JPH0123467B2 - - Google Patents

Info

Publication number
JPH0123467B2
JPH0123467B2 JP55123973A JP12397380A JPH0123467B2 JP H0123467 B2 JPH0123467 B2 JP H0123467B2 JP 55123973 A JP55123973 A JP 55123973A JP 12397380 A JP12397380 A JP 12397380A JP H0123467 B2 JPH0123467 B2 JP H0123467B2
Authority
JP
Japan
Prior art keywords
catalyst
lower alkyl
phenyl group
integer
containing organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123973A
Other languages
Japanese (ja)
Other versions
JPS5749614A (en
Inventor
Harukazu Matsuda
Akira Ninagawa
Kyoshi Ogawa
Masahiro Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP55123973A priority Critical patent/JPS5749614A/en
Publication of JPS5749614A publication Critical patent/JPS5749614A/en
Publication of JPH0123467B2 publication Critical patent/JPH0123467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な触媒を使用してエポキシド類と
炭酸ガスとより有機カーボネート類を容易かつ高
収率に製造する方法に関する。 従来、エポキシド類と炭酸ガスとの反応によつ
て有機カーボネート類(環状カーボネート)を製
造する場合に、ある種のルイス酸、ルイス酸−ア
ミン系触媒、アンモニウム塩、リン酸塩等を触媒
として用いることは既に提案された。しかしなが
ら、これらはあるものは高温高圧を必要とし、特
殊な装置や複雑な操作を用いるため工業的方法と
して満足できなかつた。また、あるものは工業的
に満足すべき収率に達していないため、貴重な原
料(エポキシド類)の損失が多く、かつまた煩雑
な精製工程を必要とした。 本発明者等は、エポキシド類と炭酸ガスとより
有機カーボネート類を容易かつ高収率に製造する
ための触媒について種々研究を重ねた結果、温和
な条件で高収率を得ることが可能な、触媒活性に
優れた新規触媒を開発し、本発明に到達したので
ある。 本発明の有機カーボネート類の製造方法は、触
媒として、 (1) 一般式 RgBiXh …() 〔式中、Rは低級アルキル基、フエニル基又は
低級アルキル置換フエニル基を、Xはハロゲン原
子を、gは1〜4の整数を、hは1〜4の整数を
それぞれ示し、(g+h)=5である。〕 で表わされる有機ビスマス化合物主触媒と、含窒
素有機塩基及び/又は含リン有機塩基共触媒とか
らなる触媒、 (2) 一般式 RkGeLl …() 〔式中、Rは低級アルキル基、フエニル基又は
低級アルキル置換フエニル基を、Xはハロゲン原
子を、kは1〜3の整数を、lは1〜3の整数を
それぞれ示し、(k+l)=4である。〕 で表わされる有機ゲルマニウム化合物主触媒と、
含窒素有機塩基及び/又は含リン有機塩基共触媒
とからなる触媒、 (3) 一般式 RmTeXn …() 〔式中、Rは低級アルキル基、フエニル基又は
低級アルキル置換フエニル基を、Xはハロゲン原
子を、mは1〜3の整数を、nは1〜3の整数を
それぞれ示し、(m+n)=4である。〕 で表わされる有機テルル化合物よりなる触媒、並
びに (4) 一般式 RmTeXn …() 〔式中、Rは低級アルキル基、フエニル基又は
低級アルキル置換フエニル基を、Xはハロゲン原
子を、mは1〜3の整数を、nは1〜3の整数を
それぞれ示し、(m+n)=4である。〕 で表わされる有機テルル化合物主触媒と、含窒素
有機塩基及び/又は含リン有機塩基共触媒とから
なる触媒 より選ばれた有機金属化合物触媒を使用して、エ
ポキシド類を炭酸ガスと反応させることを特徴と
する方法である。 本発明の有機カーボネート類の製造反応を一般
式を用いて示すと下記のとおりである(式中、
R1〜R4は水素、炭化水素基、又は置換基若しく
は置換原子を有する炭化水素基をそれぞれ示す。 本発明の方法において用いられる原料のエポキ
シド類としては、たとえばエチレンオキシド、プ
ロピレンオキシド、ブチレンオキシド等にアルキ
レンオキシド、スチレンオキシド、エピクロルヒ
ドリン、シクロヘキセンオキシド等があげられ
る。 本発明の方法で触媒(主触媒)として用いられ
る有機金属化合物は、上記した一般式()で表
わされる有機ビスマス化合物、一般式()で表
わされる有機ゲルマニウム化合物、及び一般式
()で表わされる有機テルル化合物中から選択
される。そして、これら一般式()〜()で
表わされる有機金属化合物は、具体的にはたとえ
ばRがメチル基、エチル基、プロピル基等のアル
キル基、フエニル基、又はトリル基等のアルキル
置換フエニル基であり、XはCl,Br、又はIで
あり、これらは上記一般式において種々に組合わ
されてそれぞれの化合物に構成される。それらの
化合物の具体例としては、たとえばPh3BiBr2(式
中、Phはフエニル基を示す。以下と同じ。)、
Ph3GeBr,Ph2GeBr2,Me3GeCl(式中、Meはメ
チル基を示す。以下同じ。)、Me3GeBr,
(CH3Ph)2TeCl2,Me2TeI2等があげられる。 また、一般式(),()及び()で表わさ
れる有機金属化合物は、これら化合物の原料とな
りうる物質を反応系等において混合することによ
つても生成せしめることができる。したがつて、
反応系等に添加するものは、各一般式で表わされ
る完全な化合物であることは必ずしも必要としな
い。たとえば、金属テルルとCH2Iとを混合すれ
ば、下記の反応式にしたがつて一般式()で表
わされる化合物が部分的に生成すると認められ、
一般式()で表わされる化合物の使用に代え
て、反応系にこれらの原料物質を添加して反応系
中でこれらの化合物を生成せしめて反応を行なわ
せることができる。 Te+2CH3I →(CH32TeI2 本発明の方法における触媒は、上記一般式
()で表わされる金属化合物の場合には単独で
触媒とすることができるが、一般式()及び
()で表わされる化合物の場合にはこれに特定
の共触媒を組合わせて触媒とする。また、一般式
()で表わされる金属化合物の場合でも、これ
にその特定の共触媒を組合わせて触媒とすると触
媒効果が向上する。そして、その組合わせる共触
