JPH01235872A - Fault simulation method for integrated circuit - Google Patents

Fault simulation method for integrated circuit

Info

Publication number
JPH01235872A
JPH01235872A JP63061863A JP6186388A JPH01235872A JP H01235872 A JPH01235872 A JP H01235872A JP 63061863 A JP63061863 A JP 63061863A JP 6186388 A JP6186388 A JP 6186388A JP H01235872 A JPH01235872 A JP H01235872A
Authority
JP
Japan
Prior art keywords
probability
fault
incidence
degeneration
output node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63061863A
Other languages
Japanese (ja)
Inventor
Kanji Hirabayashi
平林 莞爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63061863A priority Critical patent/JPH01235872A/en
Publication of JPH01235872A publication Critical patent/JPH01235872A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the fault simulation which reflects device structures and process defects by subjecting the fault samples extracted randomly at the frequency corresponding to the degeneration fault incidence probability of gate levels to simulation. CONSTITUTION:The probability of the incidence of the 0-degeneration fault of the output node of an inverter circuit is designated as P0 at the time of shorting of an n-type transistor. The probability of the incidence of the 1-degeneration fault is designated as P1 at the time of shorting of a p-type transistor. The 0-degeneration fault incidence probability of the output node in a 2-input NOR circuit is 2P0 in probability at which one of 2 pieces of the n-type transistors shorts and the 1-degeneration fault incidence probability is P1<2> in probability at which both the two p-type transistors short. Further, the 0-degeneration fault incidence probability of the output node in a 2-input NAND circuit is P0<2>, and the 1-degeneration fault incidence probability is 2P1. The faults are grouped in order of the magnitudes of the fault incidence probabilities calculated in such a manner. The faults are extracted at the frequencies corresponding to said fault incidence probability by each of the groups at the time of sampling the faults randomly.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は集積回路の故障シミュレーションに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) This invention relates to fault simulation of integrated circuits.

(従来の技術) 故障シミュレーションのための故障モデルとしそ通常、
ゲートの入出力ビンの縮退故障が用いられるが、これは
故障シミュレーションが本来、プリント基板上にTTL
のゲートを配置配線することによって得られる論理回路
を対象としたためである。この場合、ゲートの入出力ピ
ンの縮退故障は物理的実体と良く対応している。ところ
が、集積回路のようにプリント板とは物理的に異なる実
体に対しても、同じ論理回路ということで同じ故障モデ
ルと故障シミュレータが使用されることが多い。
(Prior art) A fault model for fault simulation and its
A stuck-at fault of the input/output bin of the gate is used, but this fault simulation was originally performed using TTL on the printed circuit board.
This is because the target is a logic circuit obtained by arranging and wiring the gates of . In this case, the stuck-at fault of the input/output pin of the gate corresponds well to the physical entity. However, even for entities that are physically different from printed circuit boards, such as integrated circuits, the same fault model and fault simulator are often used because the logic circuits are the same.

一方、CMO8回路でのオープントランジスタ故障のよ
うに縮退故障では表せない故障があることや、そもそも
集積回路の故障は、その製造工程における不良に起因す
るにもかかわらず、故障モデルがデバイスの構造やI2
造工程の不良に倦存しないのはおかしいということも認
識されはじめた。
On the other hand, there are some failures that cannot be expressed as stuck-at faults, such as open transistor failures in CMO8 circuits, and although failures in integrated circuits are caused by defects in the manufacturing process, failure models are based on the structure of the device. I2
It has also begun to be recognized that it is strange that there is no tolerance for defects in the manufacturing process.

さらに、故障シミュレーションに要する時間が回路規模
の2乗〜3乗に依存するために1回路規模の増大と共に
全ての縮退故障に対して故障シミュレーションすること
は現実的でなくなってきた。
Furthermore, since the time required for fault simulation depends on the square to the third power of the circuit scale, it has become impractical to perform fault simulation for all stuck-at faults as the scale of one circuit increases.

故障シミュレーションの主な目的は与えられたテストパ
ターンの故障検出率を求めることにあるが、全ての縮退
故障の中からランダムにサンプル故障を抽出して、この
サンプル故障についてだけ故障シミュレーションするこ
とにより、現実的な計算時間で故障検出率を推定する方
法も知られている。
The main purpose of fault simulation is to find the fault coverage rate for a given test pattern, but by randomly extracting sample faults from all stuck-at faults and performing fault simulation only on these sample faults, There are also known methods for estimating fault coverage using a realistic calculation time.

(発明が解決しようとする課題) この発明は従来の故障シミュレーションに欠けていたデ
バイス、プロセス依存性を取込み、かつ現実的な計算時
間で故障検出率の推定値を得ることを目的とする。
(Problems to be Solved by the Invention) The purpose of the present invention is to incorporate device and process dependence, which were lacking in conventional failure simulation, and to obtain an estimated value of failure coverage in a realistic calculation time.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明はゲートを構成しているデバイスの構造により
、ゲートの入出力ノードの縮退故障の発生確率が異なる
ことに着目し、この発生確率を回路構造から算出し、そ
れに基いてサンプル故障を抽出することによって故障シ
ミュレーションにデバイス、プロセス依存性を持たせて
いる。
(Means for Solving the Problems) This invention focuses on the fact that the probability of occurrence of a stuck-at fault at an input/output node of a gate differs depending on the structure of the device constituting the gate, and calculates this probability of occurrence from the circuit structure. By extracting sample faults based on this, the fault simulation is made device and process dependent.

