JPH01234316A - Production of disilane - Google Patents

Production of disilane

Info

Publication number
JPH01234316A
JPH01234316A JP6060688A JP6060688A JPH01234316A JP H01234316 A JPH01234316 A JP H01234316A JP 6060688 A JP6060688 A JP 6060688A JP 6060688 A JP6060688 A JP 6060688A JP H01234316 A JPH01234316 A JP H01234316A
Authority
JP
Japan
Prior art keywords
disilane
halogenodisilane
aluminum bromide
aluminum
aluminum chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6060688A
Other languages
Japanese (ja)
Other versions
JP2536027B2 (en
Inventor
Sanpei Watanabe
渡辺 三平
Tatsuhiko Hattori
達彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP63060606A priority Critical patent/JP2536027B2/en
Publication of JPH01234316A publication Critical patent/JPH01234316A/en
Application granted granted Critical
Publication of JP2536027B2 publication Critical patent/JP2536027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce disilane having high purity at a low cost with industrial safety, by reducing halogenodisilane with AlBr3, AlCl3, di-n-butyl ether and LiH in a specified state. CONSTITUTION:The halogenodisilane is reduced with lithium hydride in the presence of di-n-butyl ether solvent contg. aluminum bromide, or additionally contg. aluminum chloride after contg. aluminum bromide. The halogenodisilane to be used is usually obtd. by halogenating silicon alloy. At that time. the product contains tetraloalogenosilane, octahalogenosilane, etc., as impurities, but the product purified by separating these impurities is the most suitable. The amt. of di-n-butyl ether to be present in the reaction system is preferably 1-10 times in weight ratio, basing on the amt. of halogenodisilane.

Description

【発明の詳細な説明】 イ)発明の目的 〔産業上の利用分野〕 本発明はシリコン系半導体、ア′モルファスシリコン等
を製造する特殊材料ガスとして、最近特に注目を浴びて
いるジシランの製造方法に関するものである。
[Detailed Description of the Invention] A) Purpose of the Invention [Field of Industrial Application] The present invention relates to a method for producing disilane, which has recently attracted particular attention as a special material gas for producing silicon-based semiconductors, amorphous silicon, etc. It is related to.

〔従来の技術〕[Conventional technology]

ハロゲン化ジシランを溶媒存在下、水素化リチウムアル
ミニウム(LiAlH4)で還元し、ジシランを製造す
る方法は公知であり、例えばA、E。
Methods for producing disilane by reducing halogenated disilane with lithium aluminum hydride (LiAlH4) in the presence of a solvent are known, such as A and E.

Finholt  et  al、    Journ
al   of   the   AmericanQ
hemical  5ociety  69.2692
 (1947)に記載されている。更に、L i A 
I Haと水素化リチウム(L i H)を混合した、
混合水素化物を用いてジシランを製造する方法が知られ
ている(特開昭60−17691S号公報)。
Finholt et al, Journ
al of the AmericanQ
chemical 5ociety 69.2692
(1947). Furthermore, L i A
A mixture of I Ha and lithium hydride (L i H),
A method for producing disilane using a mixed hydride is known (Japanese Unexamined Patent Publication No. 17691S/1983).

しかしながらL i A I Haが高価であり、前者
の方法は工業的規模でジシランを製造するには経済的に
不利であり、後者の方法によればLiAlH4の使用量
を多少減少させ得るが、充分実用的であるとは言い難い
However, since L i A I Ha is expensive, the former method is economically disadvantageous for producing disilane on an industrial scale, and the latter method can reduce the amount of LiAlH4 used to some extent, but it is not sufficient. It is hard to say that it is practical.

一方、水素化リチウムと塩化アルミニウムをジエチルエ
ーテル 存在下反応させ、L iA I H aを合成すること
が知られている。
On the other hand, it is known that LiA I Ha is synthesized by reacting lithium hydride and aluminum chloride in the presence of diethyl ether.

