices with wider temperature detection ranges, faster response speeds, and higher reliability under various environments.

このような要望に対して、熱的に極めて安定な炭化珪素
のサーミスタが実用化されてきた。そして、その用途目
的から熱応答性に優れる薄膜で構成されたものが実用化
されている。
In response to such demands, thermally extremely stable silicon carbide thermistors have been put into practical use. In view of the intended use, devices made of thin films with excellent thermal responsiveness have been put into practical use.

このSiC薄膜サーミスタは、第1図に示すような構成
である。第1図において、1は表面粗さが3μm程度の
耐熱性の絶縁基板であり、2は前記耐熱性の絶縁基板1
上に焼成して形成されたpt金合金どからなる一対の櫛
形電極であり、この電極2の一部を端子取り付は部2a
、2bとしている。3は前記端子取り付は部2a、2b
’l除いた電極2および前記基板1の全面に高周波スパ
ッタリング法で形成された炭化珪素(Sin)の感温抵
抗膜である。
This SiC thin film thermistor has a configuration as shown in FIG. In FIG. 1, 1 is a heat-resistant insulating substrate with a surface roughness of about 3 μm, and 2 is the heat-resistant insulating substrate 1.
These are a pair of comb-shaped electrodes made of PT gold alloy, etc., which are formed by firing on top of the comb-shaped electrodes.
, 2b. 3 is the terminal mounting section 2a, 2b.
A temperature-sensitive resistance film of silicon carbide (Sin) is formed on the entire surface of the substrate 1 and the electrode 2 except for the electrode 2 by a high-frequency sputtering method.

発明が解決しようとする課題 ところがこのような従来の構成における感温抵抗膜を高
周波スパッタリングで得た薄膜ザーミスタは、抵抗値と
サーミスタ定数のバラツギが大きく、実用化に際して、
いくつかの後処理工程が必要であった。
Problems to be Solved by the Invention However, thin-film thermistors in which the temperature-sensitive resistive film in the conventional configuration is obtained by high-frequency sputtering have large variations in resistance value and thermistor constant, making it difficult to put them into practical use.
Several post-processing steps were required.

本発明はこのような問題点を解決するもので、抵抗値と
サーミスタ定数のバラツキを抑制し、安定した生産が可
能なSiC薄膜サーミスタの提供を目的とするものであ
る。
The present invention solves these problems, and aims to provide a SiC thin film thermistor that can be produced stably by suppressing variations in resistance value and thermistor constant.

課題を解決するだめの手段 以上のような課題を解決するために本発明は、耐熱性の
絶縁基板と、その上に形成された一対の櫛形電極と、こ
の電極の一部の端子取り付は部を除いた前記基板および
前記電極の全面に形成されたsic感温抵抗膜とを具備
し、かつ前記耐熱性の絶縁基板の表面粗さを1μm以下
としてなるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention includes a heat-resistant insulating substrate, a pair of comb-shaped electrodes formed thereon, and a terminal attachment method for a part of the electrodes. The heat-resistant insulating substrate has a surface roughness of 1 μm or less, and includes a SIC temperature-sensitive resistance film formed on the entire surface of the substrate and the electrodes, except for the outer surface of the heat-resistant insulating substrate.

す々わち、本発明者らは、耐熱性の絶縁基板の表面粗さ
を種々検討し、よシ平滑な表面の絶縁性基板にすること
によって、抵抗値とサーミスタ定数のバラツキを抑制す
ることが可能であることを実験結果から導いたものであ
る。
In other words, the present inventors investigated various surface roughness of heat-resistant insulating substrates, and by creating an insulating substrate with a smooth surface, the variation in resistance value and thermistor constant was suppressed. It was derived from experimental results that this is possible.

作用 この構成によると、高周波スパッタリング後の薄膜サー
ミスタの抵抗値バラツキは、従来の約2となり、サーミ
スタ定数のバラツキもz程度に抑えることができること
となる。
Effect: According to this configuration, the variation in the resistance value of the thin film thermistor after high-frequency sputtering is reduced to about 2 compared to the conventional method, and the variation in the thermistor constant can also be suppressed to about z.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。ここで、構成そのものは従来例と基本的に同一
なため、第1図を用いて説明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings. Here, since the configuration itself is basically the same as the conventional example, it will be explained using FIG. 1.

まず、第1図に示す耐熱性の絶縁基板1には、実用性を
考慮して、アルミナ純度90%以上の基板を採用した。
First, for the heat-resistant insulating substrate 1 shown in FIG. 1, a substrate with an alumina purity of 90% or more was used in consideration of practicality.