媒としては、含窒素有機塩基(たとえば一級、二
級及び三級脂肪族アミン類、芳香族アミン類、ピ
リジン、キノリン、モルホリン等)、含リン有機
塩基(たとえば各種フオスフイン類)が用いられ
る。これらの有機塩基は適宜に2種以上を併用し
て共触媒とすることもできる。 本発明の方法を実施する好ましい一態様例は、
密閉可能な耐圧容器内に、所定量の原料エポキシ
ドと触媒を仕込んで密閉し、炭酸ガスを所定圧力
で圧力してから所定温度で加熱撹拌する。反応に
よつて炭酸ガスが吸収され、圧力が低下してくる
から、その反応減少が停止したときを以て反応の
終期を容易に知ることができる。その反応条件と
しては、温度が通常90〜230℃、好ましくは100〜
160℃であり、圧力が通常30〜250Kg/cm2、好まし
くは50〜120Kg/cm2である。触媒の使用量は、主
触媒及び共触媒とも、原料エポキシドに対して、
通常0.1〜100モル%であり、炭酸ガスの装入量は
原料エポキシドに対して1〜3モル倍量である。 反応終了後は、生成物を冷却し、触媒を過等
で分離して除いてから蒸留精製すれば、目的の有
機カーボネートが収得される。 本発明の方法は、その特定の触媒を使用する方
法であり、触媒活性が大であるから、有機カーボ
ネート類が容易に、高収率で得られる。また、本
発明の反応生成物からは、過又はデカンテーシ
ヨン等によつて触媒を容易に分離することがで
き、生成有機カーボネート類の蒸留精製が容易で
ある。 本発明の方法によつて得られる有機カーボネー
ト類は、各種溶剤、カーボネート樹脂用モノマー
の原料等として使用できる。また、この有機カー
ボネート類は、グリコール類(たとえばエチレン
グリコール等)の原料としても有用である。すな
わち、有機カーボネート類を、たとえばアルカリ
触媒を用いて加水分解すれば対応するグリコール
類が得られる。 次に実施例をあげて説明する。 実施例 1〜6 内容積200mlのステンレス製オートクレーブ内
に、表1に示す種々のエポキシド及び触媒を仕込
み、CO2ガスを50気圧で圧入してから120℃の温
度で加熱して撹拌し、表1に示す時間反応させ
た。 反応生成物より触媒を過して除き、蒸留精製
をした。得られた有機カーボネートの収率は表1
に示すとおりであつた。
The present invention relates to a method for producing organic carbonates from epoxides, carbon dioxide gas, and organic carbonates easily and in high yield using a novel catalyst. Conventionally, when producing organic carbonates (cyclic carbonates) by reacting epoxides with carbon dioxide gas, certain Lewis acids, Lewis acid-amine catalysts, ammonium salts, phosphates, etc. are used as catalysts. That has already been suggested. However, some of these methods require high temperatures and high pressures, require special equipment and complicated operations, and are therefore unsatisfactory as industrial methods. In addition, some of them did not reach industrially satisfactory yields, leading to a large loss of valuable raw materials (epoxides) and requiring complicated purification steps. The present inventors have conducted various studies on catalysts for producing epoxides, carbon dioxide gas, and organic carbonates easily and in high yields. The present invention was achieved by developing a new catalyst with excellent catalytic activity. The method for producing organic carbonates of the present invention uses the following as a catalyst: represents an integer of 1 to 4, h represents an integer of 1 to 4, and (g+h)=5. ] A catalyst consisting of an organobismuth compound main catalyst represented by the following and a nitrogen-containing organic base and/or a phosphorus-containing organic base co-catalyst, (2) General formula RkGeLl...() [wherein R is a lower alkyl group, a phenyl group or a lower alkyl-substituted phenyl group, X represents a halogen atom, k represents an integer of 1 to 3, l represents an integer of 1 to 3, and (k+l)=4. ] An organic germanium compound main catalyst represented by