従って、本発明者らは水素化リチウムと塩化アルミニウ
ムを出発原料とし、ジシランを製造しようと種々検討し
たが、その結果、溶媒として使用−し得るのはジエチル
エーテルのみであることが判明した。しかしながらジエ
チルエーテルは、蒸気圧が高くかつ引火点が低いことか
ら、火災等の危険性が高く、それを防止する為の設備投
資が嵩む等種々問題があった。
Accordingly, the present inventors conducted various studies in an attempt to produce disilane using lithium hydride and aluminum chloride as starting materials, but as a result, it was found that only diethyl ether can be used as a solvent. However, diethyl ether has a high vapor pressure and a low flash point, so there are various problems such as a high risk of fire, etc., and an increase in equipment investment to prevent this.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは、高価なL t A I Haを使用する
ことなく、低コストでかつ工業的に安全であり、しかも
高純度でジシランを製造する方法を鋭意研究した結果、
本発明を完成した。
As a result of intensive research by the present inventors on a method for producing disilane at low cost, industrially safe, and with high purity without using expensive L t A I Ha,
The invention has been completed.

口)発明の構成 〔課題を解決するための手段〕 本発明は、ハロゲン化ジシランを、臭化アルミニウムを
含有させた、或いは臭化アルミニウムを含有させた後、
更に塩化アルミニウムを含有させたn−ジブチルエーテ
ル溶媒の存在下、水素化リチウムにより還元反応を行う
事を特徴とするジシランの製造方法である。
(1) Structure of the invention [Means for solving the problem] The present invention provides a method in which a halogenated disilane is made to contain aluminum bromide, or after being made to contain aluminum bromide,
The method for producing disilane is characterized by further carrying out a reduction reaction with lithium hydride in the presence of an n-dibutyl ether solvent containing aluminum chloride.

本発明におけるハロゲン化ジシランは、一般式%式%: 0〜5、n:l〜6の整数、mとnの和は6)で示され
、好ましい具体例としてはへキサクロロジシラン、ヘキ
サフルオロジシラン並びにそれらの部分水素化物等があ
げられ、更に好ましくはへキサクロロジシランである。
The halogenated disilane in the present invention is represented by the general formula %: 0 to 5, n: an integer of 1 to 6, and the sum of m and n is 6), and preferred specific examples include hexachlorodisilane, hexafluoro Examples include disilane and partially hydrogenated products thereof, and hexachlorodisilane is more preferred.

ハロゲン化ジシランはどの様な方法で製造したものでも
使用可能であるが、通常は珪素合金をハロゲン化するこ
とにより得られる。この際生成物中には不純物としてテ
トラハロゲノシラン、オクタハロゲノトリシラン等が含
有されるが、これらを分離精製したものが最適であり、
そのまま或いは溶媒で希釈して用いる。
Although halogenated disilane produced by any method can be used, it is usually obtained by halogenating a silicon alloy. At this time, the product contains impurities such as tetrahalogenosilane and octahalogenotrisilane, but it is best to separate and refine these.
Use as is or diluted with a solvent.

溶媒のn−ジブチルエーテルは市販品でよいが、好まし
くは精留により不純物を除去し、脱水乾燥したものを用
いる。
Although n-dibutyl ether as a solvent may be a commercially available product, it is preferably used after removing impurities by rectification and dehydration and drying.

反応系に存在させるn−ジブチルエーテルの壇は、ハロ
ゲン化ジシランを基準として重量比で1〜10倍が好ま
しい。1倍未満の少量では水素化リチウム及び反応物等
の不溶解物の量が相対的に多いためにスラリー濃度が上
がり、円滑な反応を妨げる恐れがあり、10倍を超える
と反応における原料成分濃度が低下し、反応が効率的に
行い難くなる可能性がある。
The amount of n-dibutyl ether present in the reaction system is preferably 1 to 10 times the weight of the halogenated disilane. If the amount is less than 1 times, the slurry concentration will increase due to the relatively large amount of insoluble materials such as lithium hydride and reactants, which may hinder a smooth reaction. If the amount exceeds 10 times, the concentration of raw material components in the reaction will increase. may decrease, making it difficult to carry out the reaction efficiently.