このアルミナ基板は50rrrm X 50rrrm 
X 0.2tで、表面粗さは3μmのものであった。こ
れを鏡面研磨して、各段階で試料を採取して、表面粗さ
が0.03μm〜3μmのアルミナ基板を得た。
This alumina substrate is 50rrrm x 50rrrm
X 0.2t, and the surface roughness was 3 μm. This was mirror-polished and samples were collected at each stage to obtain an alumina substrate with a surface roughness of 0.03 μm to 3 μm.

次いで、この基板1上にpt−AU系導軍ペーストをス
クリーン印刷法で印刷し、120’Cで20分間乾燥し
た後、焼成して一対の櫛形電極2を形成した。このとき
のピーク温度は950°C〜1050°Cで、ピーク保
持時間は1o分〜20分で、昇降温は800°C/1H
rであった。また、前記電極2の一部を端子数υ付は部
2a、2bとした。次に、前記端子数シ付は部2a、2
bを除いた前記基板1と電極2上に感温抵抗膜3を形成
した。このときの形成条件は、炭化珪素からなるターゲ
ノトヲ、ムr雰囲気で6時間のスパッタリングをした。
Next, a pt-AU-based guide paste was printed on this substrate 1 by screen printing, dried at 120'C for 20 minutes, and then fired to form a pair of comb-shaped electrodes 2. The peak temperature at this time is 950°C to 1050°C, the peak holding time is 10 minutes to 20 minutes, and the temperature rise and fall is 800°C/1 hour.
It was r. Further, part of the electrode 2 was designated as portions 2a and 2b with the number of terminals υ. Next, parts 2a and 2 with the number of terminals are
A temperature-sensitive resistance film 3 was formed on the substrate 1 and the electrode 2 except for b. The formation conditions at this time were that sputtering was performed for 6 hours in a murky atmosphere using a target made of silicon carbide.

このときのスパッタ圧力は(2〜4)X10”TORR
であった。
The sputtering pressure at this time is (2 to 4) x 10” TORR
Met.

このようにして得られたSiC薄膜サーミスタのR25
と基板表面粗さの関係を求めたところ、第2図の如くで
あった。また、サーミスタ定数と基板表面粗さの関係は
第3図の如くであって、比較例(表面粗さ3μm)に対
して、抵抗値とサーミスタ定数のどちらもが、基板表面
粗さが1μm以下の領域で、そのバラツキが急に小さく
なっている。なお、実施例における電極2は、線間が8
゜μmで、2+++mの長さが5対の櫛形電極であった
R25 of the SiC thin film thermistor thus obtained
The relationship between the surface roughness and the substrate surface roughness was determined, and the result was as shown in FIG. In addition, the relationship between the thermistor constant and the substrate surface roughness is as shown in Figure 3, and for the comparative example (surface roughness 3 μm), both the resistance value and thermistor constant have a substrate surface roughness of 1 μm or less. In this region, the variation suddenly becomes smaller. Note that the electrode 2 in the example has a line spacing of 8
There were 5 pairs of comb-shaped electrodes with a length of 2+++ m.

ここで、前記実施例で、絶縁基板1の表面粗さが1μm
以下になったとき、抵抗値やサーミスタ定数のバラツキ
が小さくなる理由については明らかではないが、スパッ
タリング時に結晶成長がより均等になって、均質な膜が
形成されたものと推察される。
Here, in the above embodiment, the surface roughness of the insulating substrate 1 is 1 μm.
Although it is not clear why the variations in resistance value and thermistor constant become smaller when the values are below, it is presumed that crystal growth becomes more uniform during sputtering and a homogeneous film is formed.

また、表面粗さが0.03μm以下であっても前記と同
等の効果が得られるものと推察されるが、これはその作
用効果と経済性を鑑みて、適宜、決定すればよい。
Furthermore, it is presumed that the same effect as described above can be obtained even if the surface roughness is 0.03 μm or less, but this may be determined as appropriate in view of the effect and economical efficiency.