Catalyst consisting of a nitrogen-containing organic base and/or a phosphorus-containing organic base cocatalyst, (3) General formula RmTeXn...() [In the formula, R is a lower alkyl group, a phenyl group, or a lower alkyl-substituted phenyl group, and X is a halogen m represents an integer of 1 to 3, n represents an integer of 1 to 3, and (m+n)=4. [In the formula, R is a lower alkyl group, a phenyl group, or a lower alkyl-substituted phenyl group, X is a halogen atom, and m is 1 n represents an integer of 1 to 3, and (m+n)=4. ] Reacting epoxides with carbon dioxide using an organometallic compound catalyst selected from a catalyst consisting of an organotellurium compound main catalyst represented by the following and a nitrogen-containing organic base and/or a phosphorus-containing organic base co-catalyst. This method is characterized by the following. The reaction for producing organic carbonates of the present invention is shown below using a general formula (in the formula,
R 1 to R 4 each represent hydrogen, a hydrocarbon group, or a hydrocarbon group having a substituent or a substituent atom. Examples of the raw material epoxides used in the method of the present invention include ethylene oxide, propylene oxide, butylene oxide, alkylene oxide, styrene oxide, epichlorohydrin, and cyclohexene oxide. The organometallic compound used as a catalyst (main catalyst) in the method of the present invention is an organobismuth compound represented by the above general formula (), an organogermanium compound represented by the general formula (), and an organometallic compound represented by the general formula (). selected from organic tellurium compounds. Specifically, in the organometallic compounds represented by these general formulas () to (), R is an alkyl group such as a methyl group, an ethyl group, a propyl group, a phenyl group, or an alkyl-substituted phenyl group such as a tolyl group. and X is Cl, Br, or I, which are variously combined in the above general formula to form the respective compounds. Specific examples of such compounds include, for example, Ph 3 BiBr 2 (in the formula, Ph represents a phenyl group. The same as below),
Ph 3 GeBr, Ph 2 GeBr 2 , Me 3 GeCl (in the formula, Me represents a methyl group. The same applies hereinafter), Me 3 GeBr,
Examples include (CH 3 Ph) 2 TeCl 2 and Me 2 TeI 2 . Furthermore, the organometallic compounds represented by the general formulas (), (), and () can also be produced by mixing substances that can be raw materials for these compounds in a reaction system or the like. Therefore,
What is added to the reaction system etc. does not necessarily need to be a complete compound represented by each general formula. For example, it is recognized that when metallic tellurium and CH 2 I are mixed, a compound represented by the general formula () is partially produced according to the reaction formula below,
Instead of using the compound represented by the general formula (), these raw materials can be added to the reaction system to generate these compounds in the reaction system to carry out the reaction. Te+2CH 3 I → (CH 3 ) 2 TeI 2The catalyst in the method of the present invention can be used alone as a catalyst when it is a metal compound represented by the above general formula (), but it can be used alone as a catalyst. In the case of a compound represented by the formula, a specific cocatalyst is combined