n−ジブチルエーテルに含有させるべき臭化アルミニウ
ムの反応系への供給割合は、塩化アルミニウムを併用し
ない場合、水素化リチウムと臭化アルミニウムのモル比
: MR,(=L i H/A IBr、)でIO≦M
R,≦500の範囲に有ることが好ましく、更に好まし
くは40≦MR,≦200である。MR,<10では臭
化アルミニウムの所用量が多(なり、コストがかかる割
にはジシランの収率向上が望めず、MR,>500では
ジシランの収率の低下につながる恐れがある。
The feed ratio of aluminum bromide to be contained in n-dibutyl ether to the reaction system, when aluminum chloride is not used together, is the molar ratio of lithium hydride and aluminum bromide: MR, (=L i H / A IBr,) and IO≦M
R is preferably in the range of ≦500, and more preferably 40≦MR, ≦200. When the MR is <10, a large amount of aluminum bromide is required, and an improvement in the yield of disilane cannot be expected despite the high cost, while when the MR is >500, the yield of disilane may decrease.

臭化アルミニウムを系内へ供給するには、そのままでも
、また溶媒に溶解して供給してもよい。
Aluminum bromide may be supplied into the system either as it is or after being dissolved in a solvent.

臭化アルミニウムを含有させたn−ジブチルエーテルに
、さらに塩化アルミニウムを含有させることにより、臭
化アルミニウムの使用量を減じることが出来、よりコス
トの低減を計ることが可能である。     ゛ 塩化アルミニウムを併用する場合は、n−ジブチルエー
テルに臭化アルミニウムを、必要とあれば冷却攪拌しつ
つ、含有させた後に、塩化アルミニウムを含有させる。
By further containing aluminum chloride in n-dibutyl ether containing aluminum bromide, it is possible to reduce the amount of aluminum bromide used, and it is possible to further reduce costs. When aluminum chloride is used in combination, aluminum bromide is added to n-dibutyl ether with cooling and stirring if necessary, and then aluminum chloride is added.

この添加順序を逆にするとジシランの収率は低下し、本
発明の目的が達成されないことになる。
If this order of addition is reversed, the yield of disilane will decrease and the object of the present invention will not be achieved.

塩化アルミニウムを併用する場合の水素化リチウムと、
臭化アルミニウムおよび塩化アルミニウムの合計量との
モル比:  MRz  (=L i H/ (A I 
B r :l + A ICl 3 ) ’Jは5≦M
R,≦500が好ましく、30≦M Rz≦200が更
に好ましい。MR,<5では臭化アルミニウムおよび塩
化アルミニウムの使用量が不必要に多くなり、コスト的
に、又取扱い上下別となる可能性がある。
Lithium hydride when used together with aluminum chloride,
Molar ratio to the total amount of aluminum bromide and aluminum chloride: MRz (=L i H/ (A I
B r :l + A ICl 3 ) 'J is 5≦M
R, ≦500 is preferable, and 30≦M Rz≦200 is more preferable. When MR is <5, the amount of aluminum bromide and aluminum chloride used becomes unnecessarily large, which may lead to cost problems and the possibility of handling depending on the upper and lower levels.

MR,>500ではジシランの収率の低下につながる恐
れがある。
MR>500 may lead to a decrease in the yield of disilane.

またこの場合の塩化アルミニウムと臭化アルミニウムと
のモル比:MR3(=AICI3/AlBr:+)はM
R,≦100が好ましく、更にM Rs≦40が好まし
い。MR3>100では、ジシランの収率の低下を招く
恐れがある。さらに臭化アルミニウムと塩化アルミニウ
ムを併用する場合の、水素化リチウムと臭化アルミニウ
ムのモル比二MR+  (=L i H/A I B 
rz )はlO≦MR,≦1000が好ましい。
In addition, in this case, the molar ratio of aluminum chloride and aluminum bromide: MR3 (=AICI3/AlBr:+) is M
R, ≦100 is preferable, and M Rs ≦40 is more preferable. When MR3>100, the yield of disilane may decrease. Furthermore, when aluminum bromide and aluminum chloride are used together, the molar ratio of lithium hydride and aluminum bromide is 2MR+ (=L i H / A I B
rz ) is preferably lO≦MR,≦1000.

