JPH01235623A - New acrylic resin extruded sheet and manufacture thereof - Google Patents

New acrylic resin extruded sheet and manufacture thereof

Info

Publication number
JPH01235623A
JPH01235623A JP63062356A JP6235688A JPH01235623A JP H01235623 A JPH01235623 A JP H01235623A JP 63062356 A JP63062356 A JP 63062356A JP 6235688 A JP6235688 A JP 6235688A JP H01235623 A JPH01235623 A JP H01235623A
Authority
JP
Japan
Prior art keywords
less
acrylic resin
internal strain
extrusion direction
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63062356A
Other languages
Japanese (ja)
Other versions
JPH0729354B2 (en
Inventor
Yoshio Abe
良夫 阿部
Kihachiro Ishiguro
石黒 喜八郎
Yuji Sugimoto
杉本 勇二
Masao Otaki
大滝 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Gas Chemical Industry Co Ltd
Original Assignee
Kyowa Gas Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Gas Chemical Industry Co Ltd filed Critical Kyowa Gas Chemical Industry Co Ltd
Priority to JP63062356A priority Critical patent/JPH0729354B2/en
Publication of JPH01235623A publication Critical patent/JPH01235623A/en
Publication of JPH0729354B2 publication Critical patent/JPH0729354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain an extruded sheet, which is made of methyl methacrylate polymer having specified molecular weight and the internal strain in the extrusion direction of which is the specified amount or less and which does not shrink at hot processing, by a method wherein peripheral speed difference is realized between forming rolls. CONSTITUTION:The methyl methacrylate polymer concerned means copolymer or homopolymer containing 75% or more of methyl methacrylate having a molecular weight of 220,000 or less. The forming roll, which comes into close content firstly and that, which comes into close contact lastly, mean forming rolls 4 and 5 in case of a three-roll calendar, round which resin is wound closely. The provision of negative peripheral speed difference between forming rolls means to make the peripheral speed of the forming roll, which comes into close contact lastly, slower than that of the forming roll, which comes into close contact firstly. By providing the negative peripheral speed difference between the forming rolls, an acrylic resin extruded sheet, the internal strain in the extrusion direction of which is small or concretely 2% or less, can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加熱二次加工用途に供するに最適な押出方向
の内部ひずみの小さい新規なアクリル樹脂押出板および
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel extruded acrylic resin plate with small internal strain in the extrusion direction, which is suitable for use in heated secondary processing, and a method for manufacturing the same.

(従来の技術) アクリル樹脂板は、美麗性、耐候性、成形性等に優れて
おりさまざまな二次加工を施され多方面にわたり巾広い
用途に使用されている。
(Prior Art) Acrylic resin plates have excellent beauty, weather resistance, moldability, etc., and are subjected to various secondary processes and used in a wide range of applications.

ところで、これらアクリル樹脂板の二次加工には、平板
状のまま切削加工、接着加工を施す場合と、これらに加
えて曲げ成形、プレス成形、真空成形などの加熱加工を
施す場合とがあり、さらに印刷塗装等で仕上げて看板や
デイスプレー又は照明カバーのような最終製品とする方
法が知られている。この際のアクリル樹脂板の製造法に
は、セルキャスト法、連続キャスト法及び押出法の3[
!の方法か通常行われている。この中でセルキャスト法
は2枚のガラス板の間に、液状樹脂原料を注入し、重合
させる方法であって、作業能率が低く、その利用は、特
殊な分野に限定されてきている。
By the way, in the secondary processing of these acrylic resin plates, there are cases where cutting and bonding are performed while the plate is still in the form of a flat plate, and cases where heat processing such as bending, press forming, and vacuum forming is performed in addition to these. Furthermore, a method is known in which the material is finished by printing or painting to produce a final product such as a signboard, display, or lighting cover. There are three methods for producing acrylic resin plates: cell casting, continuous casting, and extrusion.
! This is how it is usually done. Among these, the cell cast method is a method in which a liquid resin raw material is injected between two glass plates and polymerized, and its work efficiency is low, and its use has been limited to special fields.

一方連続キャスト法は、連続的に移動するダブルベルト
の間で液状樹脂原料を重合させ連続して板を製造する方
法であり、前記のセルキャスト法に比べると、はるかに
作業能率が高い。しかし、この方法は、大規模な製造設
備を必要とする上に、液状樹脂原料からの一貫工程であ
るために、多品種率ロフト生産の場合には十分な能率を
あげることができず、製造コストはセルキャスト法に次
いでかなり高いものとなることを免れないという欠点が
ある。
On the other hand, the continuous casting method is a method in which a liquid resin raw material is polymerized between continuously moving double belts to continuously manufacture plates, and the work efficiency is much higher than that of the cell casting method described above. However, this method requires large-scale manufacturing equipment and is an integrated process starting from liquid resin raw materials, so it is not efficient enough for high-mix loft production. The disadvantage is that the cost is inevitably higher than the cell casting method.

最後に、押出法は、アクリル樹脂及びそれ以外の熱可塑
性樹脂に広く適用されている方法である。
Finally, extrusion is a method widely applied to acrylic resins and other thermoplastic resins.