with the compound to form a catalyst. Further, even in the case of a metal compound represented by the general formula (), the catalytic effect is improved if the metal compound is combined with a specific co-catalyst to form a catalyst. Cocatalysts to be combined include nitrogen-containing organic bases (for example, primary, secondary and tertiary aliphatic amines, aromatic amines, pyridine, quinoline, morpholine, etc.), phosphorus-containing organic bases (for example, various phosphines), ) is used. Two or more of these organic bases can also be used in combination as a cocatalyst. A preferred embodiment of carrying out the method of the present invention is
A predetermined amount of raw material epoxide and a catalyst are placed in a sealable pressure-resistant container, the container is sealed, and carbon dioxide gas is applied to the container at a predetermined pressure, followed by heating and stirring at a predetermined temperature. Since carbon dioxide gas is absorbed by the reaction and the pressure decreases, the end of the reaction can be easily determined by the time when the reaction decrease stops. As for the reaction conditions, the temperature is usually 90 to 230℃, preferably 100 to 230℃.
The temperature is 160°C, and the pressure is usually 30 to 250 Kg/cm 2 , preferably 50 to 120 Kg/cm 2 . The amount of catalyst used for both main catalyst and cocatalyst is based on the raw material epoxide.
It is usually 0.1 to 100 mol%, and the amount of carbon dioxide charged is 1 to 3 times the amount of the raw material epoxide by mole. After the reaction is completed, the product is cooled, the catalyst is separated and removed by filtration, and the product is purified by distillation to obtain the desired organic carbonate. The method of the present invention uses the specific catalyst, and since the catalyst has high activity, organic carbonates can be easily obtained in high yield. Furthermore, the catalyst can be easily separated from the reaction product of the present invention by filtration or decantation, and the resulting organic carbonates can be easily purified by distillation. The organic carbonates obtained by the method of the present invention can be used as various solvents, raw materials for carbonate resin monomers, and the like. Furthermore, these organic carbonates are useful as raw materials for glycols (eg, ethylene glycol, etc.). That is, if organic carbonates are hydrolyzed using, for example, an alkali catalyst, corresponding glycols can be obtained. Next, an example will be given and explained. Examples 1 to 6 Various epoxides and catalysts shown in Table 1 were charged into a stainless steel autoclave with an internal volume of 200 ml, and CO 2 gas was injected under pressure at 50 atm, then heated and stirred at a temperature of 120°C. The reaction was carried out for the time indicated in 1. The catalyst was removed from the reaction product by filtration and purified by distillation. The yield of the organic carbonate obtained is shown in Table 1.
It was as shown in.