塩化アルミニウムは、そのままでも、また溶媒に溶解し
て系内へ供給してもよい。
Aluminum chloride may be supplied into the system as it is or after being dissolved in a solvent.

反応系への水素化リチウムの供給割合は、ハロゲン化ジ
シランのハロゲン原子を全て水素に置き換えるに必要な
化学的理論量を1.0とした場合、0.95〜1.30
が好ましく、更に好ましくは1.0〜1.20である。
The supply ratio of lithium hydride to the reaction system is 0.95 to 1.30, assuming that the chemical theoretical amount required to replace all the halogen atoms in the halogenated disilane with hydrogen is 1.0.
is preferable, and more preferably 1.0 to 1.20.

0.95未満ではハロゲン含有シラン系ガスの割合が増
える可能性があり、1.30を超えるとジシランの収率
は高まらずコスト高となり好ましいとは言えない。また
水素化リチウムの粒径は通常3メツシs (U、S、5
tanderd 5ieve)以下程度が好ましい。
If it is less than 0.95, the proportion of halogen-containing silane gas may increase, and if it exceeds 1.30, the yield of disilane will not increase and the cost will increase, which is not preferable. In addition, the particle size of lithium hydride is usually 3 mesh s (U, S, 5
It is preferable to have a standard of 5 years or less.

本発明方法を具体的に説明すると、例えば攪拌機付きの
反応器を充分に乾燥し、N2等の不活性ガスで置換後、
水素化リチウム、n−ジブチルエーテル、臭化アルミニ
ウムを反応器に仕込み溶解する。塩化アルミニウムを併
用する場合、その添加は臭化アルミニウムの溶解後とす
る。臭化アルミニウムまたは塩化アルミニウムの供給時
の温度は、通常−20°C〜40°C1更に好ましくは
20°C以下が、副反応を抑制する上で好ましい。
To specifically explain the method of the present invention, for example, after thoroughly drying a reactor equipped with a stirrer and replacing it with an inert gas such as N2,
Lithium hydride, n-dibutyl ether, and aluminum bromide are charged into a reactor and dissolved. When aluminum chloride is used together, it is added after aluminum bromide is dissolved. The temperature at which aluminum bromide or aluminum chloride is supplied is usually -20°C to 40°C, more preferably 20°C or less, in order to suppress side reactions.

また、該原料スラリーへN2等の不活性ガスを吹き込む
ことにより、n−ジブチルエーテルまたはこれに含まれ
ている不純物と水素化リチウム、臭化アルミニウムまた
は塩化アルミニウムとの反応により生成すると思われる
、沸点がジシランと近似の化合物、例えば1so−Ca
 HIo、n−C4Hlo、1−C4Hs等の低級炭化
水素を放散、低減化することが出来、高純度のジシラン
を更に効率的に得る事が可能である。
In addition, by blowing an inert gas such as N2 into the raw material slurry, the boiling point is a compound similar to disilane, such as 1so-Ca
It is possible to diffuse and reduce lower hydrocarbons such as HIo, n-C4Hlo, and 1-C4Hs, and it is possible to obtain high-purity disilane more efficiently.