(作 用) 例えばゲートの出力ノードの〇−縮退故障は出力ノード
と接地線の間にあるトランジスタの個数とプロセス不良
に対する指標である歩留を用いて算出される。同様にゲ
ートの出力ノードの1−縮退故障は出力ノードと電源線
の間にあるトランジスタの個数と歩留を用いて算出され
る。出力ノードと接地線または電源線の間のトランジス
タの個数は論理ライブラリのゲートごとの回路構造から
算出できる。歩留まりは製造ラインごとに測定した値を
用いる。このようにして、全ての縮退故障の発生確率を
決定した後で、発生確率に応じた頻度で故障のサンプリ
ングを行ない、得られた故障サンプルに対して故障シミ
ュレーションを実行する。
(Function) For example, a stuck-at fault at the output node of a gate is calculated using the number of transistors between the output node and the ground line and the yield, which is an index for process defects. Similarly, the 1-stuck-at-home fault at the output node of the gate is calculated using the number and yield of transistors between the output node and the power supply line. The number of transistors between the output node and the ground line or power supply line can be calculated from the circuit structure for each gate in the logic library. For the yield rate, the value measured for each production line is used. After determining the probability of occurrence of all stuck-at faults in this manner, sampling of faults is performed at a frequency corresponding to the probability of occurrence, and a fault simulation is performed on the obtained fault samples.

(実施例) 第1図に集積回路の故障シミュレーションに対する、こ
の発明のフローを示す。故障発生確率の算出法の一例を
図3に示す。第3図(a)のインバータ回路において出
力ノードの〇−縮退故障が発生するのはNタイプトラン
ジスタがショートする時で、その確率をP。とする。同
様に出力ノードの1−縮退故障が発生するのはPタイプ
トランジスタがショートする時でその確率をP工とする
。PotPlは製造ラインごとに測定した歩留から図2
のような関係を用いて見積ることが出来る。図3(b)
は2人力NOR回路であるが、その出力ノードの0−縮
退故障の発生確率は2個のNタイプトランジスタの少な
くとも一方がショートする確率として2P、となり、1
−縮退故障の発生確率は2個のPタイプトランジスタが
共にショートする確率としてP1′となる。図3(c)
は2人力NAND回路であるが、その出力ノードの〇−
縮退確率はP。′、1−縮退確率は2P1となる。他の
ゲートについての計算も同様である。
(Embodiment) FIG. 1 shows a flowchart of the present invention for failure simulation of an integrated circuit. FIG. 3 shows an example of a method for calculating the probability of failure occurrence. In the inverter circuit of FIG. 3(a), a stuck-at fault at the output node occurs when the N-type transistor is short-circuited, and the probability of this is P. shall be. Similarly, a 1-stuck at output node fault occurs when a P-type transistor is short-circuited, and the probability thereof is defined as P. PotPl is calculated from the yield measured for each production line in Figure 2.
It can be estimated using the following relationship. Figure 3(b)
is a two-person powered NOR circuit, and the probability of occurrence of a 0-stuck-at fault at its output node is 2P, which is the probability that at least one of the two N-type transistors will be shorted, and 1
- The probability of occurrence of a stuck-at fault is P1', which is the probability that two P-type transistors will be shorted together. Figure 3(c)
is a two-person NAND circuit, but its output node 〇-
The degeneracy probability is P. ', 1 - the degeneracy probability becomes 2P1. The calculations for other gates are similar.

以上のようにして算出した故障発生確率の大きさの順に
、故障をグループ分けし、ランダムに故障をサンプリン
グする際はグループごとに、その故障発生確率に応じた
頻度で抽出する。例えば、2Poの確率をもつグループ
から抽出する頻度はP。
Faults are divided into groups in the order of the magnitude of the probability of failure occurrence calculated as described above, and when randomly sampling failures, each group is extracted at a frequency according to the probability of failure occurrence. For example, the frequency of extraction from a group with a probability of 2Po is P.

の確率をもつグループの場合の2倍になる。This is twice the case for a group with a probability of .