【表】【table】

【表】 実施例 7〜18 表2に記載の種々の有機ゲルマニウム化合物及
び共触媒、さらに表2に記載の反応条件を用い、
その他は実施例1〜7に記載の方法に準じて、
種々のエポキシドと炭酸ガスとを反応させた。 そのエポキシド収率は表2に示すとおりであつ
た。
[Table] Examples 7 to 18 Using various organogermanium compounds and cocatalysts listed in Table 2, and reaction conditions listed in Table 2,
Others followed the method described in Examples 1 to 7.
Various epoxides were reacted with carbon dioxide gas. The epoxide yield was as shown in Table 2.

【表】【table】

【表】 実施例 19〜31 表3に記載の種々の有機テルル化合物又はその
原料物質、及び種々の共触媒を用い、かつ表3に
記載の反応条件で、その他は実施例1〜7に記載
の方法に準じてプロピレンオキシド(0.05モル)
を50Kg/cm2で圧入したCO2と反応させた。 その結果(有機カーボネート収率)は表3に示
すとおりであつた。
[Table] Examples 19 to 31 Using various organic tellurium compounds or their raw materials listed in Table 3, and various cocatalysts, and under the reaction conditions listed in Table 3, other conditions described in Examples 1 to 7. Propylene oxide (0.05 mol) according to the method of
was reacted with CO 2 injected at 50 Kg/cm 2 . The results (organic carbonate yield) were as shown in Table 3.

【表】 上記実施例より明らかなように、本発明の触媒
を適宜に選択使用すれば、エポキシドと炭酸ガス
とを容易に反応させて、高収率に有機カーボネー
ト類を製造することができる。
[Table] As is clear from the above examples, if the catalyst of the present invention is appropriately selected and used, epoxide and carbon dioxide gas can be easily reacted to produce organic carbonates in high yield.

Claims (1)

【特許請求の範囲】 1 触媒として、 (1) 一般式RgBiXh〔式中、Rは低級アルキル基、
フエニル基又は低級アルキル置換フエニル基
を、Xはハロゲン原子を、gは1〜4の整数
を、hは1〜4の整数をそれぞれ示し、(g+
h)=5である。〕で表わされる有機ビスマス化
合物主触媒と、含窒素有機塩基及び/又は含リ
ン有機塩基共触媒とからなる触媒、 (2) 一般式RkGeXl〔式中、Rは低級アルキル基、
フエニル基又は低級アルキル置換フエニル基
を、Xはハロゲン原子を、kは1〜3の整数
を、lは1〜3の整数をそれぞれ示し、(k+
l)=4である。〕で表わされる有機ゲルマニウ
ム化合物主触媒と、含窒素有機塩基及び/又は
含リン有機塩基共触媒とからなる触媒、 (3) 一般式RmTeXn〔式中、Rは低級アルキル
基、フエニル基又は低級アルキル置換フエニル
基を、Xはハロゲン原子を、mは1〜3の整数
を、nは1〜3の整数をそれぞれ示し、(m+
n)=4である。〕で表わされる有機テルル化合
物よりなる触媒、並びに (4) 一般式RmTeXn〔式中、Rは低級アルキル
基、フエニル基又は低級アルキル置換フエニル
基を、Xはハロゲン原子を、mは1〜3の整数
を、nは1〜3の整数をそれぞれ示し、(m+
n)=4である。〕で表わされる有機テルル化合
物主触媒と、含窒素有機塩基及び/又は含リン
有機塩基共触媒とからなる触媒 より選ばれた有機金属化合物触媒を使用して、エ
ポキシド類を炭酸ガスと反応させることを特徴と
する有機カーボネート類の製造方法。
[Claims] 1. As a catalyst, (1) general formula RgBiXh [wherein R is a lower alkyl group,
phenyl group or lower alkyl substituted phenyl group, X is a halogen atom, g is an integer of 1 to 4, h is an integer of 1 to 4, (g+
h)=5. ] A catalyst consisting of an organic bismuth compound main catalyst represented by the following formula and a nitrogen-containing organic base and/or a phosphorus-containing organic base co-catalyst, (2) a catalyst with the general formula RkGeXl [wherein R is a lower alkyl group,
phenyl group or lower alkyl-substituted phenyl group, X is a halogen atom, k is an integer of 1 to 3, l is an integer of 1 to 3, and (k+
l)=4. A catalyst consisting of an organogermanium compound main catalyst represented by the following formula and a nitrogen-containing organic base and/or a phosphorus-containing organic base co-catalyst, (3) General formula RmTeXn [wherein R is a lower alkyl group, a phenyl group, or a lower alkyl group] represents a substituted phenyl group, X represents a halogen atom, m represents an integer of 1 to 3, n represents an integer of 1 to 3, and (m+
n)=4. ], and (4) a catalyst consisting of an organic tellurium compound represented by the general formula RmTeXn [wherein R is a lower alkyl group, a phenyl group, or a lower alkyl-substituted phenyl group, X is a halogen atom, and m is 1 to 3 n is an integer from 1 to 3, and (m+
n)=4. ] Reacting epoxides with carbon dioxide gas using an organometallic compound catalyst selected from a catalyst consisting of an organotellurium compound main catalyst represented by the following and a nitrogen-containing organic base and/or a phosphorus-containing organic base co-catalyst. A method for producing organic carbonates characterized by:
JP55123973A 1980-09-09 1980-09-09 Preparation of organic carbonates Granted JPS5749614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55123973A JPS5749614A (en) 1980-09-09 1980-09-09 Preparation of organic carbonates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55123973A JPS5749614A (en) 1980-09-09 1980-09-09 Preparation of organic carbonates