次に上記の反応系にハロゲ化ジシランを添加し反応させ
る。その際反応温度は、好ましくは一30°C〜80°
C1更に好ましくは一20°C〜40°Cであり、ハロ
ゲ化ジシランの供給速度は、この反応温度をこの範囲に
制御できる速度とするのが良い。反応温度が一30°C
未満では、冷却に要する費用が嵩みコスト的に不利とな
るので望ましいとは言えず、80゛Cを超えると副生成
物の生成が多くなり、ジシランの純度の低下を招く恐れ
がある。
Next, halogenated disilane is added to the above reaction system and reacted. In this case, the reaction temperature is preferably -30°C to 80°C.
C1 is more preferably -20°C to 40°C, and the supply rate of the halogenated disilane is preferably such that the reaction temperature can be controlled within this range. Reaction temperature is 130°C
If it is less than 80°C, it is not desirable because the cost required for cooling increases, and if it exceeds 80°C, a large amount of by-products will be produced, which may lead to a decrease in the purity of disilane.

反応により生成したジシランを主成分とするガスは、還
流冷却器を通過させた後、凝縮器に導き、液状ジシラン
としてトラップに補集する。ジシラン中の不純物は精留
法、吸着法等通常の精製法により分離すればよい。
The gas mainly composed of disilane produced by the reaction is passed through a reflux condenser, then led to a condenser, and collected in a trap as liquid disilane. Impurities in disilane may be separated by conventional purification methods such as rectification and adsorption.

実施例および比較例 次に本発明を実施例、比較例を用いて具体的に示すが、
本発明の技術的範囲はこれに制限されるものではない。
Examples and Comparative Examples Next, the present invention will be specifically illustrated using Examples and Comparative Examples.
The technical scope of the present invention is not limited thereto.

実施例1 攪拌機、液体供給口、還流冷却器、温度計を(iiff
え、反応器のガス出口には一10°Cに冷却した還流冷
却器、−130°Cに冷却した凝縮器を設けた11容量
のジャケット付SUS製反応器を用いた。
Example 1 A stirrer, liquid supply port, reflux condenser, and thermometer (iiff
An 11-capacity jacketed SUS reactor was used, which was equipped with a reflux condenser cooled to -10°C and a condenser cooled to -130°C at the gas outlet of the reactor.

装置内をN2ガスで置換した後、水素化リチウ反応器の
ジャケットを5°Cの冷水で冷却し、水素化リチウムス
ラリー液の温度を10°C以下とした。
After replacing the inside of the apparatus with N2 gas, the jacket of the lithium hydride reactor was cooled with cold water at 5°C to bring the temperature of the lithium hydride slurry liquid to 10°C or less.

続いて臭化アルミニウム5gr (0,018モル)を
反応器に仕込み、30分間冷却攪拌後、塩化アルミニウ
ム10gr(0,075モル)を仕込んだ(MR+ =
L i H/A I B r3 =205、MR2=L
 iH/ (AIBrz +AlC1:i )=40、
M R:l = A I CI 3 / A I B 
r 3 = 4.2に相当)。
Subsequently, 5 gr (0,018 mol) of aluminum bromide was charged into the reactor, and after cooling and stirring for 30 minutes, 10 gr (0,075 mol) of aluminum chloride was charged (MR+ =
L i H/A I B r3 =205, MR2=L
iH/(AIBrz+AlC1:i)=40,
M R:l = A I CI 3 / A I B
corresponding to r 3 = 4.2).

反応器の液温度を10°Cとし、N2ガスを101 /
 h rで反応器液中に10時間吹き込み、低級炭化水
素を反応系より除去した。次いで、反応温度をlOoC
に維持しつつ、ヘキサクロロジシラン150.6gr(
0,56モル)を5時間かけて撹拌下に供給した後、更
に2時間攪拌継続し、反応を完結させた。
The liquid temperature in the reactor was 10°C, and the N2 gas was 101 /
The lower hydrocarbons were removed from the reaction system by blowing into the reactor liquid at hr for 10 hours. Then, the reaction temperature was set to lOoC
150.6 gr of hexachlorodisilane (
0.56 mol) was supplied under stirring over 5 hours, and stirring was continued for an additional 2 hours to complete the reaction.

