JPH01235165A - Fuel cell manifold - Google Patents

Fuel cell manifold

Info

Publication number
JPH01235165A
JPH01235165A JP63060027A JP6002788A JPH01235165A JP H01235165 A JPH01235165 A JP H01235165A JP 63060027 A JP63060027 A JP 63060027A JP 6002788 A JP6002788 A JP 6002788A JP H01235165 A JPH01235165 A JP H01235165A
Authority
JP
Japan
Prior art keywords
manifold
rubber
fuel cell
reinforcer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63060027A
Other languages
Japanese (ja)
Inventor
Shunsuke Oga
俊輔 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63060027A priority Critical patent/JPH01235165A/en
Publication of JPH01235165A publication Critical patent/JPH01235165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the strength and rigidity of a rubber manifold, to thin the rubber thickness, and to make it lightweight by bonding a reinforcer on the surface of the manifold or burying in its inside. CONSTITUTION:In a rubber manifold with which a reaction gas is supplied to or exhausted from the side of a fuel cell stack 2, a reinforcer 8 is bonded on its surface or buried in its inside. As the reinforcer 8, inorganic fibers, a metal mesh, or a metal thin plate is used. The reinforcer 8 is made thin and flexible, and the manifold 1 is reinforced with the advantage of rubber retained. The thickness of the manifold is made thin to make it lightweight.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、電解質を挟んで配置した正負の電極に反応
ガスを供給して発電を行う燃料電池に関し、特に反応ガ
スの給気あるいは排気を行うマニホルドに関する。
The present invention relates to a fuel cell that generates electricity by supplying a reactive gas to positive and negative electrodes arranged with an electrolyte sandwiched therebetween, and particularly to a manifold that supplies or exhausts the reactive gas.

【従来の技術】[Conventional technology]

燃料電池においては、空気電極、電解質を含浸したマト
リックス、及び水素電極からなる単電池を柱状に積層し
て燃料電池スタックが構成され、前記空気電極及び水素
電極に互いに直交する方向に空気及び燃料ガスが供給さ
れて発電が行われる。 そのために、上記燃料電池スタックにはその側面の四方
に、反応ガス(空気及び燃料ガス)を給気あるいは排気
するためのマニホルドが取り付けられる。 このマニホルドは、従来は多くはステンレス鋼などの金
属製であったが、近時、ゴム製のマニホルドが提案され
ている。 第3図は従来のゴム製マニホルドの燃料電池スタックへ
の取付状態を示したものである。第3図において、マニ
ホルド1の開口フランジ部1aと燃料電池スタック2の
側面との接続は、開口フランジ部1aの背面に金属製の
環状座3を当てがい、ボルト4を燃料電池スタック2の
周縁に締め付けることによって行われている。また、反
応ガスの給排管5との接続は、マニホルド1の接続部1
bを給排管5のフランジ部5aと環状の当金6とで挟ん
でボルト7で締め付けることにより行われている。この
ゴム製のマニホルドは次のような特長を有している。 (1)比重の小さいゴムや発泡ゴムを用いることにより
、金属製のものに比べて軽量となる。 (2)一体成形による製造が可能であるため、安価に量
産できる。 (3)ある程度の伸縮が可能であるため、寸法精度の許
容値を大きくでき、また温度変化に伴う寸法変化をマニ
ホルド自体で吸収することができる。 (4)ゴム材は電気絶縁性に優れているため、マニホル
ドを通しての短絡の心配がない。
In a fuel cell, a fuel cell stack is constructed by stacking unit cells consisting of an air electrode, an electrolyte-impregnated matrix, and a hydrogen electrode in a columnar manner. is supplied to generate electricity. To this end, manifolds for supplying or exhausting reactive gases (air and fuel gas) are attached to all four sides of the fuel cell stack. Conventionally, this manifold has mostly been made of metal such as stainless steel, but recently, manifolds made of rubber have been proposed. FIG. 3 shows a state in which a conventional rubber manifold is attached to a fuel cell stack. In FIG. 3, the connection between the opening flange portion 1a of the manifold 1 and the side surface of the fuel cell stack 2 is achieved by applying a metal annular seat 3 to the back surface of the opening flange portion 1a, and attaching bolts 4 to the periphery of the fuel cell stack 2. This is done by tightening the In addition, the connection with the reaction gas supply/discharge pipe 5 is made at the connection part 1 of the manifold 1.
b is sandwiched between the flange portion 5a of the supply/discharge pipe 5 and an annular stopper 6 and tightened with bolts 7. This rubber manifold has the following features. (1) By using rubber or foamed rubber with low specific gravity, it is lighter than metal. (2) Since it can be manufactured by integral molding, it can be mass-produced at low cost. (3) Since it is possible to expand and contract to a certain extent, the allowable value of dimensional accuracy can be increased, and dimensional changes due to temperature changes can be absorbed by the manifold itself. (4) Rubber material has excellent electrical insulation properties, so there is no need to worry about short circuits through the manifold.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、ゴム材は当然ながら金属より柔らかいために
、燃料電池内部のガス圧に耐えられるよう、またマニホ
ルドとしての形状を維持できるようにするためには、肉
厚をかなり大きくしなければならない。この肉厚は場合
によって金属の5〜10倍にする必要が生じ、その場合
には結果として金属製のマニホルドと重量的にそれほど
変わりがな(なってしまう。 この発明は、肉厚を抑えることによって軽量とし、しか
もゴム製マニホルドの持つ上述利点を損なうことのない
燃料電池のゴム製マニホルドを提供することを目的とす
るものである。
By the way, since rubber is naturally softer than metal, it must be made considerably thicker in order to withstand the gas pressure inside the fuel cell and to maintain its shape as a manifold. Depending on the case, this wall thickness may need to be 5 to 10 times that of metal, and in that case, the result will be that it is not much different in weight from a metal manifold. It is an object of the present invention to provide a rubber manifold for a fuel cell that is lightweight and does not impair the above-mentioned advantages of the rubber manifold.