Publications (2)

Publication Number Publication Date
JPS5749614A JPS5749614A (en) 1982-03-23
JPH0123467B2 true JPH0123467B2 (en) 1989-05-02

Family

ID=14873885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55123973A Granted JPS5749614A (en) 1980-09-09 1980-09-09 Preparation of organic carbonates

Country Status (1)

Country Link
JP (1) JPS5749614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084801A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Catalyst for cyclic carbonate synthesis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860301B2 (en) * 2006-03-02 2012-01-25 ダブル・アイ・テー・ジャパン株式会社 Air conditioning system
JP5013408B2 (en) * 2007-02-06 2012-08-29 独立行政法人産業技術総合研究所 Catalysts for producing bismuth compounds, antimony compounds and cyclic carbonates
JP4956735B2 (en) * 2007-02-14 2012-06-20 ニチアス株式会社 Blower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084801A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Catalyst for cyclic carbonate synthesis
JPWO2005084801A1 (en) * 2004-03-04 2008-01-17 独立行政法人産業技術総合研究所 Catalyst for cyclic carbonate production
JP2010207814A (en) * 2004-03-04 2010-09-24 National Institute Of Advanced Industrial Science & Technology Catalyst for cyclic carbonate production

Also Published As

Publication number Publication date
JPS5749614A (en) 1982-03-23

Similar Documents

Publication Publication Date Title
US3953362A (en) Molybdenum salt catalysts and methods of preparing them
US2994705A (en) Preparation of cyclic alkylene carbonates in the presence of organic phosphonium compounds
JP2002518362A (en) Catalytic titanium (IV) oxide-induced geminal symmetric dialkylation of carboxamides
EP0581131B1 (en) A process for producing alkylene carbonates
JPH04230679A (en) Preparation of cyclic carbonate
JPH0123466B2 (en)
JPS63295593A (en) Production of silyl group-containing amine compound
JPH0123467B2 (en)
KR101839877B1 (en) New organocatalysts and method of manufacturing alkylene carbonates using the same
JPS62258333A (en) Manufacture of aromatic aldehyde
KR100389459B1 (en) Production Method of Alkylene Carbonates
CA1181734A (en) Preparation of carboxylic acids
US4332729A (en) Preparation of cyclic carbonates
US3541087A (en) Preparation of cyclic carbonates from acetylenic glycols
KR102046244B1 (en) Phenolic organocatalyts and method of manufacturing cyclic alkylene carbonates using the same
KR20040061164A (en) Method for the preparation of alkylene carbonate using imidazolium zinctetrahalide catalysts
JPS6345376B2 (en)
US4331604A (en) Preparation of cyclic carbonates
US4387237A (en) Process for making vicinal epoxides
KR101232125B1 (en) Method and catalyst for preparing alkylene carbonates
CA1301184C (en) 1,2-dichloro-1,2,2-trimethyl-1-phenyldisilane and method for producing the same
US3219682A (en) Method of producing cyclic ethyleneboronates
US4812566A (en) Process for preparing 1-dodecylazacycloheptane-2-one
JPH0229677B2 (en)
US4413137A (en) Process for making vicinal epoxides