反応器からの生成ガスは、還流冷却器で微量のn−ジブ
チルエーテルを還流分離した後、−130°Cに冷却し
た凝縮器に導き、ジシランを液化補集した。補集した粗
ジシランをボンベに移し、重量及びジシランの純度を分
析したところ、ジシランの収量は29.8grであり、
ヘキサクロロジシランを基準としたジシランの収率は8
6%であった。
The generated gas from the reactor was separated by refluxing a trace amount of n-dibutyl ether in a reflux condenser, and then led to a condenser cooled to -130°C, where disilane was liquefied and collected. The collected crude disilane was transferred to a cylinder and analyzed for weight and purity of disilane, and the yield of disilane was 29.8 gr.
The yield of disilane based on hexachlorodisilane is 8
It was 6%.

得られた粗ジシラン中の低級炭化水素を分析した結果は
、iso  C4Hto  が 0.3ppm、n−C
4HLOが6.5 ppm、1−C,、H,が0.3 
ppmであった。
The results of analyzing lower hydrocarbons in the obtained crude disilane showed that iso C4Hto was 0.3 ppm, n-C
4HLO is 6.5 ppm, 1-C,,H, is 0.3
It was ppm.

実施例2 n−ジブチルエーテルの仕込み量を380m1とし、臭
化アルミニウムの仕込み量を20gr(0゜075モル
)としく M RI= L iH/ A I B r 
3=40) 、塩化アルミニウムは仕込まず、またへキ
サクロロジシラン150.6gr(0,56モル)はn
−ジブチルエーテル95m1に混合した溶液として供給
した以外は、実施例1と同様にして反応させた。
Example 2 The amount of n-dibutyl ether charged was 380 ml, and the amount of aluminum bromide was 20 gr (0°075 mol).
3 = 40), aluminum chloride was not charged, and 150.6 gr (0.56 mol) of hexachlorodisilane was n
- The reaction was carried out in the same manner as in Example 1, except that the mixture was supplied as a solution mixed with 95 ml of dibutyl ether.

得られたジシランの収量は30.2grであり、ヘキサ
クロロジシランを基準としたジシランの収率は87%で
あった。
The yield of the obtained disilane was 30.2 gr, and the yield of disilane based on hexachlorodisilane was 87%.

実施例3〜8 MR+ 、MR+ 、MRzまたはMR3を第1表の如
く変化させた以外は、実施例1と同様の反応を行った。
Examples 3 to 8 The same reactions as in Example 1 were conducted except that MR+, MR+, MRz, or MR3 was changed as shown in Table 1.

その結果を第1表に記載する。The results are listed in Table 1.

比較例1 水素化リチウムの仕込み量を29.4gr(3゜7モル
)とし、臭化アルミニウム、塩化アルミニウムは共に仕
込まず、それ以外は実施例1と同様の方法で反応させた
結果、ジシランの収量はO,grであった。
Comparative Example 1 The amount of lithium hydride charged was 29.4 gr (3°7 mol), and neither aluminum bromide nor aluminum chloride was charged, but the reaction was carried out in the same manner as in Example 1. As a result, disilane The yield was O.gr.

比較例2 臭化アルミニウムは仕込まず、塩化アルミニウム20g
r(0,15モル)を仕込んだ以外は、実施例1と同様
の方法で反応させた結果、ジシランの収量はOgrであ
った。
Comparative Example 2 Aluminum bromide was not added, but 20g of aluminum chloride
The reaction was carried out in the same manner as in Example 1 except that r (0.15 mol) was charged, and the yield of disilane was Ogr.

ハ)発明の効果 本発明によれば、高価なL iA I H4を使用する
ことなく、低順で、また火災等の危険性がなく安全で、
かつ高収率にジシランを製造することが出来、経済的か
つ安全に工業的規模でジシランを製造することが可能で
ある。
C) Effects of the Invention According to the present invention, it is safe without using expensive LiA I H4, and there is no risk of fire or the like.
Moreover, disilane can be produced in high yield, and disilane can be produced economically and safely on an industrial scale.