【課題を解決するための手段] 単電池を柱状に積層した燃料電池スタックに対してその側面から反応ガスの給気あるいは排気を行うゴム製のマニホルドにおいて、補強材を表面に接合するか、又は内部に埋め込むものである。 補強材としては、無機繊維材料、金網、金属Δ板などを用いることができる。 【作 用】[Means to solve the problem] In a rubber manifold that supplies or exhausts reactive gas from the side of a fuel cell stack in which unit cells are stacked in a columnar manner, a reinforcing material is either bonded to the surface or embedded inside. As the reinforcing material, an inorganic fiber material, a wire mesh, a metal delta plate, etc. can be used. [For use]

補強材で強化することによってその分肉厚を薄くするこ
とができ、結果として軽量化を図ることができる。また
、表面に接合され、又は内部に埋め込まれる補強材は薄
く伸縮性を有するものにすることができるので、マニホ
ルドの主体となるゴム素材の上述した種々の利点を損な
うことなく補強が可能である。
By reinforcing it with a reinforcing material, the wall thickness can be reduced accordingly, and as a result, the weight can be reduced. In addition, the reinforcing material bonded to the surface or embedded inside can be made thin and stretchable, so it can be reinforced without impairing the various advantages mentioned above of the rubber material that is the main body of the manifold. .

【実施例】【Example】

第1図は、この発明の第1の実施例を示す断面図である
。第1図において、ゴム製のマニホルド1には、その外
表面に開口フランジ部1a及び給排管5との接続部1b
を除いて、ガラス繊維の布からなる補強材8がが耐熱性
の接着材を用いて接合されている。その結果、耐圧性が
高まり、マニホルド1を構成するゴム材の肉厚は補強材
のない場合と比べて約1/2とすることができる。この
補強材8を金網にすれば、線径にもよるがゴム材の肉厚
は更にその1/2にすることが可能となる。 またその他の補強材8としては、厚さ2mm以下の金属
薄板が使用できる。金属薄板をマニホルドlの外表面に
接合する場合、この薄板は金属製のマニホルドに要求さ
れるようなシール面での高い加工精度や溶接部の気密性
など難度の高い製造技術を必要としない。したがって、
その場合の製造コストは金属製マニホルドと比べて格段
に低くなり、そのコストをゴム製マニホルドに加えても
、全体として金属製のマニホルドよりも安価となる。 第2図は別の実施例を示すものである。この場合はマニ
ホルド1の内部に金網からなる補強材8が埋め込まれて
いる。この構造のものは、マニホルド1の成形時に成形
型にゴムと共に金網を埋設したり、第1図におけるよう
に外表面に金網を接合したのち、さらにその表面に溶剤
に溶けたコロイド状のラテックスを塗布して形成するこ
とができる。この場合も、外表面に金網を接合する第1
図の場合と同じ肉厚で同等以上の強度を得ることができ
る。
FIG. 1 is a sectional view showing a first embodiment of the invention. In FIG. 1, a rubber manifold 1 has an open flange portion 1a and a connection portion 1b with a supply/discharge pipe 5 on its outer surface.
A reinforcing material 8 made of glass fiber cloth is bonded to the reinforcing material 8 using a heat-resistant adhesive. As a result, the pressure resistance is increased, and the thickness of the rubber material constituting the manifold 1 can be reduced to about 1/2 compared to a case without reinforcing material. If this reinforcing material 8 is made of a wire mesh, the thickness of the rubber material can be further reduced to 1/2, although it depends on the wire diameter. Further, as the other reinforcing material 8, a thin metal plate having a thickness of 2 mm or less can be used. When joining a thin metal plate to the outer surface of the manifold l, this thin plate does not require highly difficult manufacturing techniques such as high processing accuracy on the sealing surface and airtightness of the welded part, which are required for metal manifolds. therefore,
The manufacturing cost in that case is much lower than that of a metal manifold, and even if you add that cost to a rubber manifold, the overall cost is lower than that of a metal manifold. FIG. 2 shows another embodiment. In this case, a reinforcing member 8 made of wire mesh is embedded inside the manifold 1. With this structure, when molding the manifold 1, a wire mesh is buried in the mold along with rubber, or after the wire mesh is bonded to the outer surface as shown in Fig. 1, colloidal latex dissolved in a solvent is added to the surface. It can be formed by coating. In this case as well, the first step is to bond the wire mesh to the outer surface.
It is possible to obtain the same or higher strength with the same wall thickness as in the case shown in the figure.