すなわち懸濁重合、乳化重合等の方法により得たビーズ
又はパウダーを直接あるいはベレット化し、また塊状重
合したのち粉砕あるいはベレット化し、それぞれの用途
に応じて溶融押出して加工する方法である。この方法は
、原料をビーズ、ペレット、か粒などの形で供給するこ
とができるし、それぞれの目的に応じ小さいロットで生
産しうるという点で前記の2方法よりも優れた方法とい
うことができる。この方法に従うと、例えばアクリル樹
脂の場合200〜300℃でTダイを通して板状に押出
し、実質的な周速差をロール間に設けていない成形ロー
ルで表面性状を付与し、冷却後切断することにより、板
状体を得ることができるが、板厚精度及び良好な表面性
確保のため成形ロールによるバンク成形が必要不可欠で
ある。このようにして得られる押出板は、製造コストが
前記2つの方法に比較して大幅に安価であり、成形特性
の点でもセルキャスト板や連続キャスト板よりも優れて
いるなめ近年その使用が極めて増加している。
That is, beads or powder obtained by a method such as suspension polymerization or emulsion polymerization are directly or pelletized, or after bulk polymerization, they are crushed or pelletized, and then processed by melt extrusion depending on the intended use. This method is superior to the above two methods in that raw materials can be supplied in the form of beads, pellets, granules, etc., and production can be done in small lots depending on the purpose. . According to this method, for example, in the case of acrylic resin, it is extruded into a plate through a T-die at 200 to 300°C, the surface texture is imparted using forming rolls with no substantial difference in circumferential speed between the rolls, and the material is cut after cooling. Although a plate-shaped body can be obtained by this method, bank forming using forming rolls is essential to ensure plate thickness accuracy and good surface properties. The extruded plate obtained in this way is much cheaper to manufacture than the above two methods, and its molding properties are also superior to cell cast plates and continuous cast plates, so its use has become extremely popular in recent years. It has increased.

(発明が解決しようとする課題) しかしながら、この押出板は、その成形手段に起因して
押出方向あるいは直角方向に各種の不均一を有すること
が多く、なかでもロール間で半溶融樹脂が圧延され、さ
らに引き続くロールに密着しつつ冷却固化されることに
より生ずる押出方向の内部ひずみは、中方向のそれに対
してがなり大である。市販アクリル樹脂押出板の内部ひ
ずみは、2mn板の場合中方向が1%以下であるのに対
し、押出方向は5〜10%程度と大きく、そのためとの
押出板を加熱加工する場合押出方向に大きな収縮が起こ
るという欠点を有し、以下のような種々の弊害を招く。
(Problems to be Solved by the Invention) However, this extruded plate often has various non-uniformities in the extrusion direction or in the perpendicular direction due to its forming method, and in particular, semi-molten resin is rolled between rolls. The internal strain in the extrusion direction, which is caused by being cooled and solidified while being in close contact with the subsequent rolls, is greater than that in the middle direction. The internal strain of commercially available extruded acrylic resin plates is less than 1% in the middle direction for a 2mm plate, but is as large as 5 to 10% in the extrusion direction. It has the disadvantage that large shrinkage occurs, leading to various adverse effects as described below.

a)加熱成形に供する板の寸法は、あらかじめ押出方向
の収縮分を見込んだものとしなければならず、また押出
方向と中方向で収縮量に差があるので明確に区別しなけ
ればならない。
a) The dimensions of the plate to be subjected to thermoforming must take into account shrinkage in the extrusion direction, and since there is a difference in the amount of shrinkage between the extrusion direction and the middle direction, a clear distinction must be made.

b)押出方向の内部ひずみが大きいなめ、収縮率のばら
つきも大きく成形品形状にゆがみを生じる。
b) The internal strain in the extrusion direction is large, and the shrinkage rate varies widely, causing distortion in the shape of the molded product.

C)加熱加工時の押出方向の収縮により表面にひずみを
生じ美麗な表面性が失われる。
C) Due to shrinkage in the extrusion direction during heat processing, distortion occurs on the surface and beautiful surface properties are lost.

d)平板に印刷後加熱成形する用途に対して成形形状と
印刷にズレを生じる。
d) For applications in which a flat plate is printed and then heat-formed, a misalignment occurs between the molded shape and the print.

アクリル樹脂のセルキャスト板や連続キャスト板におい
ても、内部ひずみを生じるが、押出板の押出方向のそれ
に比べるとその程度は格段に小さく、またどの方向にお
いてもほぼ同一であるので、利用上の大きな障害になら
ない。
Although internal strain occurs in acrylic resin cell cast plates and continuous cast plates, the degree of strain is much smaller than that in the extrusion direction of extruded plates, and it is almost the same in all directions, so it is a major problem in terms of use. Not a hindrance.