発明の効果 以上詳述した通り、本発明によれば抵抗値とサーミスタ
定数のバラツキが抑制され、その製造工程での収率が良
くなり、安定した生産が可能となり、その工業的価値は
犬なるものがある。
Effects of the Invention As detailed above, according to the present invention, variations in resistance value and thermistor constant are suppressed, the yield in the manufacturing process is improved, stable production is possible, and its industrial value is outstanding. There is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明および従来の薄膜サーミスタの構成を説
明するだめの平面図、第2図は本発明を説明するだめの
SiG薄膜サーすスタ素子金25℃中で測定した抵抗値
と基板表面粗さとの関係を表わした説明図、第3図は同
じくサーミスタ定数と基板表面粗さとの関係を表わした
説明図でめる。 1・・・・・・耐熱性の絶縁基板、2・・・・・・櫛形
電極、2a 、2b・・・・・・端子取り出し部、3・
・・・感温抵抗膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか−1名ノ
ーーー耐熱株の5絶滑り1仮 第1図
Fig. 1 is a plan view for explaining the structure of the present invention and a conventional thin film thermistor, and Fig. 2 is a basic plan view of a SiG thin film thermistor element for explaining the present invention, and the resistance value and substrate surface measured at 25°C. FIG. 3 is an explanatory diagram showing the relationship between the thermistor constant and the substrate surface roughness. DESCRIPTION OF SYMBOLS 1...Heat-resistant insulating substrate, 2...Comb-shaped electrode, 2a, 2b...Terminal extraction part, 3...
...Temperature-sensitive resistance film. Name of agent: Patent attorney Toshio Nakao, and 1 other person - 5 absolute slides in heat-resistant stocks 1 Provisional Figure 1

Claims (1)

【特許請求の範囲】[Claims] 耐熱性の絶縁基板と、その上に形成された一対の櫛形電
極と、この電極の一部の端子取り付け部を除いた前記基
板および前記電極の全面に高周波スパッタリングで形成
されたSiC感温抵抗膜とを具備し、かつ前記耐熱性の
絶縁基板の表面粗さが1μm以下であることを特徴とす
るSiC薄膜サーミスタ。
A heat-resistant insulating substrate, a pair of comb-shaped electrodes formed thereon, and a SiC temperature-sensitive resistance film formed by high-frequency sputtering on the entire surface of the substrate and the electrodes, excluding some terminal attachment portions of the electrodes. An SiC thin film thermistor comprising: and wherein the heat-resistant insulating substrate has a surface roughness of 1 μm or less.
JP6395688A 1988-03-17 1988-03-17 Sic thin film thermistor Pending JPH01236603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6395688A JPH01236603A (en) 1988-03-17 1988-03-17 Sic thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6395688A JPH01236603A (en) 1988-03-17 1988-03-17 Sic thin film thermistor

Publications (1)

Publication Number Publication Date
JPH01236603A true JPH01236603A (en) 1989-09-21

Family

ID=13244278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6395688A Pending JPH01236603A (en) 1988-03-17 1988-03-17 Sic thin film thermistor

Country Status (1)

Country Link
JP (1) JPH01236603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156273A (en) * 2011-01-26 2012-08-16 Mitsubishi Materials Corp Thin film thermistor sensor and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156273A (en) * 2011-01-26 2012-08-16 Mitsubishi Materials Corp Thin film thermistor sensor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
GB2179748A (en) Thermal flow sensor
KR970705012A (en) Temperature sensor element and method of manufacturing temperature sensor and temperature sensor element having same
US4276535A (en) Thermistor
US6368734B1 (en) NTC thermistors and NTC thermistor chips
JPH01236603A (en) Sic thin film thermistor
KR20010030871A (en) Heating element and method for producing the same
JP2585681B2 (en) Metal thin film resistive strain gauge
JP2007232669A (en) Temperature sensor and its manufacturing method
JP2004037402A (en) Thin film gas sensor
JPS61181103A (en) Platinum temperature measuring resistor
US3505632A (en) Indirectly heated thermistor
JP2727541B2 (en) Manufacturing method of thin film thermistor
JP2006242913A (en) Thin-film temperature sensor
JPS63285902A (en) Manufacture of sic thin-film thermistor
JP2010066267A (en) Epitaxial soot sensor
JPS60208803A (en) Method of producing thin film thermistor
JPS5884405A (en) Method of producing thin film thermistor
JPS6337587A (en) Ceramic heater
JPH08219901A (en) Adjusting method for temperature coefficient of resistance of resistor element for temperature measurement
JP3095646B2 (en) Joint structure
JP4279400B2 (en) Thin film thermistor element and method for manufacturing thin film thermistor element
JPH05281178A (en) Manufacture of functional thick-film element and sensor element
JPH01208808A (en) Thin-film platinum temperature sensor
JPS5811724B2 (en) Manufacturing method of high temperature temperature sensing element
KR20010074187A (en) Resistance thermometer device for micro thermal sensors and its fabrication method