〔発明の効果〕〔Effect of the invention〕

回路接続データ、論理ライブラリ、および製造ラインの
歩留データを用いてゲートレベルの縮退故障の発生確率
を算出し、その発生確率に応じた頻度でランダムに抽出
した故障サンプルに対してシミュレーションすることに
より、デバイス構造とプロセス不良を反映した集積回路
の故障シミュレーションが現実的な計算時間で可能にな
る。
By calculating the probability of gate-level stuck-at fault occurrence using circuit connection data, logic libraries, and production line yield data, and performing simulations on randomly selected fault samples at a frequency corresponding to the probability of occurrence. , failure simulation of integrated circuits that reflects device structure and process defects becomes possible in a realistic calculation time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は集積回路の故障シミュレーションに対するこの
発明のフローを示す図、第2図はインバータの出力ノー
ドの故障発生確率と歩留の関係を示す図、第3図はCM
O5のインバータ回路と出力ノードの故障発生確率、及
び0MO3の2人力NOR回路と出力ノードの故障発生
確率、 CMO5の2人カNAND回路と出力ノードの
故障発生確率を示す図である。 第1図 第2図 第8図
Fig. 1 is a diagram showing the flow of the present invention for failure simulation of integrated circuits, Fig. 2 is a diagram showing the relationship between the failure probability of an inverter output node and the yield, and Fig. 3 is a diagram showing the relationship between the failure occurrence probability and yield of an inverter output node.
It is a diagram showing the failure probability of the O5 inverter circuit and output node, the failure probability of the 0MO3 two-man NOR circuit and the output node, and the failure probability of the CMO5 two-man NAND circuit and the output node. Figure 1 Figure 2 Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)集積回路を構成するデバイスの構造に応じて、ゲ
ートレベルの縮退故障の発生確率を算出し、その発生確
率に従ってランダムに抽出した故障サンプルに対して故
障シミュレーションすることを特徴とする集積回路の故
障シミュレーション方法。
(1) An integrated circuit characterized in that the probability of occurrence of a gate-level stuck-at fault is calculated according to the structure of the devices constituting the integrated circuit, and a fault simulation is performed on randomly selected fault samples according to the probability of occurrence. failure simulation method.
(2)特定のデバイスによる集積回路の製造工程におけ
る不良に基いて故障の発生確率を算出することを特徴と
する請求項1記載の集積回路の故障シミュレーション方
法。
2. The integrated circuit failure simulation method according to claim 1, wherein the probability of failure occurrence is calculated based on defects in the manufacturing process of the integrated circuit by a specific device.
(3)マクセル、または機能ブロックごとに発生確率に
従って、一定数の故障をランダムに抽出することを特徴
とする請求項1記載の集積回路の故障シミュレーション
方法。
(3) The integrated circuit fault simulation method according to claim 1, characterized in that a fixed number of faults are randomly extracted according to the probability of occurrence for each Maxel or functional block.
JP63061863A 1988-03-17 1988-03-17 Fault simulation method for integrated circuit Pending JPH01235872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63061863A JPH01235872A (en) 1988-03-17 1988-03-17 Fault simulation method for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63061863A JPH01235872A (en) 1988-03-17 1988-03-17 Fault simulation method for integrated circuit

Publications (1)

Publication Number Publication Date
JPH01235872A true JPH01235872A (en) 1989-09-20

Family

ID=13183381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63061863A Pending JPH01235872A (en) 1988-03-17 1988-03-17 Fault simulation method for integrated circuit

Country Status (1)

Country Link
JP (1) JPH01235872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441168B2 (en) 1999-10-29 2008-10-21 Matsushita Electric Industrial Co., Ltd. Fault detecting method and layout method for semiconductor integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441168B2 (en) 1999-10-29 2008-10-21 Matsushita Electric Industrial Co., Ltd. Fault detecting method and layout method for semiconductor integrated circuit
US7594206B2 (en) 1999-10-29 2009-09-22 Panasonic Corporation Fault detecting method and layout method for semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
Jha et al. Testing of digital systems
Millman et al. Diagnosing CMOS bridging faults with stuck-at fault dictionaries
US10169510B2 (en) Dynamic fault model generation for diagnostics simulation and pattern generation
Amyeen et al. Improving precision using mixed-level fault diagnosis
TW200842570A (en) Method for enhancing the diagnostic accuracy of a VLSI chip
JPH1038983A (en) Method for locating failure
Fan et al. A gate-level method for transistor-level bridging fault diagnosis
JP2000276500A (en) Evaluating device for weighted fault detection rate and its evaluating method
Nelson et al. Multiple-detect ATPG based on physical neighborhoods
KR100506769B1 (en) High speed test pattern evaluation apparatus
US20020178399A1 (en) Methods for characterizing, generating test sequences for, and/or simulating integrated circuit faults using fault tuples and related systems and computer program products
CN102129027A (en) Fault diagnosis method for switched-current circuit based on fault dictionary
US10078720B2 (en) Methods and systems for circuit fault diagnosis
JPH01235872A (en) Fault simulation method for integrated circuit
Pomeranz et al. Location of stuck-at faults and bridging faults based on circuit partitioning
US5341314A (en) Method for generating a test to detect differences between integrated circuits
Yamazaki et al. Diagnosing resistive open faults using small delay fault simulation
JP2000304829A (en) Semiconductor inspection method
Polian et al. Diagnosis of realistic defects based on the X-fault model
CN106093746A (en) A kind of little time delay defect deductive simulation device implementation method
Milne et al. Assessing and comparing fault coverage when testing analogue circuits
Flottes et al. A new reliable method for delay-fault diagnosis
Giambiasi et al. SILOG: a practical tool for large digital network simulation
JPH0778756B2 (en) Failure simulation method
JPH03257586A (en) Timing simulation system for logic circuit