したがって、アクリル樹脂の加工分野においては、上記
した押出方向の内部ひずみを残さず加熱加工時に収縮を
起さない押出板を得ることが重要な課題となっていた。
Therefore, in the field of processing acrylic resins, it has been an important issue to obtain an extruded plate that does not retain the above-mentioned internal strain in the extrusion direction and does not shrink during heat processing.

(課題を解決するための手段) 本発明者らは、このような現状に鑑み、押出方向の内部
ひずみの小さい押出板を得るため鋭意研究を重ねた結果
、成形ロール間に周速差をもたせることにより、その目
的を達成しうろことを見い出し本発明をなすに至った。
(Means for Solving the Problems) In view of the current situation, the present inventors have conducted extensive research in order to obtain an extruded plate with small internal strain in the extrusion direction, and as a result, the inventors have developed a method that creates a peripheral speed difference between forming rolls. By doing so, they discovered that the object could be achieved and came up with the present invention.

すなわち本発明は、分子量22万以下のメタクリル酸メ
チル重合体から成り、押出方向の内部ひずみが2.0%
以下であることを特徴とするアクリル樹脂押出板および
メタクリル酸メチル重合体を押出し、成形ロールでバン
ク成形及び表面仕上げをすることによりアクリル樹脂板
状体を製造するにあたり、樹脂が最初に密着する成形ロ
ールと最後に密着する成形ロールとの間で負の周速差を
設けることを特徴とする新規アクリル樹脂押出板の製造
方法を提供するものである。
That is, the present invention is made of a methyl methacrylate polymer with a molecular weight of 220,000 or less, and has an internal strain of 2.0% in the extrusion direction.
In manufacturing an acrylic resin plate by extruding an acrylic resin extruded plate and a methyl methacrylate polymer, and performing bank forming and surface finishing with forming rolls, the resin is first molded in close contact with each other. The present invention provides a novel method for producing an extruded acrylic resin plate, which is characterized by providing a negative circumferential speed difference between the roll and the last forming roll that comes into close contact with it.

(作用) 本発明におけるメタクリル酸メチル重合体とは、スクリ
ュー押出機にて混練溶融しT型ダイスから板状に押出す
ことが可能なメタクリル酸メチルを75%以上含むコポ
リマーまたはホモポリマーをいい、通常用いられる染顔
料、滑剤、紫外線吸収剤、増白剤、熱安定剤等の微量添
加剤あるいは耐′fiu性改良剤などの改質剤を含んで
いてもよい。
(Function) The methyl methacrylate polymer in the present invention refers to a copolymer or homopolymer containing 75% or more of methyl methacrylate that can be kneaded and melted in a screw extruder and extruded into a plate shape from a T-shaped die. It may contain trace additives such as commonly used dyes and pigments, lubricants, ultraviolet absorbers, brighteners, heat stabilizers, etc., or modifiers such as fiu resistance improvers.

またその分子量は、これまでに市販されているセルキャ
スト法、連続キャスト法で得られていたメタクリル酸メ
チル重合体が60万以上であるのに対し22万以下であ
るということで特徴づけられる。
Moreover, its molecular weight is characterized by being less than 220,000, whereas the molecular weight of methyl methacrylate polymers obtained by the cell casting method and continuous casting method which have been commercially available so far is more than 600,000.

本発明におけるメタクリル酸メチル重合体の分子量(M
>は、例えば日本化学会編「実酸化学講FiS高分子化
学(上)」の第150〜152頁に記載されている次式
から求めることができる。
The molecular weight (M
> can be determined, for example, from the following formula described on pages 150 to 152 of "Jitsugikagaku Kou FiS Polymer Chemistry (Part 1)" edited by the Chemical Society of Japan.

〔η) =4 、85 X 10−’XM0’ただし〔
η〕は20°Cのクロロホルム中における固有粘度であ
る。
[η) = 4, 85 X 10-'XM0' However, [
η] is the intrinsic viscosity in chloroform at 20°C.

本発明におけるアクリル樹脂押出板の押出方向とrjJ
方向の内部ひずみ、アクリル樹脂セルキャスト板の内部
ひずみおよび連続キャスト板の内部ひずみとは、以下に
示す方法によって求められたものである。
Extrusion direction and rjJ of the acrylic resin extrusion plate in the present invention
The internal strain in the direction, the internal strain of the acrylic resin cell cast board, and the internal strain of the continuous cast board were determined by the method shown below.

すなわち、アクリル樹脂押出板については向い合う二辺
が各々押出方向、中方向と平行となるように、100n
t+X 100nmの試料片を3枚切り出し、それぞれ
に第3図に示すように中央部に押出方向にa、巾方向に
bの互いに直交する約25印の標線を記入し、あらかじ
めa及びbの長さを測定する。
In other words, for the extruded acrylic resin board, the two sides facing each other are parallel to the extrusion direction and the middle direction, respectively, to 100n.
Cut out three sample pieces of t+X 100 nm, mark each with about 25 marked lines perpendicular to each other, a in the extrusion direction and b in the width direction, in the center as shown in Figure 3, and mark a and b in advance. Measure length.