【発明の効果】【Effect of the invention】

この発明によれば、ゴム製のマニホルドの強度や剛性が
高まるのでゴム材の肉厚を薄く抑えることができ、ゴム
製マニホルドの特長を活かしながら軽量化を図ることが
できる。
According to this invention, the strength and rigidity of the rubber manifold are increased, so the thickness of the rubber material can be kept small, and the weight can be reduced while taking advantage of the features of the rubber manifold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の断面図、第2図は別の実施
例の断面図、第3図は従来のマニホルドの取付状態を説
明する断面図である。 l:マニホルド、2:燃料電池スタック、8:補強材。 第1図 第2図 第3図
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a sectional view of another embodiment, and FIG. 3 is a sectional view illustrating a conventional manifold installation state. 1: Manifold, 2: Fuel cell stack, 8: Reinforcement material. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)単電池を柱状に積層した燃料電池スタックに対して
その側面から反応ガスの給気あるいは排気を行うゴム製
のマニホルドにおいて、補強材を表面に接合するか、又
は内部に埋め込んだことを特徴とする燃料電池のマニホ
ルド。
1) A rubber manifold that supplies or exhausts reactive gas from the side of a fuel cell stack in which unit cells are stacked in a columnar manner, characterized by having a reinforcing material bonded to the surface or embedded inside. Fuel cell manifold.
JP63060027A 1988-03-14 1988-03-14 Fuel cell manifold Pending JPH01235165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63060027A JPH01235165A (en) 1988-03-14 1988-03-14 Fuel cell manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060027A JPH01235165A (en) 1988-03-14 1988-03-14 Fuel cell manifold

Publications (1)

Publication Number Publication Date
JPH01235165A true JPH01235165A (en) 1989-09-20

Family

ID=13130177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060027A Pending JPH01235165A (en) 1988-03-14 1988-03-14 Fuel cell manifold

Country Status (1)

Country Link
JP (1) JPH01235165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951086A2 (en) * 1998-04-17 1999-10-20 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
JP2006049129A (en) * 2004-08-05 2006-02-16 Honda Motor Co Ltd Fuel cell stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951086A2 (en) * 1998-04-17 1999-10-20 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
EP0951086A3 (en) * 1998-04-17 2001-10-17 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
US6372373B1 (en) 1998-04-17 2002-04-16 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
EP1484813A3 (en) * 1998-04-17 2008-10-08 Matsushita Electric Industrial Co., Ltd. Solid polymer electrolyte fuel cell and method for producing the same
JP2006049129A (en) * 2004-08-05 2006-02-16 Honda Motor Co Ltd Fuel cell stack

Similar Documents

Publication Publication Date Title
US6610435B1 (en) Fuel cell with reduced gas leakage
US7669729B2 (en) Tank for very low temperature liquids
JP5208338B2 (en) Electrolyte membrane / electrode structure and fuel cell
US20030027032A1 (en) Membrane electrode assembly and fuel cell unit
US5192334A (en) Method for mechanically connecting high-temperature fuel cells to a fuel cell support
CA2424212A1 (en) Constituent part for fuel cell
US20030143451A1 (en) Fuel cell metallic seperator and method for manufacturing same
WO2005106998A1 (en) Separator for fuel cell, method for bonding separator, and fuel cell
JP3020461B2 (en) Battery system, method of manufacturing the same, and battery pack
JP2001060462A (en) Cell-tube sealing structure
JPH01235165A (en) Fuel cell manifold
JPH01231274A (en) Manifold for fuel cell
EP1459403B1 (en) Fuel cell stack with different anode and cathode separator plates
EP3964745A1 (en) Composite gas storage tank
JPH01235164A (en) Fuel cell manifold
US6495280B2 (en) Convex fuel manifold providing uniform pressure seal to fuel cell stack
JP4418316B2 (en) Fuel cell module
JPH09283170A (en) Flat plate-shaped solid electrolyte fuel cell
CN218558222U (en) Novel aluminum plastic film for lithium battery
JPH0582151A (en) Seal structure of manifold for fuel cell
JP7272901B2 (en) Fuel cell manufacturing method and fuel cell
CN215118956U (en) Bipolar plate sealing surface leveling structure, bipolar plate and fuel cell
JP2023112421A (en) Fuel battery cell
JPS6313278A (en) Fuel cell
JPH05114407A (en) Fuel cell