Claims (1)

【特許請求の範囲】[Claims] 1、ハロゲン化ジシランを、臭化アルミニウムを含有さ
せた、或いは臭化アルミニウムを含有させた後、更に塩
化アルミニウムを含有させたn−ジブチルエーテル溶媒
の存在下、水素化リチウムにより還元反応を行う事を特
徴とするジシランの製造方法。
1. Reduction reaction of halogenated disilane with lithium hydride in the presence of n-dibutyl ether solvent containing aluminum bromide, or after containing aluminum bromide, further containing aluminum chloride. A method for producing disilane characterized by:
JP63060606A 1988-03-16 1988-03-16 Method for producing disilane Expired - Lifetime JP2536027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63060606A JP2536027B2 (en) 1988-03-16 1988-03-16 Method for producing disilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060606A JP2536027B2 (en) 1988-03-16 1988-03-16 Method for producing disilane

Publications (2)

Publication Number Publication Date
JPH01234316A true JPH01234316A (en) 1989-09-19
JP2536027B2 JP2536027B2 (en) 1996-09-18

Family

ID=13147081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060606A Expired - Lifetime JP2536027B2 (en) 1988-03-16 1988-03-16 Method for producing disilane

Country Status (1)

Country Link
JP (1) JP2536027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016386A1 (en) 2007-03-30 2008-10-16 Rev Renewable Energy Ventures, Inc. Catalytic hydrogenation
DE102009056731A1 (en) 2009-12-04 2011-06-09 Rev Renewable Energy Ventures, Inc. Halogenated polysilanes and polygermanes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016386A1 (en) 2007-03-30 2008-10-16 Rev Renewable Energy Ventures, Inc. Catalytic hydrogenation
DE102009056731A1 (en) 2009-12-04 2011-06-09 Rev Renewable Energy Ventures, Inc. Halogenated polysilanes and polygermanes
US9040009B2 (en) 2009-12-04 2015-05-26 Spawnt Private S.à.r.1. Kinetically stable chlorinated polysilanes and production thereof
US9139702B2 (en) 2009-12-04 2015-09-22 Spawnt Private S.A.R.L. Method for producing halogenated polysilanes
US9458294B2 (en) 2009-12-04 2016-10-04 Spawnt Private S.À.R.L. Method for removing impurities from silicon

Also Published As

Publication number Publication date
JP2536027B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US20090060820A1 (en) Method for producing trichlorosilane and method for producing polycrystalline silicon
US2579251A (en) Manufacture of aluminum alkoxides
DK167347B1 (en) METHOD OF MANUFACTURING SILAN
US4639361A (en) Process of preparing disilane by reduction of hexachlorodisilane
US4861574A (en) Process for preparing chloropolysilanes
JPH01234316A (en) Production of disilane
JPH07110827B2 (en) Method for producing tetrabromobisphenol A
JPS60221301A (en) Novel manufacture of germanium hydride
JPH08259212A (en) Method for synthesizing disilicon hexafluoride
US3683003A (en) Process for the production of malonic acid dinitrile
JPS5941924B2 (en) Purification method of thionyl chloride
EP0018481B1 (en) Process for producing alpha, alpha, alpha-trifluoro-o-toluic fluoride
JPH01100178A (en) Method for purifying trialkylindium
JPH0470251B2 (en)
US3707574A (en) Method for the continuous production of 1,1-dichlorethane
JP2620637B2 (en) Method for producing 2,4-dichloro-3-methylphenol
US4695441A (en) Manufacture of silane
JPH01301684A (en) Production of organometallic compound
RU2038297C1 (en) Method of trichlorosilane synthesis
US4301092A (en) Preparation of oxalyl chloride
CN117209535A (en) Synthesis method and application of bis (fluorosulfonyl) imide trialkyl phosphine salt
JPH04338117A (en) Production of aqueous manganese bromide solution
JPS59116117A (en) Novel manufacture of silicon hydride
JP3116553B2 (en) Method for producing 1,1,3,4,4,6-hexamethyltetralin
JP2002523481A (en) A method for reducing ring chlorination in the production of trichloromethoxybenzene.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12