アクリル樹脂セルキャスト板及び連続キャスト板につい
ても押出板と同様に標線を記入するが、前述したように
セルキャスト板及び連続キャスト板の内部ひずみは、ど
の方向においてもほぼ等しいので標線a及びbの方向性
は考慮しなくともよい。
Mark lines are drawn for acrylic resin cell-cast boards and continuous cast boards in the same way as for extruded boards, but as mentioned above, the internal strain of cell-cast boards and continuous cast boards is almost the same in all directions, so mark lines a and The directionality of b does not need to be considered.

次いで160℃の恒温槽中で、平坦な金属板上に約3關
の厚さにタルク粉体を敷いた上に標線を記入した面がタ
ルク粉体と接するように試料片を置き、60分加熱した
後室温において放冷する。
Next, in a constant temperature bath at 160°C, talc powder was spread about 3 inches thick on a flat metal plate, and the sample piece was placed so that the side with the marked line was in contact with the talc powder. After heating for several minutes, the mixture is allowed to cool at room temperature.

加熱の際押出板には反りを生じる場合があるので、加熱
後の反りは第4図のような状態となるよう試料片を置く
Since the extruded plate may warp during heating, the sample piece was placed so that the warp after heating would be as shown in Figure 4.

冷却後、3枚の各標線a及びbの長さを再測定し、押出
板についてはa及びbの方向、各々の平均値を求め、次
の式によって、押出方向の内部ひずみ、中方向の内部ひ
ずみを求める。
After cooling, the lengths of each of the three gauge lines a and b are remeasured, and for the extruded plate, the average value of each direction is determined, and the internal strain in the extrusion direction and the middle direction are calculated using the following formula. Find the internal strain of.

 O ここにDa=押出方向の内部ひずみ(%)Db:巾方向
の内部ひずみ(%) aOlbO:標線a、bのもとの長さ(、、)a−1b
−:標線a、bの加熱後の長さ(市)セルキャスト板及
び連続キャスト板については、内部ひずみがどの方向に
おいてもほぼ等しいので次の式によって内部ひずみを求
める。
O where Da = Internal strain in the extrusion direction (%) Db: Internal strain in the width direction (%) aOlbO: Original length of gauge lines a and b (,,) a-1b
-: Length of gauge lines a and b after heating (city) For cell cast plates and continuous cast plates, the internal strain is almost the same in all directions, so the internal strain is determined by the following formula.

ここにDi=内部ひずみ(%) ao、bo:標線a、bのもとの長さ(、m)a−、b
−:標線a、bの加熱後の長さ(nII)次に、上記の
方法に従って、国内各社のセルキャスト板、連続キャス
ト板の内部ひずみ、従来法の国内各社の押出板の押出方
向の内部ひずみ及び本発明の押出板の押出方向の内部ひ
ずみを測定した結果を第1表に示す。
Here, Di = internal strain (%) ao, bo: original length of gauge lines a, b (, m) a-, b
-: Length of marked lines a and b after heating (nII) Next, according to the above method, the internal strain of the cell cast plates and continuous cast plates of each domestic company, and the extrusion direction of the extruded plates of each domestic company using the conventional method were determined. Table 1 shows the results of measuring the internal strain and the internal strain in the extrusion direction of the extruded plate of the present invention.

第1表 本発明の押出板は、この結果から明らかなように従来の
押出板とはまったく異なり、押出方向の内部ひずみがほ
とんどなく、セルキャスト板・連続キャスト板の内部ひ
ずみよりも更に小さい新規なものである。
Table 1 As is clear from the results, the extruded plate of the present invention is completely different from conventional extruded plates, and has almost no internal strain in the extrusion direction, which is even smaller than that of cell cast plates and continuous cast plates. It is something.

本発明において前記の如く押出方向の内部ひずみのきわ
めて小さいアクリル樹脂押出板を得るには、メタクリル
酸メチル重合体を押出し、成形ロールでバンク成形し表
面仕上げをすることによりアクリル樹脂板状体を製造す
る場合、樹脂が最初に密着する成形ロールと最後に密着
する成形ロールとの間で負の周速差を設けることが本質
的な要件であり、成形ロール間に周速差を実質的に設け
ない従来の押出成形法と発想をまったく異にするもので
ある。
In the present invention, in order to obtain an extruded acrylic resin plate with extremely small internal strain in the extrusion direction as described above, the acrylic resin plate is manufactured by extruding a methyl methacrylate polymer, bank-forming it with forming rolls, and finishing the surface. In this case, the essential requirement is to provide a negative circumferential speed difference between the forming roll where the resin comes into close contact first and the forming roll where the resin comes into close contact last, and it is essential to create a negative circumferential speed difference between the forming rolls. The concept is completely different from conventional extrusion molding methods.

本発明でいう最初に密着する成形ロール及び最後に密着
する成形ロールとは、例えば3本ロールでは第1図に示
す4及び5の成形ロールを、また4本ロールでは第2図
に示す9及び11の成形ロールをそれぞれいい、樹脂は
成形ロールに密着し第1および第2の如く巻きつく。
In the present invention, the forming rolls that come into close contact first and the forming rolls that come into close contact last include forming rolls 4 and 5 shown in FIG. 1 in the case of three rolls, and forming rolls 9 and 5 shown in FIG. 2 in the case of four rolls. Each of the 11 molding rolls is referred to as a molding roll, and the resin is tightly attached to the molding roll and wound around the molding roll as the first and second molding rolls.

また、上記成形ロール間で負の周速差を設けるとは、樹
脂が最初に密着する成形ロールあ周速に対して最後に密
着する成形ロールの周速を遅くすることであり、ここで
周速差とは、次式により得られる値を言う。
Furthermore, providing a negative circumferential speed difference between the forming rolls means that the circumferential speed of the forming roll that comes into close contact with the resin last is slower than that of the forming roll that the resin first comes into close contact with. The speed difference refers to a value obtained from the following equation.

例えば第2図の4本のロールの場合において説明すると
、最初に密着する成形ロール、次の成形ロール、最後に
密着する成形ロールの周速をそれぞれV2 、V3 、
V4とした時、周速差〔%〕は(1−V4 /V2 )
X100であられされ、2=V3 >V4あるいはV2
 >Vs =V4であってもよく、またV2 >V3 
>V4でもよい。周速差としては、1〜15%、好まし
くは板厚が1,4噛以上3.2市以下で次式(I)およ
び(II)r≧0.8t;2−6t+12    (I
)r≦15             (II)(式中
rは周速差(%)を、tはアクリル樹脂押出板の板厚く
薗)をそれぞれ表わす。) を満足する範囲、および板厚が3.2m+を越え6止以
下では1〜12%であり、この周速差を前記成形ロール
間に設けることにより押出方向の内部ひずみを2%以下
にすることができる。さらに、板厚が3.2++onを
越える場合周速差が1.2%以上12%以下を満足する
範囲で押出方向の内部ひずみを1.5%以下にすること
ができる。周速差が1.0%未満の場合には、押出方向
の内部ひずみは2,0%以下とはならず、一方15%を
超える場合には、樹脂表面の平滑さ、美麗さが失われて
しまうため好ましくない。
For example, in the case of the four rolls shown in Fig. 2, the circumferential speeds of the first forming roll that comes into close contact, the next forming roll, and the last forming roll that come into close contact are V2, V3,
When set to V4, the circumferential speed difference [%] is (1-V4 /V2)
Hail at X100, 2=V3 >V4 or V2
>Vs = V4, or V2 >V3
>V4 is also acceptable. The peripheral speed difference is 1 to 15%, preferably when the plate thickness is 1.4 mm or more and 3.2 mm or less, and the following formulas (I) and (II) r≧0.8t; 2-6t+12 (I
) r≦15 (II) (In the formula, r represents the peripheral speed difference (%), and t represents the thickness of the extruded acrylic resin plate). ), and when the plate thickness exceeds 3.2m+ and is 6 stops or less, it is 1 to 12%, and by providing this peripheral speed difference between the forming rolls, the internal strain in the extrusion direction can be reduced to 2% or less. be able to. Further, when the plate thickness exceeds 3.2++ on, the internal strain in the extrusion direction can be reduced to 1.5% or less as long as the circumferential speed difference satisfies 1.2% or more and 12% or less. If the peripheral speed difference is less than 1.0%, the internal strain in the extrusion direction will not be less than 2.0%, while if it exceeds 15%, the smoothness and beauty of the resin surface will be lost. This is not desirable because it causes

このように、メタクリル酸メチル重合体を押出し、成形
ロールでバンク成形及び表面仕上げすることによりアク
リル樹脂板状体を製造するにあたり、樹脂が最初に密着
する成形ロールと最後に密着する成形ロールとの間で負
の周速差を設けることにより、きわめて押出方向の内部
ひずみの小さいアクリル樹脂押出板を得ることができ、
押出方向の内部ひずみが2%以下、さらには押出板の板
厚が3.2111Nを超え6關以下でかつ押出方向の内
部ひずみ1.5%以下のアクリル樹脂押出板を得ること
ができる。
In this way, when manufacturing an acrylic resin plate by extruding a methyl methacrylate polymer, bank forming it with forming rolls, and finishing the surface, the forming roll where the resin comes into close contact first and the forming roll where the resin comes into close contact last. By providing a negative circumferential speed difference between the two, it is possible to obtain an acrylic resin extruded plate with extremely small internal strain in the extrusion direction.
It is possible to obtain an acrylic resin extruded plate having an internal strain in the extrusion direction of 2% or less, a thickness of the extruded plate exceeding 3.2111N and 6 degrees or less, and an internal strain in the extrusion direction of 1.5% or less.

(実施例) 以下実施例により本発明をさらに詳細に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例1及び比較例1 アクリル酸メチル6重量%とメタクリル酸メチル94重
量%とからなる分子量16万のメタクリル酸メチル共重
合体ビーズを、120關φベントタイプのシングルスク
リユー押出機を使用し、樹脂温260°Cで中1100
+mのT型ダイスにより平板状に押出し、第1図に示す
ような、300市φの成形ロール3,4および5の3本
でバンク成形し、表面仕上げをして、引き収りロール7
により引き収り1.5乃至5.0raINの厚さの平板
を得た。この際、第20−ル4と第30−ル5にX(%
)の周速差をもたせて製板し、押出方向の内部ひずみの
測定及び表面性の評価を行った。その結果を第2表に示
した。
Example 1 and Comparative Example 1 Methyl methacrylate copolymer beads with a molecular weight of 160,000, consisting of 6% by weight of methyl acrylate and 94% by weight of methyl methacrylate, were produced using a 120 mm diameter vent type single screw extruder. , resin temperature 260°C and medium 1100°C
It is extruded into a flat plate using a +m T-shaped die, bank-formed using three forming rolls 3, 4 and 5 with a diameter of 300 mm as shown in Fig. 1, the surface is finished, and a take-up roll 7 is formed.
A flat plate having a thickness of 1.5 to 5.0 raIN was obtained. At this time, X (%
), and the internal strain in the extrusion direction was measured and the surface properties were evaluated. The results are shown in Table 2.

なお、周速差×(%)は、次式によって算出した値であ
る。
Note that the circumferential speed difference×(%) is a value calculated using the following formula.

また、表面性の評価は、20W直管螢光灯からの光を2
0°の角度で反射させ、肉眼で試料押出板の表面に映る
螢光灯の輪郭を観察することにより行い、下記に示す記
号でその状態を表わした。
In addition, the surface quality was evaluated using light from a 20W straight tube fluorescent lamp.
This was done by observing the outline of the fluorescent light reflected on the surface of the sample extrusion plate with the naked eye by reflecting it at an angle of 0°, and the condition was expressed by the symbols shown below.

A:螢光灯の輪郭が直線に見える。A: The outline of the fluorescent light appears to be a straight line.

B:螢光灯の輪郭がわずかにゆかんで見える。B: The outline of the fluorescent light appears slightly distorted.

C:螢光灯の輪郭が明らかにゆがんで見える。C: The outline of the fluorescent light appears clearly distorted.

実施例2及び比較例2 実施例1と同様のメタクリル酸メチル共重合体ビーズを
、150關φベントタイプのジングルスクリュ押出機を
使用し、樹脂温260°Cで中1100 nnのT型ダ
イスにより平板状に押出し、第2図に示すような450
關φの成形ロール8゜9.10および11の4本でバン
ク成形し、表面仕上げをして、引き取りロール7により
引き取り1.5乃至5.On++++の厚さの平板を得
た。この際、第20−ルつと第30−ル10および第3
0−ル10と第40−ル11とにそれぞれX(%)およ
びY(%)の周速差をもたせて製板し、押出方向の内部
ひずみの測定及び表面性の評価を行い、その結果を第3
表に示した。
Example 2 and Comparative Example 2 Methyl methacrylate copolymer beads similar to those in Example 1 were extruded using a 150 mm diameter bent type jingle screw extruder with a medium 1100 nn T-shaped die at a resin temperature of 260°C. Extrude it into a flat plate shape, 450 mm as shown in Figure 2.
Bank forming is performed using four forming rolls of diameter 8°9. A flat plate with a thickness of On++++ was obtained. At this time, the 20th rule, the 30th rule 10, and the 3rd rule
The 0-rule 10 and the 40th-rule 11 were manufactured with a peripheral speed difference of X (%) and Y (%), respectively, and the internal strain in the extrusion direction was measured and the surface properties were evaluated. The third
Shown in the table.

なお、周速差X(%)、Y(%)は、次式によって算出
した値である。
Note that the circumferential speed differences X (%) and Y (%) are values calculated using the following formula.

また、表面性の評価は、実施例1と同様の方法で実施し
た。
Furthermore, the surface properties were evaluated in the same manner as in Example 1.

以上の如く第2表および第3表の結果から明らかなよう
に、本発明は、押出方向の内部ひずみを2%以下、さら
には負の値にすることができ、周速差を調整することに
より第1表に示したように、押出方向の内部ひずみを0
にすることができる。
As is clear from the results in Tables 2 and 3, the present invention makes it possible to reduce the internal strain in the extrusion direction to 2% or less, or even to a negative value, and to adjust the circumferential speed difference. As shown in Table 1, the internal strain in the extrusion direction is 0.
It can be done.

以下余白 (発明の効果) 以上述べたように、本発明は分量22万以下のメタクリ
ル酸メチル重合体からなり、押出方向の内部ひずみが2
.0%以下である新規アクリル樹脂押出板およびメタク
リル酸メチル重合体を押出し、成形ロールでバンク成形
および表面仕上げすることによりアクリル樹脂板状体を
製造するにあたり、樹脂が最初に密着する成形ロールと
最後に密着する成形ロールとの間で負の周速差を設ける
アクリル樹脂押出板の製造方法であるから、押出方向の
内部ひずみが極めて小さく加熱による収縮がほとんどな
いので、加熱加工にあたって収縮量をあらかじめチエツ
クする必要もなく収縮率のバラツキによるゆがみや美麗
な表面性の消失がないという効果があり、看板、デイス
プレー、照明カバー等加熱加工を總す製品の原板として
すぐれたアクリル樹脂板を堤供することができる。
Margin below (effects of the invention) As stated above, the present invention is made of a methyl methacrylate polymer with an amount of 220,000 or less, and has an internal strain of 2 in the extrusion direction.
.. In manufacturing an acrylic resin plate by extruding a new acrylic resin extruded plate and methyl methacrylate polymer with a concentration of 0% or less, bank forming and surface finishing with forming rolls, the forming roll where the resin comes into close contact first and the last This is a manufacturing method for acrylic resin extruded plates that creates a negative circumferential speed difference between the molding roll and the molding roll that is in close contact with the plate, so the internal strain in the extrusion direction is extremely small and there is almost no shrinkage due to heating. We offer acrylic resin plates that do not require checking and do not suffer from distortion or loss of beautiful surface properties due to variations in shrinkage rate, and are excellent as base plates for products that require heat processing such as signboards, display displays, and lighting covers. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、3本ロールでの押出板の成形模式図、第2図
は4本ロールでの押出板の成形模式図、第3図は内部ひ
ずみ測定試料片の標線を示す図、第4図は内部ひずみ測
定時の加熱後の状態を示す図である。 なお、図中の次の符号はそれぞれ次の部分を示す。 1:押出機に設けたTダイ 2:バンク 3.8:第10−ル 4.9:第20−ル 5、to:第30−ル 6:アクリル樹脂板状体 7:引き取りロール 11:第40−ル 12:加熱後の試料片 13:タルク粉体層 14:金属板 特許出願人 協和ガス化学工業株式会社第 1 ズ 第2図
Fig. 1 is a schematic diagram of forming an extruded plate with three rolls, Fig. 2 is a schematic diagram of forming an extruded plate with four rolls, Fig. 3 is a diagram showing the marked line of the sample piece for internal strain measurement, FIG. 4 is a diagram showing the state after heating when measuring internal strain. Note that the following symbols in the figure indicate the following parts, respectively. 1: T-die provided in the extruder 2: Bank 3.8: 10th-rule 4.9: 20th-rule 5, to: 30th-rule 6: Acrylic resin plate-shaped body 7: Take-up roll 11: No. 40-ru 12: Sample piece after heating 13: Talc powder layer 14: Metal plate Patent applicant Kyowa Gas Chemical Co., Ltd. Figure 1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)分子量22万以下のメタクリル酸メチル重合体か
らなり、押出方向の内部ひずみが2.0%以下であるこ
とを特徴とする新規アクリル樹脂押出板。
(1) A novel extruded acrylic resin plate made of a methyl methacrylate polymer having a molecular weight of 220,000 or less and having an internal strain in the extrusion direction of 2.0% or less.
(2)分子量22万以下のメタクリル酸メチル重合体か
らなり、板厚が1.4mm以上3.2mm以下でかつ押
出方向の内部ひずみが2.0%以下であることを特徴と
する新規アクリル樹脂押出板。
(2) A new acrylic resin consisting of a methyl methacrylate polymer with a molecular weight of 220,000 or less, having a plate thickness of 1.4 mm or more and 3.2 mm or less, and an internal strain in the extrusion direction of 2.0% or less. Extrusion board.
(3)分子量22万以下のメタクリル酸メチル重合体か
らなり、板厚が3.2mmを超え6mm以下でかつ押出
方向の内部ひずみが1.5%以下であることを特徴とす
る新規アクリル樹脂押出板。
(3) A new acrylic resin extrusion made of a methyl methacrylate polymer with a molecular weight of 220,000 or less, with a plate thickness of more than 3.2 mm and 6 mm or less, and an internal strain in the extrusion direction of 1.5% or less. Board.
(4)メタクリル酸メチル重合体を押出し、成形ロール
でバンク成形および表面仕上げをすることによりアクリ
ル樹脂板状体を製造するにあたり、樹脂が最初に密着す
る成形ロールと最後に密着する成形ロールとの間で負の
周速差を設けることを特徴とするアクリル樹脂押出板の
製造方法。
(4) When producing an acrylic resin plate by extruding a methyl methacrylate polymer and performing bank forming and surface finishing with forming rolls, the forming rolls that the resin comes into close contact with first and the forming rolls where the resin comes into close contact with each other last. A method for manufacturing an extruded acrylic resin plate, characterized by providing a negative circumferential speed difference between the plates.
(5)第4項記載の製造方法において、周速差が1〜1
5%であることを特徴とする押出方向の内部ひずみが2
%以下であるアクリル樹脂押出板の製造方法。
(5) In the manufacturing method described in item 4, the circumferential speed difference is 1 to 1.
The internal strain in the extrusion direction, characterized by being 5%, is 2.
% or less.
JP63062356A 1988-03-16 1988-03-16 Novel acrylic resin extruded plate and manufacturing method thereof Expired - Lifetime JPH0729354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63062356A JPH0729354B2 (en) 1988-03-16 1988-03-16 Novel acrylic resin extruded plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63062356A JPH0729354B2 (en) 1988-03-16 1988-03-16 Novel acrylic resin extruded plate and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5308763A Division JPH06262682A (en) 1993-11-15 1993-11-15 Novel acrylic resin extruded panel and production thereof

Publications (2)

Publication Number Publication Date
JPH01235623A true JPH01235623A (en) 1989-09-20
JPH0729354B2 JPH0729354B2 (en) 1995-04-05

Family

ID=13197752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63062356A Expired - Lifetime JPH0729354B2 (en) 1988-03-16 1988-03-16 Novel acrylic resin extruded plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0729354B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212772A (en) * 1992-02-06 1993-08-24 Japan Steel Works Ltd:The Method and apparatus for removing warp of sheet
JP2003279741A (en) * 2002-03-25 2003-10-02 Nippon Zeon Co Ltd Optical film and manufacturing method therefor
JP2009126149A (en) * 2007-11-27 2009-06-11 Sumitomo Chemical Co Ltd Extruded resin plate, its manufacturing method, and surface-coated plate
JP2010173223A (en) * 2009-01-30 2010-08-12 Sumitomo Rubber Ind Ltd Equipment and process for producing unvulcanized rubber sheet
JP2012121142A (en) * 2010-12-06 2012-06-28 Sumitomo Chemical Co Ltd Method for manufacturing extruded resin plate
JP2012187874A (en) * 2011-03-11 2012-10-04 Kaneka Corp Method of manufacturing thermoplastic film
JP2015107664A (en) * 2015-03-13 2015-06-11 住友化学株式会社 Method for manufacturing extruded resin plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110670U (en) * 1978-01-21 1979-08-03
JPS56162625A (en) * 1980-10-03 1981-12-14 Asahi Chem Ind Co Ltd Extruded sheet of methyl methacrylate polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110670U (en) * 1978-01-21 1979-08-03
JPS56162625A (en) * 1980-10-03 1981-12-14 Asahi Chem Ind Co Ltd Extruded sheet of methyl methacrylate polymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212772A (en) * 1992-02-06 1993-08-24 Japan Steel Works Ltd:The Method and apparatus for removing warp of sheet
JP2003279741A (en) * 2002-03-25 2003-10-02 Nippon Zeon Co Ltd Optical film and manufacturing method therefor
JP4623257B2 (en) * 2002-03-25 2011-02-02 日本ゼオン株式会社 Optical film and method for producing the same
JP2009126149A (en) * 2007-11-27 2009-06-11 Sumitomo Chemical Co Ltd Extruded resin plate, its manufacturing method, and surface-coated plate
JP2010173223A (en) * 2009-01-30 2010-08-12 Sumitomo Rubber Ind Ltd Equipment and process for producing unvulcanized rubber sheet
JP2012121142A (en) * 2010-12-06 2012-06-28 Sumitomo Chemical Co Ltd Method for manufacturing extruded resin plate
JP2012187874A (en) * 2011-03-11 2012-10-04 Kaneka Corp Method of manufacturing thermoplastic film
JP2015107664A (en) * 2015-03-13 2015-06-11 住友化学株式会社 Method for manufacturing extruded resin plate

Also Published As

Publication number Publication date
JPH0729354B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
CA2053779A1 (en) Process for production of polypropylene sheets or films
JPH01235623A (en) New acrylic resin extruded sheet and manufacture thereof
JP2003236914A (en) Method for manufacturing thermoplastic resin sheet
EP0287246B1 (en) Method of manufacturing polybutylene terephthalate resin films
CA2134305C (en) Craze resistant transparent sheet
JPH11344604A (en) Production of linear type fresnel prism plate for natural lighting
JPH11320656A (en) Thermoplastic resin sheet having small optical strain and excellent surface smoothness, and manufacture thereof
JP3846567B2 (en) Method for producing thermoplastic resin sheet
JPH06262682A (en) Novel acrylic resin extruded panel and production thereof
KR100252824B1 (en) Process for preparing polypropylene film for wrapping material
JPH0380092B2 (en)
KR100252827B1 (en) Method of preparing a biaxially oriented white-colored polypropylene film having tri layers
JPS61254326A (en) Manufacture of polyester molded part
JP2002331564A (en) Method for manufacturing film
JPH09207196A (en) Poly(methyl methacrylate) extruded plate and manufacture thereof
KR100256552B1 (en) Method of preparing a high transparent polypropylene film
KR100252825B1 (en) Polypropylene film for wrapping material
CN113717458A (en) Preparation method of ETFE casting film plane material for perovskite
JPH02251417A (en) Manufacture of biaxially oriented material
KR100274181B1 (en) Polymer for having excellent rust resistance
JPH0374438A (en) Matte heat-shrinkable film
JPS6146305B2 (en)
CN115179629A (en) Polyolefin shrink film with high mechanical properties and chemical stability and method of manufacture
JPH02251415A (en) Biaxially oriented material
CN113999474A (en) Label film and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term